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Brain artery persistence landscape
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Arteries Landscapes Average Variance Hj

Brain artery persistence landscape

Peter Bubenik Learning from the shape of data



Arteries Landscapes Average Variance

Brain artery persistence landscape

Peter Bubenik Learning from the shape of data



Arteries Landscapes Average Variance Hj

Brain artery persistence landscape

Peter Bubenik Learning from the shape of data
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Arteries Average

Average landscape for brain arteries
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Arteries es Average Variance Hj

Principal Component Analysis
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Arteries s Average Variance H; Age Se

Principal Component Analysis
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Arteries

Principal Component Analysis
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Arteries Landscapes Average Variance H; Age

Principal Component Analysis
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Arteries La Average Variance

Principal Component Analysis
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Arteries es / /ariance H; Age

Thickening the arteries

Up to know we have only used Hp.
Now we switch to Hj.

We consider a new filtered simplicial complex obtained by
"thickening the arteries’.
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Arteries

Thickening the arteries
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Thickening the arteries
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Arteries a age Variance H; A

Thickening the arteries
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Arteries a es Average Variance H; Ag

Thickening the arteries
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Arteries

Thickening the arteries
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Arteries and age Variance H; A
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Arteries

Brain artery H; persistence landscape
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Arteries es Average Variance
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Arteries a es Average Variance H; Ag
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Arteries Landscapes Average Variance H; Age Se

Brain artery H; average landscape
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Arteries

Correlation with age

Pearson’s correlation coefficient, r, of
age with statistics derived from the brain arteries

Previous study without topology, r = 0.25

Using 1-norm of Hy persistence landscape, r = 0.5077
Using first principal component of Hy landscape, r = 0.5216
Using first principal component of H; landscape, r = 0.6145

Using 1-norm of Hj persistence landscape, r = 0.6475
(corresponding p value < 1071?)
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Arteries Lar apes Average Variance H; Age Se

Norm of H; persistence landscape vs age
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Arteries La / /ariance H; Age Sex

Female and male brain arteries

47 Females and 49 Males

Without TDA, previous statistics obtained from the brain arteries
could not distinguish between the two.
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Arteries a es Average Variance H; Age

Female H; Average Landscape
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Arteries a es Average Variance H; Age

Male H; Average Landscap
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Arteries andscapes Av se Variance H; Age Sex

H; Female — Male
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Arteries a / /ariance

Permutation test

Is this difference significant?
Test statistic: L2 norm of this difference.

Permutation test:
© randomly assign M/F labels to the 98 subjects
@ calculate L? norm of the difference of their average landscapes
© repeat 10,000 times

@ p value = proportion in which this norm exceeds the observed
norm

p value: 0.0025
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