Topology for Data Science 1:
An Introduction to Topological Data Analysis

Peter Bubenik

University of Florida
Department of Mathematics,
peter.bubenik@ufl.edu
http://people.clas.ufl.edu/peterbubenik/

January 23, 2017
Tercera Escuela de Anilisis Topolégico de Datos

y Topologia Estocastica
ABACUS, Estado de México

Peter Bubenik Introduction to Topological Data Analysis


peter.bubenik@ufl.edu
http://people.clas.ufl.edu/peterbubenik/

Topology

Topological Data Analysis

What is topology and why use it to analyze data?

Topology is a branch of mathematics which is good at extracting
global qualitative features from complicated geometric structures.

Example of a topological question

Is a given graph connected?

Topological Data Analysis

uses topology to summarize and learn from the “shape” of data.
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Topology Homology Persistent homology

Simplicial complexes
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A
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Topology Homology Persistent homolog)

Exercise 1: Simplicial complexes for computers

B

What is the corresponding abstract simplicial complex?
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Topology Homology Persistent homolog)

Exercise 1: Simplicial complexes for computers

B

What is the corresponding abstract simplicial complex?

{{A}, {B},{C},{D}, {A, B}, {A, D}, {B, C},{B, D},
{C,D},{B,C,D}}
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Topology Homology Persistent homolog)

Exercise 2: Betti numbers of simplicial complexes

Bo = # of connected components
b1 = # of holes
B2 = # of voids

N
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Topology Homology Persistent homolog)

Exercise 2: Betti numbers of simplicial complexes

Bo = # of connected components
b1 = # of holes
B2 = # of voids

N
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Topology Homology Persistent homolog)

Homology of simplicial complexes

Definition
Homology in degree k is given by k-cycles modulo the
k-boundaries.
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Topology Homology Persistent homolog)

Homology of simplicial complexes

Definition
Homology in degree k is given by k-cycles modulo the
k-boundaries.
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Topology Homology Persistent hom

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces
of k-chains:

dim(Co) =
dim(Cl)
B dim(C2) =
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Topology Homology Persistent hom

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces
of k-chains:

dim(Co) =
dim(Cl)
B dim(C2) =
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Topology Homology Persistent horr

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces

of k-chains:
A C dim(Co) =
dim(Cl) =
B dim(C2) =
Boundary matrices:
81 - 82 =
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Topology Homology Persistent homolog)

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces

of k-chains:
A C dim(Co) =
dim(Cl) =
B dim(C2) =
B ices:
oundary matrices 1100 0 8
1 0110
“=1p010 1| %27 1
01011 1
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Topology Homology Persistent homolog)

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces

of k-chains:
A C dim(Co) = 4
dim(Cl) = 5
B dim(C2) =1
B ices:
oundary matrices 1100 0 8
10110
=0 01= 0010 1 Or = 1 03 =0
01 011 1
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Topology Homology Persistent homolog)

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces

D of k-chains:
A C dim(Co) = 4
dim(Cl) = 5
B dim(C2) =1
B ices:
oundary matrices 1100 0 8
10110
=0 01= 0010 1 Or = 1 03 =0
01 011 1

Bo = nullity(dg) — rank(01)
B1 = nullity(d1) — rank(0)
B2 = nullity(d2) — rank(03)
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Topology Homology Persistent homolog)

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces

D of k-chains:
A C dim(Co) = 4
dim(Cl) = 5
B dim(C2) =1
B ices:
oundary matrices 1100 0 8
10110
=0 01= 0010 1 Or = 1 03 =0
01 011 1

Bo = nullity(dg) —rank(01) =4—-3=1
B1 = nullity(01) —rank(d2) =2—-1=1
B2 = nullity(d2) — rank(d3) =0—-0=0
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Topology Homology Persistent hom

Simplicial complexes from point data

The Cech construction
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Topology Homology Persistent hom

Simplicial complexes from point data

The Cech construction

AV
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Topology Homology Persistent homolog:

Simplicial complexes from point data

The Cech construction
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Topology Homology Persistent homolog:

Simplicial complexes from point data

The Cech construction
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Topology Homology Persistent homolog:

Simplicial complexes from point data

The Cech construction
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Topology Homology

Exercise 4: Constructing a Cech complex

Draw a picture of C‘%({(o,O), (0,1),(1,0),(1,1)}).
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Topology Homology Persistent homolog)

Exercise 4: Constructing a Cech complex

Draw a picture of C‘%({(o,O), (0,1),(1,0),(1,1)}).

(0,1) (1,1)
[ 4 9

° °
(0,0) (1,0)
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Topology >mology Persistent homology

The parameter

What is the right value for the parameter in the Cech construction?

Peter Bubenik Introduction to Topological Data Analysis



Topology on Persistent homology

The parameter
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Topology o y Persistent homology

The parameter

What is the right value for the parameter in the Cech construction?

Often, there is no one “right” choice.

4
ol OC}
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Topology Homology Persistent homology

The parameter

What is the right value for the parameter in the Cech construction?

