Topology for Data Science 1:
 An Introduction to Topological Data Analysis

Peter Bubenik

University of Florida
Department of Mathematics, peter.bubenik@ufl.edu
http://people.clas.ufl.edu/peterbubenik/
January 23, 2017

Tercera Escuela de Análisis Topológico de Datos y Topología Estocástica
ABACUS, Estado de México

Topological Data Analysis

What is topology and why use it to analyze data?

Topology is a branch of mathematics which is good at extracting global qualitative features from complicated geometric structures.

Example of a topological question

Is a given graph connected?

Topological Data Analysis

uses topology to summarize and learn from the "shape" of data.

Simplicial complexes

Exercise 1: Simplicial complexes for computers

What is the corresponding abstract simplicial complex?

Exercise 1: Simplicial complexes for computers

What is the corresponding abstract simplicial complex?

$$
\begin{aligned}
\{\{A\},\{B\},\{C\},\{D\},\{A, B\},\{A, D\},\{B, C\}, & \{B, D\}, \\
& \{C, D\},\{B, C, D\}\}
\end{aligned}
$$

Exercise 2: Betti numbers of simplicial complexes

$$
\begin{aligned}
& \beta_{0}=\# \text { of connected components } \\
& \beta_{1}=\# \text { of holes } \\
& \beta_{2}=\# \text { of voids }
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{0}= \\
& \beta_{1}= \\
& \beta_{2}=
\end{aligned}
$$

Exercise 2: Betti numbers of simplicial complexes

$$
\begin{aligned}
& \beta_{0}=\# \text { of connected components } \\
& \beta_{1}=\# \text { of holes } \\
& \beta_{2}=\# \text { of voids }
\end{aligned}
$$

$$
\begin{aligned}
& \beta_{0}=3 \\
& \beta_{1}=1 \\
& \beta_{2}=1
\end{aligned}
$$

Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the k-boundaries.

Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the k-boundaries.

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)= \\
& \operatorname{dim}\left(C_{1}\right)= \\
& \operatorname{dim}\left(C_{2}\right)=
\end{aligned}
$$

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

Exercise 3: Homology via linear algebra

Boundary matrices:

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

$$
\partial_{2}=[]
$$

Exercise 3: Homology via linear algebra

Boundary matrices:

$$
\partial_{1}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right]
$$

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

$$
\partial_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right]
$$

Exercise 3: Homology via linear algebra

$$
\begin{aligned}
& \text { Boundary matrices: } \\
& \partial_{0}=0 \quad \partial_{1}=\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \\
& \partial_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \quad \partial_{3}=0
\end{aligned}
$$

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boundary matrices: } \\
& \qquad \begin{array}{lllll}
\partial_{0}=0 \quad \partial_{1} & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \quad \partial_{3}=0 \\
\beta_{0}=\operatorname{nullity}\left(\partial_{0}\right)-\operatorname{rank}\left(\partial_{1}\right)= \\
\beta_{1}=\operatorname{nullity}\left(\partial_{1}\right)-\operatorname{rank}\left(\partial_{2}\right)= \\
\beta_{2}=\operatorname{nullity}\left(\partial_{2}\right)-\operatorname{rank}\left(\partial_{3}\right)=
\end{array}
\end{aligned}
$$

Exercise 3: Homology via linear algebra

Dimensions of vectors spaces of k-chains:

$$
\begin{aligned}
& \operatorname{dim}\left(C_{0}\right)=4 \\
& \operatorname{dim}\left(C_{1}\right)=5 \\
& \operatorname{dim}\left(C_{2}\right)=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { Boundary matrices: } \\
& \qquad \begin{array}{lllll}
\partial_{0}=0 \quad \partial_{1} & =\left[\begin{array}{lllll}
1 & 1 & 0 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 \\
0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 1
\end{array}\right] \quad \partial_{2}=\left[\begin{array}{l}
0 \\
0 \\
1 \\
1 \\
1
\end{array}\right] \quad \partial_{3}=0 \\
\beta_{0}=\operatorname{nullity}\left(\partial_{0}\right)-\operatorname{rank}\left(\partial_{1}\right)=4-3=1 \\
\beta_{1}=\operatorname{nullity}\left(\partial_{1}\right)-\operatorname{rank}\left(\partial_{2}\right)=2-1=1 \\
\beta_{2}=\operatorname{nullity}\left(\partial_{2}\right)-\operatorname{rank}\left(\partial_{3}\right)=0-0=0
\end{array}
\end{aligned}
$$

Simplicial complexes from point data

The Čech construction

Simplicial complexes from point data

The Čech construction

Simplicial complexes from point data

The Čech construction

Simplicial complexes from point data

The Čech construction

Simplicial complexes from point data

The Čech construction

Exercise 4: Constructing a Čech complex

Draw a picture of $\check{C}_{\frac{1}{2}}(\{(0,0),(0,1),(1,0),(1,1)\})$.

