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Maltose Binding Protein Data

The Data

Fourteen MBP structures from the Protein Data Bank.

7 closed conformations

7 open conformations

X-ray crystallography: coordinates of atoms.

Represent each amino acid residue by its Cα atom.

Have 14 sets of 370 points in R3.

The Goal

Can we use topological data analysis to distinguish the open and
closed conformations?
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Topological Analysis of our Protein data

We have spatial coordinates of 370 amino acid residues.

Construct elastic network model

Calculate correlations

Use these to get distances
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MBP Vietoris-Rips complex
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MBP average persistence landscapes
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MBP average persistence landscapes
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MBP average persistence landscapes
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Classification of protein conformations
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Figure 1: Distance analysis based on the 2-Landscape distance shows a separation between the
closed (blue) and the open (red) MBP conformation for degree 0 (left) and degree 1 (right) persistent
homology. Similar results hold for degree 2. The projection of the 14 × 14 distance matrix onto
the 3D space is attained via Isomap.

4.3 Statistical Inference

To measure the statistical significance of visually observed differences between the closed

and the open conformation we use a permutation test. For each degree, we calculate

fourteen sample values of the random variable X from Equation (3). The permutation

test carried out at the significance level of 0.05 yields a p-value of 5.83 × 10−4 for both

homology in degree 0 and in degree 1. We obtain the same p-value since in both cases the

observed statistic was the most extreme among all 1716 possible permutations. Hence, at

14

Projection of the L2 distance matrix to R3 using Isomap.

Find the best plane the separates the two sets of points.
Method called Support Vector Machine (SVM).
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Classification of protein conformations
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Classification of protein conformations

H1

x

y

z

x

y

z

H0 H2

z

x
y

- closed - open - support vector

SVM on Isomap embedded 3D coordinates in the metric space induced by the 2-Landscape distance

H1

x

y

z

x

y

z

H0 H2

z

x
y

- closed - open - support vector

SVM on Isomap embedded 3D coordinates in the metric space induced by the 2-Landscape distance

Peter Bubenik Learning from the shape of data



39/45

Brain arteries Learning Arteries Proteins Summary TDA SVM Exploratory Data Analysis

Classification of protein conformations

Support vector classification with 5-fold cross validation:

true
pred closed open

closed 7 0
open 0 7
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Exploratory Data Analysis

If we find significant topological features and differences,
what does it tell us?

1 Brain arteries: Female - Male difference

2 Protein data: the most persistent cycle
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The most persistent cycle

Peter Bubenik Learning from the shape of data



43/45

Brain arteries Learning Arteries Proteins Summary TDA SVM Exploratory Data Analysis

Active sites and the most persistent cycle
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Allosteric pathways and the most persistent cycle
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Topological Data Analysis Summary

Raw Data Clean data

Filtered
simplicial
complex

Persistence
module

Topological
summary

Statistics
and

Machine
Learning

Preprocess

Transform

Homology
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