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Topological Data Analysis

What is topology and why use it to analyze data?

Topology is a branch of mathematics which is good at extracting
global qualitative features from complicated geometric structures.

Example of a topological question

Is a given graph connected?

Topological Data Analysis

uses topology to summarize and learn from the “shape” of data.
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Simplicial complexes
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Exercise 1: Simplicial complexes for computers

A

B

C

D

What is the corresponding abstract simplicial complex?

{{A}, {B}, {C}, {D}, {A,B}, {A,D}, {B,C}, {B,D},
{C ,D}, {B,C ,D}}

Peter Bubenik Introduction to Topological Data Analysis
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Exercise 2: Betti numbers of simplicial complexes

β0 = # of connected components

β1 = # of holes

β2 = # of voids

β0 =

3

β1 =

1

β2 =

1

Peter Bubenik Introduction to Topological Data Analysis
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Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the
k-boundaries.

Peter Bubenik Introduction to Topological Data Analysis
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Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) =

4

dim(C1) =

5

dim(C2) =

1

Boundary matrices:

∂0 = 0

∂1 =



1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =



0
0
1
1
1



∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0

∂1 =



1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =



0
0
1
1
1



∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0

∂1 =



1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =



0
0
1
1
1



∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0

∂1 =


1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =


0
0
1
1
1



∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0 ∂1 =


1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =


0
0
1
1
1

 ∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0 ∂1 =


1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =


0
0
1
1
1

 ∂3 = 0

β0 = nullity(∂0)− rank(∂1) =

4− 3 = 1

β1 = nullity(∂1)− rank(∂2) =

2− 1 = 1

β2 = nullity(∂2)− rank(∂3) =

0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



7/37

Topology Statistics More details Homology Persistent homology

Exercise 3: Homology via linear algebra

A

B

C

D
Dimensions of vectors spaces
of k-chains:

dim(C0) = 4

dim(C1) = 5

dim(C2) = 1

Boundary matrices:

∂0 = 0 ∂1 =


1 1 0 0 0
1 0 1 1 0
0 0 1 0 1
0 1 0 1 1

 ∂2 =


0
0
1
1
1

 ∂3 = 0

β0 = nullity(∂0)− rank(∂1) = 4− 3 = 1

β1 = nullity(∂1)− rank(∂2) = 2− 1 = 1

β2 = nullity(∂2)− rank(∂3) = 0− 0 = 0

Peter Bubenik Introduction to Topological Data Analysis



8/37

Topology Statistics More details Homology Persistent homology

Simplicial complexes from point data

The Čech construction

Peter Bubenik Introduction to Topological Data Analysis
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Exercise 4: Constructing a Čech complex

Draw a picture of Č 1
2
({(0, 0), (0, 1), (1, 0), (1, 1)}).

(0, 0) (1, 0)

(0, 1) (1, 1)

Peter Bubenik Introduction to Topological Data Analysis
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The parameter

Question

What is the right value for the parameter in the Čech construction?

Often, there is no one “right” choice.

Peter Bubenik Introduction to Topological Data Analysis
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Persistence

Main idea: persistence

Vary the parameter and keep track of when features appear and
disappear.

Varying the radii of the spheres in the Čech construction we get an
increasing family of simplicial complexes.

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 0

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 1
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Filtered simplicial complex from points in R2

radius = 2

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 3

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 4
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Filtered simplicial complex from points in R2

radius = 5

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 6

Peter Bubenik Introduction to Topological Data Analysis
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Filtered simplicial complex from points in R2

radius = 7
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Filtered simplicial complex from points in R2

radius = 8
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Filtered simplicial complex from points in R2

radius = 9
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Filtered simplicial complex from points in R2

radius = 10
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Filtered simplicial complex from points in R2

radius = 11

Peter Bubenik Introduction to Topological Data Analysis
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Mathematical encoding

We have an increasing sequence of simplicial complexes

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xm

called a filtered simplicial complex.

Apply homology.

We get a sequence of vector spaces and linear maps

V0 → V1 → V2 → · · · → Vm

called a persistence module.

Peter Bubenik Introduction to Topological Data Analysis
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Graph of a persistence modules

V0 → V1 → V2 → V3 → V4 → V5 → V6 → V7 → · · · → Vm

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces Vi such that
each map is determined by a bipartite matching of basis vectors.

2 3 4 5 6 7 8 9 10 11 12

Peter Bubenik Introduction to Topological Data Analysis
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Barcode from our points in R2

Straightening out the previous graph, we get a barcode.