Exercise 4: Constructing a Čech complex

Draw a picture of $\check{C}_{\frac{1}{2}}(\{(0,0),(0,1),(1,0),(1,1)\})$.

The parameter

Question

What is the right value for the parameter in the Čech construction?

The parameter

Question

What is the right value for the parameter in the Čech construction?
Often, there is no one "right" choice.

The parameter

Question

What is the right value for the parameter in the Čech construction?
Often, there is no one "right" choice.

The parameter

Question

What is the right value for the parameter in the Čech construction?
Often, there is no one "right" choice.

Persistence

Main idea: persistence
Vary the parameter and keep track of when features appear and disappear.

Varying the radii of the spheres in the Čech construction we get an increasing family of simplicial complexes.

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=0
$$

Filtered simplicial complex from points in \mathbb{R}^{2}

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=2
$$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=3
$$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=4
$$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=5
$$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=6
$$

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=7
$$

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=8
$$

Filtered simplicial complex from points in \mathbb{R}^{2}

$$
\text { radius }=9
$$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

radius $=10$

Topology Statistics More details Homology Persistent homology

Filtered simplicial complex from points in \mathbb{R}^{2}

radius $=11$

Mathematical encoding

We have an increasing sequence of simplicial complexes

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots \subseteq X_{m}
$$

called a filtered simplicial complex.
Apply homology.
We get a sequence of vector spaces and linear maps

$$
V_{0} \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{m}
$$

called a persistence module.

Graph of a persistence modules

$$
V_{0} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{6} \rightarrow V_{7} \rightarrow \cdots \rightarrow V_{m}
$$

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces V_{i} such that each map is determined by a bipartite matching of basis vectors.

Barcode from our points in \mathbb{R}^{2}

Straightening out the previous graph, we get a barcode.

Persistence diagram from our points in \mathbb{R}^{2}

Exercise 5: Barcodes and persistence diagrams

Birth-Death pairs for H_{0} : Birth-Death pairs for H_{1} :

Exercise 5: Barcodes and persistence diagrams

Birth-Death pairs for H_{0} : Birth-Death pairs for H_{1} :

Exercise 5: Barcodes and persistence diagrams

Birth-Death pairs for $H_{0}:(0, \infty),(1,3),(2,6),(4,5)$ Birth-Death pairs for $H_{1}: \quad(7, \infty),(8,9)$

Exercise 5: Barcodes and persistence diagrams

Birth-Death pairs for $H_{0}:(0, \infty),(1,3),(2,6),(4,5)$
Birth-Death pairs for $H_{1}: \quad(7, \infty),(8,9)$

Persistence diagram

Exercise 5: Barcodes and persistence diagrams

Birth-Death pairs for $H_{0}:(0, \infty),(1,3),(2,6),(4,5)$
Birth-Death pairs for $H_{1}: \quad(7, \infty),(8,9)$
Persistence diagram

Statistical viewpoint

The barcode/persistence diagram is a random variable; it is a summary statistic.

Challenges

For example:

- calculate averages
- understand variances
- test hypotheses
- cluster and classify

Statistics with barcodes/persistence diagrams

Easy:

- clustering
- certain hypothesis tests

Hard:

- calculating averages
- understanding variances
- classification

Making life easier

One way to turn a barcode or persistence diagram into a vector is the persistence landscape.

Advantages:

- it does not lose information
- it is stable
- it has a discrete and a continuous version

Persistence landscape from a barcode

Replace

with

Persistence landscape from a barcode

Barcode:

Persistence Landscape:

Persistence landscape from a persistence diagram

Persistence landscape from a persistence diagram

Persistence landscape from a persistence diagram

Exercise 6: Graphing the persistence landscape

Birth-Death pairs for \tilde{H}_{0} : $(1,3),(2,6),(4,5)$

Graph the corresponding persistence landscape.

