Maltose Binding Protein, two conformations

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent homology and dynamical distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology, **15** (2016) no. 1, 19–38.

Maltose Binding Protein, two conformations

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent homology and dynamical distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology, **15** (2016) no. 1, 19–38.

Maltose Binding Protein Data

The Data

Fourteen MBP structures from the Protein Data Bank.

- 7 closed conformations
- 7 open conformations

X-ray crystallography: coordinates of atoms.

Represent each amino acid residue by its $C\alpha$ atom.

Have 14 sets of 370 points in \mathbb{R}^3 .

The Goal

Can we use topological data analysis to distinguish the open and closed conformations?

Topological Analysis of our Protein data

We have spatial coordinates of 370 amino acid residues.

- Construct elastic network model
- Calculate correlations
- Use these to get distances

MBP average persistence landscapes

MBP average persistence landscapes

MBP average persistence landscapes

Classification of protein conformations

Projection of the L^2 distance matrix to \mathbb{R}^3 using Isomap.

Find the best plane the separates the two sets of points. Method called Support Vector Machine (SVM).

Classification of protein conformations

38/45

Classification of protein conformations

Classification of protein conformations

Classification of protein conformations

Support vector classification with 5-fold cross validation:

	true	
pred	closed	open
closed	7	0
open	0	7

Exploratory Data Analysis

If we find significant topological features and differences, what does it tell us?

Brain arteries: Female - Male difference

Protein data: the most persistent cycle

The most persistent cycle

Active sites and the most persistent cycle

Allosteric pathways and the most persistent cycle

Brain arteries Learning Arteries Proteins Summary

Topological Data Analysis Summary