2 3 4 5 6 7 8 9 10 11 12

Peter Bubenik Introduction to Topological Data Analysis
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Persistence diagram from our points in R2

2 4 6 8 10 12

2

4

6

8

10

12

0
birth

d
ea
th

Peter Bubenik Introduction to Topological Data Analysis
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Exercise 5: Barcodes and persistence diagrams

0

1

2

3

4
5

6

7

8 9

↪→ ↪→ ↪→ ↪→ ↪→

↪→ ↪→ ↪→ ↪→

Time 0 1 2 3 4 5 6 7 8 9

Betti number β0

β0 β0 β0 β0 β0 β0 β1 β1 β1

effect +

+ + − + − − + + −

Birth–Death pairs for H0:

(0,∞), (1, 3), (2, 6), (4, 5)

Birth–Death pairs for H1:

(7,∞), (8, 9)

Peter Bubenik Introduction to Topological Data Analysis
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Statistical viewpoint

The barcode/persistence diagram is a random variable;
it is a summary statistic.

Underlying
Probability

Space

Space of
Topological
Summaries

Peter Bubenik Introduction to Topological Data Analysis
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Challenges

Topological
Summary

Statistics
and

Machine
Learning

For example:

calculate averages

understand variances

test hypotheses

cluster and classify

Peter Bubenik Introduction to Topological Data Analysis
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Statistics with barcodes/persistence diagrams

Set of
barcodes

Statistics
Metric

Easy:

clustering

certain hypothesis tests

Hard:

calculating averages

understanding variances

classification

Peter Bubenik Introduction to Topological Data Analysis
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Making life easier

Barcode
space

Vector
space

One way to turn a barcode or persistence diagram into a vector is
the persistence landscape.

Advantages:

it does not lose information

it is stable

it has a discrete and a continuous version

Peter Bubenik Introduction to Topological Data Analysis
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Persistence landscape from a barcode

Replace

−1 0 1 2 3 4 5 6 7

with

−1 1 2 3 4 5 6 7

−1

1

2

3

0

Peter Bubenik Introduction to Topological Data Analysis
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Persistence landscape from a barcode

Barcode:

0 2 4 6 8 10 12 14

Persistence Landscape:

2 4 6 8 10 12 14

2

4

6

0

λ1

λ2

λ3

λk = 0,

for k ≥ 4

Peter Bubenik Introduction to Topological Data Analysis
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Persistence landscape from a persistence diagram

2 4 6 8 10 12

2

4

6

8

10

12

0
birth

d
ea
th

1

1

2

2
3

0
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Persistence landscape from a persistence diagram

2 4 6 8 10 12

2

0

1 1
2

2 3

0

2 4 6 8 10 12

2

0

λ1 λ2

λ3

Peter Bubenik Introduction to Topological Data Analysis
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Persistence landscape from a persistence diagram

Peter Bubenik Introduction to Topological Data Analysis
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Exercise 6: Graphing the persistence landscape

0

1

2

3

4
5

6

7

8 9
Birth–Death pairs for H̃0:
(1, 3), (2, 6), (4, 5)

Graph the corresponding persistence landscape.

1 2 3 4 5 6

1

2

0

λ1
λ2

λk = 0,

for k ≥ 3

Peter Bubenik Introduction to Topological Data Analysis
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Making life easier

Barcode
space

Vector
space

Persistence Landscape

Choices for the vector space

continuous version: L2(R2)

discrete version: Rn

What is great about Rn and L2(R2)?

are vector spaces (easy to measure distances, averages)

have inner products (easy to measure angles)

are complete (good for studying convergence)

Thus we can

apply tools from probability, statistics and machine learning

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing

Points→ kernel density estimator→ filtered simplicial complex

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing
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Topological hypothesis testing

Null hypothesis: ‖λS‖1 = ‖λT‖1.

two-sample z-test:

degree decision p value

0 cannot reject
1 reject 3× 10−6

2 cannot reject

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing, noisy

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing, noisy
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Topological hypothesis testing, noisy

Null hypothesis: ‖λS − λT‖2 = 0.

Permutation test:

dim decision p value

0 reject 0.0111
1 reject 0.0000
2 reject 0.0000

Peter Bubenik Introduction to Topological Data Analysis
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Topological hypothesis testing, noisy

Peter Bubenik Introduction to Topological Data Analysis
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Software

Persistent Homology:

CHOMP, Dionysus, DIPHA, Eirene, GUDHI, JavaPlex,
Perseus, PHAT, Ripser, SimBa, SimPers

Persistence Landscape:

The Persistence Landscape Toolbox

Topological Data Analysis:

the R package TDA

my R code

Peter Bubenik Introduction to Topological Data Analysis
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Stability

Given f : X → R,
let λ(f ) the persistence landscape of sublevel sets of f .

Landscape Stability Theorem (B)

Let f , g : X → R.

‖λ(f )− λ(g)‖∞ ≤ ‖f − g‖∞.

If X is nice and f and g are tame and Lipschitz then

‖λ(f )− λ(g)‖22 ≤ C‖f − g‖2−k∞ .