Exercise 6: Graphing the persistence landscape

Birth-Death pairs for \tilde{H}_{0} :
$(1,3),(2,6),(4,5)$

Graph the corresponding persistence landscape.

Making life easier

Choices for the vector space

- continuous version: $L^{2}\left(\mathbb{R}^{2}\right)$
- discrete version: \mathbb{R}^{n}

Making life easier

| Barcode |
| :---: | :---: |
| space |$\xrightarrow{\text { Persistence Landscape }}$

Vector space

Choices for the vector space

- continuous version: $L^{2}\left(\mathbb{R}^{2}\right)$
- discrete version: \mathbb{R}^{n}

What is great about \mathbb{R}^{n} and $L^{2}\left(\mathbb{R}^{2}\right)$?

- are vector spaces (easy to measure distances, averages)
- have inner products (easy to measure angles)
- are complete (good for studying convergence)

Thus we can

- apply tools from probability, statistics and machine learning

Topological hypothesis testing

Topological hypothesis testing

Points \rightarrow kernel density estimator \rightarrow filtered simplicial complex

Topological hypothesis testing

Topological hypothesis testing

Null hypothesis: $\left\|\overline{\lambda_{S}}\right\|_{1}=\left\|\overline{\lambda_{T}}\right\|_{1}$.
two-sample z-test:

degree	decision	p value
0	cannot reject	
1	reject	3×10^{-6}
2	cannot reject	

Topological hypothesis testing, noisy

Topological hypothesis testing, noisy

Topological hypothesis testing, noisy

Null hypothesis: $\left\|\overline{\lambda_{S}}-\overline{\lambda_{T}}\right\|_{2}=0$.
Permutation test:

dim	decision	p value
0	reject	0.0111
1	reject	0.0000
2	reject	0.0000

Topological hypothesis testing, noisy

Software

Persistent Homology:

- CHOMP, Dionysus, DIPHA, Eirene, GUDHI, JavaPlex, Perseus, PHAT, Ripser, SimBa, SimPers

Persistence Landscape:

- The Persistence Landscape Toolbox

Topological Data Analysis:

- the R package TDA
- my R code

Stability

Given $f: X \rightarrow \mathbb{R}$,
let $\lambda(f)$ the persistence landscape of sublevel sets of f.

Landscape Stability Theorem (B)

Let $f, g: X \rightarrow \mathbb{R}$.

$$
\|\lambda(f)-\lambda(g)\|_{\infty} \leq\|f-g\|_{\infty}
$$

If X is nice and f and g are tame and Lipschitz then

$$
\|\lambda(f)-\lambda(g)\|_{2}^{2} \leq C\|f-g\|_{\infty}^{2-k} .
$$

Average landscapes

Persistence landscapes, $\lambda^{(1)}, \ldots, \lambda^{(n)}$, have a pointwise average,

$$
\bar{\lambda}(k, t)=\frac{1}{n} \sum_{i=1}^{n} \lambda^{(i)}(k, t)
$$

Average diagram vs average landscape

Average landscapes for Gaussian random fields

Average landscapes for Gaussian random fields

Asymptotics for persistence landscapes

λ is a random variable in $L^{2}\left(\mathbb{R}^{2}\right), \quad\|\lambda\|$ is a real random variable.
If $E\|\lambda\|<\infty$ then there exists $E(\lambda) \in L^{2}\left(\mathbb{R}^{2}\right)$ such that $E(f(\lambda))=f(E(\lambda))$ for all continuous linear functionals f.

Strong Law of Large Numbers (B, 2015)

$\bar{\lambda}^{(n)} \rightarrow E(\lambda)$ almost surely

Central Limit Theorem (B, 2015)

$\sqrt{n}\left[\lambda^{(n)}-E(\lambda)\right]$ converges weakly to a Gaussian random variable

Understanding variance

Two approaches:

- Bootstrap and confidence intervals for persistence landscapes [Chazal, Fasy, Lecci, Rinaldo, Singh, Wasserman]

Mean 3rd Landscape ($n=30$)

- Principal component analysis (coming in Talk 2)

