Proteins TDA SVM Exploratory Data Analysis

Maltose Binding Protein, two conformations
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Brain arteries Learning Arteries Proteins Summar TDA SVM Exploratory Data Analysis

Maltose Binding Protein Data

Fourteen MBP structures from the Protein Data Bank.

@ 7 closed conformations

@ 7 open conformations

X-ray crystallography: coordinates of atoms.
Represent each amino acid residue by its Ca atom.

Have 14 sets of 370 points in R3.

The Goal

Can we use topological data analysis to distinguish the open and
closed conformations?
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Topological Analysis of our Protein data

We have spatial coordinates of 370 amino acid residues.
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@ Construct elastic network model
@ Calculate correlations
@ Use these to get distances
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MBP Vietoris-Rips complex
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MBP average persistence landscapes
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MBP average persistence landscapes
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MBP average persistence landscapes

H> closed H> open
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Classification of protein conformations

Projection of the L? distance matrix to R3 using Isomap.

Find the best plane the separates the two sets of points.
Method called Support Vector Machine (SVM).
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Classification of protein conformations
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Classification of protein conformations
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Classification of protein conformations
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Classification of protein conformations

Support vector classification with 5-fold cross validation:

true
pred closed open
closed 7 0
open 0 7
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Exploratory Data Analysis

If we find significant topological features and differences,
what does it tell us?

@ Brain arteries: Female - Male difference

© Protein data: the most persistent cycle
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MBP Vietoris-Rips complex
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The most persistent cycle
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Active sites and the most persistent cycle
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Allosteric pathways and the most persistent cycle
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Summary
Topological Data Analysis Summary

Transform

Filtered
simplicial
complex

Preprocess

Raw Data Clean data

Homology

Statistics

Persistence Topological and
module summary Machine
Learning
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