Topology for Data Science 3

Peter Bubenik

University of Florida
Department of Mathematics
peter.bubenik@ufl.edu
http://people.clas.ufl.edu/peterbubenik/

January 23, 2017

Tercera Escuela de Análisis Topológico de Datos
y Topología Estocástica
ABACUS, Estado de México
Homology

Definition

Homology in degree k is given by k-cycles modulo the k-boundaries.
Persistent homology

Main idea

Vary a parameter and keep track of when homology appears and disappears.
Persistent homology

Main idea
Vary a parameter and keep track of when homology appears and disappears.
Main idea

Vary a parameter and keep track of when homology appears and disappears.
Persistent homology

Main idea
Vary a parameter and keep track of when homology appears and disappears.
Persistent homology

Main idea

Vary a parameter and keep track of when homology appears and disappears.
Main idea

Vary a parameter and keep track of when homology appears and disappears.
Main idea

Vary a parameter and keep track of when homology appears and disappears.
Main idea

Vary a parameter and keep track of when homology appears and disappears.
Persistently Homology

Main idea

Vary a parameter and keep track of when homology appears and disappears.
Main idea

Vary a parameter and keep track of when homology appears and disappears.
Persistent homology

Main idea
Vary a parameter and keep track of when homology appears and disappears.
Persistent homology

Main idea

Vary a parameter and keep track of when homology appears and disappears.
Barcode and Persistence Landscapes

Barcode:

Convert to Persistence Landscape:

λ_k = 0, for k ≥ 4
Persistent homology of sampled points
Short bars

Question

Can we understand the small bars in terms of the underlying geometry – specifically curvature?

This is joint work in progress with

- Dhruv Patel (Univ of Florida)
- Benjamin Whittle (Univ of Florida)
Curvature in a metric space, M

- compare triangles in M with triangles in certain spaces

Model spaces of constant curvature K

- $K = -1$: Hyperbolic plane
- $K = 0$: Euclidean plane
- $K = 1$: Sphere of radius 1

Assumptions:

- sample points independently
- from a uniform density
- on a unit disk of constant curvature
Acute triangles \mapsto persistent H_1 in the Čech complex

Asymptotically almost all H_1 is of this form.
Čech complex

Acute triangles \mapsto persistent H_1 in the Čech complex

Asymptotically almost all H_1 is of this form.
Acute triangles \mapsto persistent H_1 in the Čech complex

Asymptotically almost all H_1 is of this form.
Acute triangles \mapsto persistent H_1 in the Čech complex

Asymptotically almost all H_1 is of this form.
Čech complex

Acute triangles \mapsto persistent H_1 in the Čech complex

Asymptotically almost all H_1 is of this form.
Čech complex

The most persistent such H_1 arises from equilateral triangles.

Consider equilateral triangles with circumcircle of radius 1.

- Hyperbolic: death/birth ≈ 1.119
- Euclidean: death/birth $= 2/\sqrt{3} \approx 1.155$
- Spherical: death/birth ≈ 1.225
Points sampled from unit disks

Sample 1000 points
Average Landscapes

Average PL in degree 1 for hyperbolic
Average Landscapes

Average PL in degree 1 for euclidean
Average Landscapes

Average PL in degree 1 for spherical

Index
Differences in Average Landscapes

hyperbolic – euclidean in degree 1

euclidean – spherical in degree 1
Classification

100 samples from each of hyperbolic, euclidean and spherical
Classify using SVM and 10-fold cross validation
Classification accuracy
- Using degree 0: 100%
- Using degree 1: 87%
Joint work in progress with Ulrich Bauer (TU Munich), and Roland Kwitt (Salzburg).

The data:
995 left and right (paired) hippocampi consisting of

1. 284 Normal
2. 307 Mild Cognitive Impairment
3. 178 Late Mild Cognitive Impairment
4. 226 Alzheimer’s Disease (AD)

Each hippocampus converted to a $32 \times 32 \times 32$ binary cubical grid.
Left Hippocampi
Theorem (Turner, Mukherjee, Boyer (2014))

For a surface in \mathbb{R}^3, persistent homology of sublevel sets in all directions is a sufficient statistic.

Our approach:

- filter each hippocampus in 144 directions
- calculate persistent homology
- convert to persistence landscape
- concatenate
Persistence Landscape Transform
Average Landscapes

Average PL in degree 0 for Normal

Index
Average Landscapes

Average PL in degree 0 for AD

Index

Peter Bubenik Topology for Data Science 3
Average Landscape Difference

Is this difference significant?

Permutation test: Yes (p val 0.000)
Is this difference significant?

Permutation test: Yes (p val 0.000)
Average Landscape Difference

Is this difference significant? Permutation test: Yes (p val 0.000)
Principal Components Analysis

PCA for PL in degree 0
Support Vector Machine on PCA coordinates
Classification on Landscape coordinates

Support vector classification with 10-fold cross validation:

<table>
<thead>
<tr>
<th>Pred</th>
<th>True</th>
<th>Normal</th>
<th>Alzheimer’s Disease</th>
</tr>
</thead>
<tbody>
<tr>
<td>Normal</td>
<td>Normal</td>
<td>232</td>
<td>83</td>
</tr>
<tr>
<td>Alzheimer’s Disease</td>
<td>52</td>
<td>143</td>
<td></td>
</tr>
</tbody>
</table>

Prediction accuracy: 73%
Topological Data Analysis Summary

Data → Encode → Geometric structure → Topology → Summary → Statistics & Machine Learning