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Topological Data Analysis

Idea

Use topology to summarize and learn from the “shape” of data.
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Simplicial complexes from point data

The Čech construction
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Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the
k-boundaries.
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Persistence

Main idea

Vary a parameter and keep track of when features appear and
disappear.

radius = 0
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Persistence

Main idea

Vary a parameter and keep track of when features appear and
disappear.

radius = 11
Peter Bubenik Topological Data Analysis



6/16

Topology Proteins Software Summary Basics Persistent homology

Mathematical encoding

We have an increasing sequence of simplicial complexes

X0 ⊆ X1 ⊆ X2 ⊆ · · · ⊆ Xm

called a filtered simplicial complex.

Apply homology.

We get a sequence of vector spaces and linear maps

V0 → V1 → V2 → · · · → Vm

called a persistence module.
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Persistence module to Barcode

V0 → V1 → V2 → V3 → V4 → V5 → V6 → V7 → · · · → Vm

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces Vi such that
each map is determined by a bipartite matching of basis vectors.

Get a barcode:

2 3 4 5 6 7 8 9 10 11 12
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Barcode to Persistence Landscape

Barcode:

0 2 4 6 8 10 12 14

Persistence Landscape:

2 4 6 8 10 12 14
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4
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0

λ1

λ2

λ3

λk = 0,

for k ≥ 4
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Maltose Binding Protein, two conformations

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent
homology and dynamical distances to analyze protein binding. Statistical
Applications in Genetics and Molecular Biology, 15 (2016) no. 1, 19–38.
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V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent
homology and dynamical distances to analyze protein binding. Statistical
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Maltose Binding Protein Data

The Data

Fourteen MBP structures from the Protein Data Bank.

7 closed conformations

7 open conformations

X-ray crystallography: coordinates of atoms.

Represent each amino acid residue by its Cα atom.

Have 14 sets of 370 points in R3.

The Goal

Can we use topological data analysis to distinguish the open and
closed conformations?
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Filtered simplicial complex
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Filtered simplicial complex
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Average persistence landscapes
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Clustering of protein conformations
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Figure 1: Distance analysis based on the 2-Landscape distance shows a separation between the
closed (blue) and the open (red) MBP conformation for degree 0 (left) and degree 1 (right) persistent
homology. Similar results hold for degree 2. The projection of the 14 × 14 distance matrix onto
the 3D space is attained via Isomap.

4.3 Statistical Inference

To measure the statistical significance of visually observed differences between the closed

and the open conformation we use a permutation test. For each degree, we calculate

fourteen sample values of the random variable X from Equation (3). The permutation

test carried out at the significance level of 0.05 yields a p-value of 5.83 × 10−4 for both

homology in degree 0 and in degree 1. We obtain the same p-value since in both cases the

observed statistic was the most extreme among all 1716 possible permutations. Hence, at

14

Projection of the L2 distance matrix to R3 using Isomap.

Peter Bubenik Topological Data Analysis



14/16

Topology Proteins Software Summary Topological Data Analysis Machine Learning

Classification of protein conformations
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SVM on Isomap embedded 3D coordinates in the metric space induced by the 2-Landscape distance
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SVM on Isomap embedded 3D coordinates in the metric space induced by the 2-Landscape distance
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Software

Persistent Homology software:

JavaPlex

PHAT, DIPHA

Perseus

Dionysus

CHOMP

GUDHI

Persistence Landscape software:

The Persistence Landscape Toolbox

the R package TDA
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Topological Data Analysis Summary

Raw Data Clean data

Filtered
simplicial
complex

Persistence
module

Topological
summary

Statistics
and

Machine
Learning

Preprocess

Transform

Homology
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