Topological Data Analysis

Peter Bubenik

University of Florida Department of Mathematics, peter.bubenik@ufl.edu http://people.clas.ufl.edu/peterbubenik/

British Applied Mathematics Colloquium University of Oxford April 6, 2016

Topological Data Analysis

Idea

Use topology to summarize and learn from the "shape" of data.

Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the k-boundaries.

Homology of simplicial complexes

Definition

Homology in degree k is given by k-cycles modulo the k-boundaries.

Main idea

Mathematical encoding

We have an increasing sequence of simplicial complexes

$$X_0 \subseteq X_1 \subseteq X_2 \subseteq \cdots \subseteq X_m$$

called a filtered simplicial complex.

Apply homology.

We get a sequence of vector spaces and linear maps

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow \cdots \rightarrow V_m$$

called a persistence module.

Persistence module to Barcode

$$V_0 \rightarrow V_1 \rightarrow V_2 \rightarrow V_3 \rightarrow V_4 \rightarrow V_5 \rightarrow V_6 \rightarrow V_7 \rightarrow \cdots \rightarrow V_m$$

Fundamental Theorem of Persistent Homology

There exists a choice of bases for the vector spaces V_i such that each map is determined by a bipartite matching of basis vectors.

Barcode to Persistence Landscape

Persistence Landscape:

Maltose Binding Protein, two conformations

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent homology and dynamical distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology, **15** (2016) no. 1, 19–38.

Maltose Binding Protein, two conformations

V. Kovacev-Nikolic, P. Bubenik, D. Nikolic, and G. Heo. Using persistent homology and dynamical distances to analyze protein binding. Statistical Applications in Genetics and Molecular Biology, **15** (2016) no. 1, 19–38.

Maltose Binding Protein Data

The Data

Fourteen MBP structures from the Protein Data Bank.

- 7 closed conformations
- 7 open conformations

X-ray crystallography: coordinates of atoms.

Represent each amino acid residue by its $C\alpha$ atom.

Have 14 sets of 370 points in \mathbb{R}^3 .

The Goal

Can we use topological data analysis to distinguish the open and closed conformations?

Topological Data Analysis Machine Learning

Topological Data Analysis Machine Learning

Topological Data Analysis Machine Learning

Average persistence landscapes

Clustering of protein conformations

Projection of the L^2 distance matrix to \mathbb{R}^3 using Isomap.

14/16

Classification of protein conformations

Software

Persistent Homology software:

- JavaPlex
- PHAT, DIPHA
- Perseus
- Dionysus
- CHOMP
- GUDHI

Persistence Landscape software:

- The Persistence Landscape Toolbox
- the R package TDA

Topological Data Analysis Summary

