

Average landscape for brain arteries

Up to know we have only used H_0 .

Now we switch to H_1 .

We consider a new filtered simplicial complex obtained by 'thickening the arteries'.

Peter Bubenik

Learning from the shape of data

22/45

Peter Bubenik Learning from the shape of data

Brain artery H_1 average landscape

Correlation with age

Pearson's correlation coefficient, r, of age with statistics derived from the brain arteries

Previous study without topology, r = 0.25

Using 1-norm of H_0 persistence landscape, r = 0.5077

Using first principal component of H_0 landscape, r = 0.5216

Using first principal component of H_1 landscape, r = 0.6145

Using 1-norm of H_1 persistence landscape, r = 0.6475(corresponding p value $\leq 10^{-12}$)

Norm of H_1 persistence landscape vs age

Female and male brain arteries

47 Females and 49 Males

Without TDA, previous statistics obtained from the brain arteries could not distinguish between the two.

Female H_1 Average Landscape

Male H_1 Average Landscape

H_1 Female – Male

Permutation test

Is this difference significant?

Test statistic: L^2 norm of this difference.

Permutation test:

- I randomly assign M/F labels to the 98 subjects
- **2** calculate L^2 norm of the difference of their average landscapes
- repeat 10,000 times
- opvalue = proportion in which this norm exceeds the observed norm

p value: 0.0025