Peter Bubenik Introduction to Topological Data Analysis
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Average landscapes

Persistence landscapes, λ(1), . . . , λ(n), have a pointwise average,

λ(k , t) =
1

n

n∑
i=1

λ(i)(k , t)

Peter Bubenik Introduction to Topological Data Analysis
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Average diagram vs average landscape

2 4 6 8 10 12 14 16

2

4

6

8

10

0 2 4 6 8 10 12 14 16

2

4

6

8

10

0

λ1

λ2

2 4 6 8 10 12 14 16

2

4

6

8

10

0

λ1

λ2

2 4 6 8 10 12 14 16

2

4

6

8

10

0

λ1

λ2
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Average landscapes for Gaussian random fields

Peter Bubenik Introduction to Topological Data Analysis
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Average landscapes for Gaussian random fields

Peter Bubenik Introduction to Topological Data Analysis
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Asymptotics for persistence landscapes

λ is a random variable in L2(R2), ‖λ‖ is a real random variable.

If E‖λ‖ <∞ then there exists E (λ) ∈ L2(R2) such that
E (f (λ)) = f (E (λ)) for all continuous linear functionals f .

Strong Law of Large Numbers (B, 2015)

λ
(n) → E (λ) almost surely

Central Limit Theorem (B, 2015)

√
n[λ

(n) − E (λ)] converges weakly to a Gaussian random variable

Peter Bubenik Introduction to Topological Data Analysis
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Understanding variance

Two approaches:

Bootstrap and confidence intervals for persistence landscapes
[Chazal, Fasy, Lecci, Rinaldo, Singh, Wasserman]

Figure 4: Top Left: Sample space of epicenters of 8000 earthquakes. Bottom Left: one of the 30 persistence
diagrams. Middle: uniform and adaptive 95% confidence bands for the mean landscape µ(t). Right:
uniform and adaptive 95% confidence bands for the mean weighted silhouette E[¡(0.01)(t)].

repeat this procedure n = 30 times and compute the mean landscape ∏n. Using the algorithm given
in Algorithm 1, we obtain the uniform 95% confidence band of Theorem 3 and the adaptive 95% con-
fidence band of Theorem 4. See Figure 4 (middle). Both the confidence bands have coverage around
95% for the mean landscape µ(t) that is attached to the distribution induced by the sampling scheme.
Similarly, using the same n = 30 persistence diagrams we construct the corresponding weighted sil-
houettes using p = 0.01 and construct uniform and adaptive 95% confidence bands for the mean
weighted silhouette E[¡(0.01)(t)]. See Figure 4 (right). Notice that, for most t 2 [0,T], the adaptive
confidence band is tighter than the fixed-width confidence band.

6.2 Toy Example: Rings
In this example, we embed the torus S1 £S1 in R3 and we use the rejection sampling algorithm of
Diaconis et al. (2012) (R = 5, r = 1.8) to sample 10,000 points uniformly from the torus. Then we link
it with a circle of radius 5, from which we sample 1,800 points; see Figure 5 (top left). These N =
11,800 points constitute the sample space. We randomly sample m = 600 of these points, construct
the Vietoris-Rips filtration, compute the persistence diagram (Betti 1) and the corresponding first
and third landscapes and the silhouettes for p = 0.1 and p = 4. We repeat this procedure n = 30
times to construct 95% adaptive confidence bands for the mean landscapes µ1(t), µ3(t) and the mean

10

Figure 5: Top Left: The sample space. Bottom Left: one of the 30 persistence diagrams. Middle: adaptive
95% confidence bands for the mean first landscape µ1(t) and mean third landscape µ3(t). Right: adaptive
95% confidence bands for the mean weighted silhouettes E[¡(4)(t)] and E[¡(0.1)(t)].

silhouettes E[¡(4)(t)], E[¡(0.1)(t)]. Figure 5 (bottom left) shows one of the 30 persistence diagrams.
In the persistence diagram, notice that three persistence pairs are more persistent than the rest.
These correspond to the two nontrivial cycles of the torus and the cycle corresponding to the circle.
We notice that many of the points in the persistence diagram are hidden by the first landscape.
However, as shown in the figure, the third landscape function and the silhouette with parameter
p = 0.1 are able to detect the presence of these features.

7 Discussion
We have shown how the bootstrap can be used to give confidence bands for Bubeknik’s persistence
landscape and for the persistence silhouette defined in this paper. We are currently working on
several extensions to our work including the following: allowing persistence diagrams with countably
many points, allowing T to be unbounded, and extending our results to new functional summaries of
persistence diagrams. In the case of subsampling (scenario 2 defined in the introduction), we have
provided accurate inferences for the mean function µ. We are investigating methods to estimate the
difference between µ (the mean landscape from subsampling) and ∏ (the landscape from the original
large dataset). Coupled with our confidence bands for µ, this could provide an efficient approach to
approximating the persistent homology in cases where exact computations are prohibitive.

11

Principal component analysis (coming in Talk 2)
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