Often, there is no one “right” choice.
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Topology on s Persistent homology

Persistence

Main idea: persistence
Vary the parameter and keep track of when features appear and
disappear.

Varying the radii of the spheres in the Cech construction we get an
increasing family of simplicial complexes.

Peter Bubenik Introduction to Topological Data Analysis



Topology c Persistent homology

Filtered simplicial complex from points in R?

radius = 0
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Topology c Persistent homology

Filtered simplicial complex from points in R?

radius = 1
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Topology le Persistent homology

Filtered simplicial complex from points in R?

radius = 2
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Topology le Persistent homology

Filtered simplicial complex from points in R?

radius = 3
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Topology le Persistent homology

Filtered simplicial complex from points in R?

radius = 4
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Topology omology Persistent homology

Filtered simplicial complex from points in R?

radius = 5
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Topology 5 More details Homology Persistent homology

Filtered simplicial complex from points in R?

radius = 6
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Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in R?

9%
INEATN
N\l N\

radius = 7
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Topology Is Hormr Persistent homology

Filtered simplicial complex from points in R?

radius = 8
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Topology Statistic ils Homology Persistent homology

Filtered simplicial complex from points in R?

radius = 9
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Topology St 5 More details Homology Persistent homology

Filtered simplicial complex from points in R?

NN

radius = 10
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Topology Sta Vore details Homology Persistent homology

Filtered simplicial complex from points in R?

7>
AT X/
<L YN

SN
N

radius = 11
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Topology o y Persistent homology

Mathematical encoding

We have an increasing sequence of simplicial complexes
XoCX1CXoC - C Xy

called a filtered simplicial complex.

Apply homology.

We get a sequence of vector spaces and linear maps
Voo Vi=>Vo— o=V,

called a persistence module.
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Topology Ho! y Persistent homology

Graph of a persistence modules

Vo—-Vi-Vo—- Vs> Vi Vo> Vo> Ve—-o =V,

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces V; such that
each map is determined by a bipartite matching of basis vectors.
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Topology on Persistent homology

Barcode from our points in R?

Straightening out the previous graph, we get a barcode.
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Topology

0 2 4 6 8 10 12
birth
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Persistent homology

Topology

Exercise 5: Barcodes and persistence diagrams

— o’ T
oo L <L <DL <D
Time |0 1 2 3 4 5 6 7 8 9
Betti number | 5p
effect +

Birth—Death pairs for Hp:
Birth—Death pairs for Hi:
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logy Persistent homology

Ho

Topology

Exercise 5: Barcodes and persistence diagrams

<’ ..<—>\.<—>\'<—>
oo L oL <P <P
Time |0 1 2 3 4 5 6 7 8 9

Bo Bo Bo Bo Bo Bo Bo 1 B B

Betti number
+ + + - + - - 4+ + -

effect

Birth—Death pairs for Hp:
Birth—Death pairs for Hi:
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Topology Homology Persistent homology

Exercise 5: Barcodes and persistence diagrams

oL o, <—>\°<—>\'<—>

NI G IR QIR Of

Time |0 1 2 3 4 5 6 7 8 9
Betti number | So B0 So fo Bo Lo Bo P1 b1
effect + + + - + - - + + -

Birth—Death pairs for Hy:  (0,00), (1,3), (2,6), (4,5)
Birth—Death pairs for H;: (7, 00), (8,9)
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Topology Persistent homology

Exercise 5: Barcodes and persistence diagrams

Birth—Death pairs for Hy: (0, 00), (1,3), (2,6), (4,5)
Birth—Death pairs for H;:  (7,00), (8,9)

Persistence diagram

0 -
Barcode 10
Hl <« 8
T 6
Ho S 4
2

0 2 4 6 8 10 12
0 246 810
birth
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Topology Persistent homology

Exercise 5: Barcodes and persistence diagrams

Birth—Death pairs for Hy: (0, 00), (1,3), (2,6), (4,5)
Birth—Death pairs for H;:  (7,00), (8,9)

Persistence diagram

Barcode
Hy —_— =
— ] 6
Hy ——— . 2,
g 2
0 2 4 6 8 10 12
0 246 810
birth

Peter Bubenik Introduction to Topological Data Analysis



Statistics Persistence Landscape Hypothesis testi

Statistical viewpoint

The barcode/persistence diagram is a random variable;
it is a summary statistic.

Underlying Space of

Probability Topological
Space Summaries
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Statistics Persistence Landscape Hypothesis

Challenges

Statistics
Topological and

Summary Machine
Learning

For example:
@ calculate averages
@ understand variances
@ test hypotheses

@ cluster and classify
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Statistics nce Landscape Hypot!

Statistics with barcodes/persistence diagrams

Set of Metric

Statistics
barcodes

Hard:

Easy: _
. o calculating averages
@ clustering

) . @ understanding variances
@ certain hypothesis tests

@ classification

Peter Bubenik Introduction to Topological Data Analysis



Statistics Persistence Landscape Hypothesis testi

Making life easier

One way to turn a barcode or persistence diagram into a vector is
the persistence landscape.

