# Topology for Data Science 2: Learning from the shape of data 

Peter Bubenik

University of Florida
Department of Mathematics, peter.bubenik@ufl.edu
http://people.clas.ufl.edu/peterbubenik/
January 24, 2017

Tercera Escuela de Análisis Topológico de Datos y Topología Estocástica
ABACUS, Estado de México

## Topological Data Analysis



## Brains



## BRAINS!!!



## Magnetic Resonance Imaging (MRI)



## Brain arteries



Paul Bendich, J.S. Marron, Ezra Miller, Alex Pieloch, Sean Skwerer, Ann. Appl. Stat. 10 (2016) no. 1, 198-218 (presented here with changes by me)

## Brain arteries



Want to:

- understand normal changes with respect to age
- detect and locate pathology (tumors)
- predict stroke risk


## Brain arterial data

Bullitt and Aylward (2002) MRA $\rightarrow$ Tubes


## Mathematical viewpoint

Graph $X$ with $(x, y, z, r)$ for each vertex.

## Mathematical viewpoint

Graph $X$ with $(x, y, z, r)$ for each vertex.
$X_{t}$ is the full subgraph on the vertices with $z \leq t$.

$$
\emptyset=X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots \subseteq X_{m}=X
$$

Apply $H_{0}$.

$$
H_{0}\left(X_{0}\right) \rightarrow H_{0}\left(X_{1}\right) \rightarrow H_{0}\left(X_{2}\right) \rightarrow \cdots \rightarrow H_{0}\left(H_{m}\right)
$$

## Filling the arteries - increasing sublevel sets



## Mathematical encoding

We have an increasing sequence of simplicial complexes

$$
X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots \subseteq X_{m}
$$

called a filtered simplicial complex.
Apply $H_{k}(-; \mathbb{F})$.
We get a sequence of vector spaces and linear maps

$$
V_{0} \rightarrow V_{1} \rightarrow V_{2} \rightarrow \cdots \rightarrow V_{m}
$$

called a persistence module.

## Summaries of persistence modules

$$
V_{0} \rightarrow V_{1} \rightarrow V_{2} \rightarrow V_{3} \rightarrow V_{4} \rightarrow V_{5} \rightarrow V_{6} \rightarrow V_{7} \rightarrow \cdots \rightarrow V_{m}
$$

## Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces $V_{i}$ such that each map is determined by a bipartite matching of basis vectors.

Get barcode.


## Brain artery barcodes



## Challenges



We want to:

- calculate averages
- understand variances
- test hypotheses
- cluster and classify

We can only do a few of these using barcodes.

## Making life easier



The feature space is a Hilbert space.
What is great about a Hilbert space?

- it is a vector space (easy to measure distances, averages)
- it has an inner product (easy to measure angles)
- it is complete (good for studying convergence)


## Feature maps and kernels

Feature map $\Phi: \mathcal{X} \rightarrow \mathcal{H}$


Kernel $K: \mathcal{X} \times \mathcal{X} \rightarrow \mathbb{R}, \quad K(x, y)=\langle\Phi(x), \Phi(y)\rangle_{\mathcal{H}}$.
With a kernel, we can

- measure distance $d(x, y)=K(x-y, x-y)^{1 / 2}$
- measure angles: $\angle(x, y)=\arccos \frac{K(x, y)}{K(x, x)^{1 / 2} K(y, y)^{1 / 2}}$


## Constructing a persistence landscape



## Constructing a persistence landscape



