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Topology Basics Persistent hc

Topological Data Analysis

Use topology to summarize and learn from the “shape” of data.
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Simplicial complexes from point data
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Homology of simplicial complexes

Definition
Homology in degree k is given by k-cycles modulo the
k-boundaries.
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Topology Basics Persistent homology
Y

Persistence

Main idea
Vary a parameter and keep track of when features appear and
disappear.
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Persistence

Vary a parameter and keep track of when features appear and
disappear.
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Vary a parameter and keep track of when features appear and
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Persistence

Main idea

Vary a parameter and keep track of when features appear and
disappear.
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Persistence

Main idea

Vary a parameter and keep track of when features appear and
disappear.
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Main idea
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Basics Persistent homology

Topology Proteins Software Summary
Persistence

Main idea

Vary a parameter and keep track of when features appear and

disappear.
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Topological Data Analysis
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Persistence

Vary a parameter and keep track of when features appear and
disappear.
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Topology Persistent homology

Mathematical encoding

We have an increasing sequence of simplicial complexes
XoCX1CXoC - C Xy

called a filtered simplicial complex.

Apply homology.

We get a sequence of vector spaces and linear maps
Voo Vi=>Vo— o=V,

called a persistence module.
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Topology Basics Persistent homology

Persistence module to Barcode

Voo—- ViV Vs> Vi Voo Vo> Ve—-oo =V,

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces V; such that
each map is determined by a bipartite matching of basis vectors.

Get a barcode:
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Topology Persistent homology

Barcode to Persistence Landscape

Barcode:

\

Persistence Landscape:
A
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for k > 4
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Proteins

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent
homology and dynamical distances to analyze protein binding. Statistical
Applications in Genetics and Molecular Biology, 15 (2016) no. 1, 19-38.

Peter Bubenik Topological Data Analysis



Proteins | Data Analysis Machine Learning

Maltose Binding Protein, two conformations
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V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent
homology and dynamical distances to analyze protein binding. Statistical
Applications in Genetics and Molecular Biology, 15 (2016) no. 1, 19-38.
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Proteins Topol Data Analy:

Maltose Binding Protein Data

Fourteen MBP structures from the Protein Data Bank.

@ 7 closed conformations

@ 7 open conformations

X-ray crystallography: coordinates of atoms.

Represent each amino acid residue by its Ca atom.

Have 14 sets of 370 points in R3.

Can we use topological data analysis to distinguish the open and
closed conformations?
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Topological Data Analysis Machine Learning

Proteins

Filtered simplicial complex
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Filtered simplicial complex
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Filtered simplicial complex
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Proteins Topological Data Analysis

Average persistence landscapes

H; closed Hy open
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Proteins [ Data Analysis Machine Learning

Clustering of protein conformations

Projection of the L? distance matrix to R3 using Isomap.
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Classification of protein conformations
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Software
Software

Persistent Homology software:

o JavaPlex
e PHAT, DIPHA
@ Perseus

@ Dionysus

e CHOMP

e GUDHI

Persistence Landscape software:

@ The Persistence Landscape Toolbox
@ the R package TDA
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Summary
Topological Data Analysis Summary

Transform

Filtered
simplicial
complex

Preprocess

Raw Data Clean data

Homology

Statistics

Persistence Topological and
module summary Machine
Learning
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