Advantages:
@ it does not lose information
@ it is stable

@ it has a discrete and a continuous version
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Statistics Persistence Landscape

Persistence landscape from a barcode

with

14
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Statistics Persistence Landscape Hypothe:

Persistence landscape from a barcode

Barcode:

Persistence Landscape:

6
A =0,
4 for k > 4
2 )\‘2‘»‘, .
Lt N
0 2 4 6 8 10 12 14
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Statistics Persistence Landscape Hypoth testing

Persistence landscape from a persistence diagram

=
=
go B
= 2
4
p

0 2 4 6 8 10 12
birth



Statistics Persistence Landscape Hypothesis testing

Persistence landscape from a persistence diagram
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Statistics Persistence Landscape Hypothesis

Persistence landscape from a persistence diagram
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Statistics

Birth—Death pairs for Fo:
(1,3), (2,6), (4,5)

Graph the corresponding persistence landscape.
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Statistics Persistence Landscape Hypo

Exercise 6: Graphing the persistence landscape

Birth—Death pairs for Fo:
(1,3), (2,6), (4,5)

Ak =0,
for k >3
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Statistics Persistence Landscape Hypothesis

Making life easier

Barcode |Persistence Landscape Vector
space space

Choices for the vector space
e continuous version: L?(IR?)

@ discrete version: R
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Statistics Persistence Landscape Hypothe:

Making life easier

Barcode |Persistence Landscape Vector
space space

Choices for the vector space
e continuous version: L?(IR?)
@ discrete version: R"
What is great about R” and L?(IR?)?
@ are vector spaces (easy to measure distances, averages)
@ have inner products (easy to measure angles)
@ are complete (good for studying convergence)
Thus we can

@ apply tools from probability, statistics and machine learning
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Hypothesis testing

Persistence Landscape

Statistics

a0
=
)
(0]
()
-+
2
(0]
(]
L=
)
(@)
o
>
=
“©
9
a0
o
(@)
)
_I

Introduction to Topological Data Analysis

Peter Bubenik



Statistics Persistence Landscape Hypothesis testing

Topological hypothesis testing

Points — kernel density estimator — filtered simplicial complex

/
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Statistics ersistence Landscape Hypothesis testing

Topological hypothesis testing




Statistics Persistence Landscape Hypothesis testing

Topological hypothesis testing

Null hypothesis: |[As|l1 = ||A7]|1.

two-sample z-test:

degree decision p value
0 cannot reject
1 reject 3x10°°
2 cannot reject
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Statistics Persistence Landscape Hypothesis testing

Topological hypothesis testing, noisy
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Statistics Persistence Landscape Hypothesis testing

Topological hypothesis testing, noisy
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Statistics Per andscape Hypothesis testing

Topological hypothesis testing, noisy

Null hypothesis: |[As — At|[2 = 0.
Permutation test:

dim decision p value
0 reject  0.0111
1 reject  0.0000
2 reject  0.0000
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Statistics Persistence Landscape Hypothesis testing

Topological hypothesis testing, noisy
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Statistics s andsc Hypothesis testing

Software

Persistent Homology:

e CHOMP, Dionysus, DIPHA, Eirene, GUDHI, JavaPlex,
Perseus, PHAT, Ripser, SimBa, SimPers

Persistence Landscape:

@ The Persistence Landscape Toolbox
Topological Data Analysis:

@ the R package TDA

@ my R code
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More details Stability Averz Variance

Stability

Given f : X = R,
let A(f) the persistence landscape of sublevel sets of f.

Landscape Stability Theorem (B)

Let f,g: X — R.

IA(F) = A(&)lloo < [IF — &lloo-

If X is nice and f and g are tame and Lipschitz then

IMF) = Ag)II3 < CIIf —gl5*.
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More details Stability Average Varianc

Average landscapes

Persistence landscapes, AV, ..., A(") have a pointwise average,

Ak 1) = =S A0k, 1)
i=1
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More details

Stability

Average V

Average diagram vs average landscape
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More details Stability Average Variance

Average landscapes for Gaussian random fields

. it
Wl
: o

| 100 0 100 200 300 400
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More details Stability Average Variance

Average landscapes for Gaussian random fields

s 8888838838
2 8 8 5 8 8 3
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More details Stability Average Variance

Asymptotics for persistence landscapes

A is a random variable in L2(R?), ||\|| is a real random variable.

If E||\|| < oo then there exists £()\) € L2(R?) such that
E(f(X)) = f(E(X)) for all continuous linear functionals f.

Strong Law of Large Numbers (B, 2015)

PR E(\) almost surely

A\

Central Limit Theorem (B, 2015)

\/E[X(n) — E(\)] converges weakly to a Gaussian random variable
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More details

Understanding variance

Two approaches:

Stability Y e Variance

@ Bootstrap and confidence intervals for persistence landscapes

[Chazal, Fasy, Lecci, Rinaldo,

Mean 1st Landscape (n=30)
with Adaptive 95% band

Q i

w
- «°
o

o
<
o

o
o - =
T T T T T i

@ Principal component analysis

Peter Bubenik

Singh, Wasserman]

Mean 3rd Landscape (n=30)
with Adaptive 95% band

(coming in Talk 2)
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