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Motivation



Applied setting: Topological Data Analysis

Differences between two clinical groups
Artery trees Prior analyses Homology Persistence Bar codes Statistical analysis Reflections on TDA Next steps

Tube tracking

[Bullitt and Aylward, 2002]
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Where is the difference?
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Discrete setting: Filtered simplicial complexes
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A filtered simplicial complex
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Continuous setting: Morse functions

Apply persistent homology:

• The pairing of critical values is stable.

• The pairing of critical points is unstable.
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Continuous setting: Morse functions

Apply persistent homology:

• The pairing of critical values is stable.

• The pairing of critical points is unstable.
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A Morse function, f : S1 → R
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Statistical setting: discrete sample from continuous function

Want: properties of some

unknown function
Have: a finite sample
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Main Example



Main example

This function on the square induces a function f on the torus.
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Main example

Suppose we are given a sample X ⊆ {(x , f (x)) : x ∈ T 2} of size N.

We will construct a filtered simplicial complex from X to study f .
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Main example

Use the sample to get a Delaunay triangulation of the torus.
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Main example

Return the length of the longest bar

if it is born in the second quadrant,

otherwise return 0.
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Main example

Return the length of the longest bar

if it is born in the second quadrant,

otherwise return 0.
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The unstable function and how to stabilize it

Encoding the function

We encode this computation as a function, h : R3N → R.

Our sample corresponds to an input, a ∈ R3N .

Problem

h(a) = 0, but for nearby a′, h(a′) ∼ 2.

Solution

Randomly perturb the input a ∈ R3N , M times,

compute and average.
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Main example

Here are the lengths of the longest bars and their birth locations

from 100 perturbations of the input.

From 1000 perturbations, we get an average of 1.127.
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Theory



Stability and Convolutions

Definition

We say that a function g : Rd → R is stable if it is Lipschitz.

That is, ‖g(x)− g(y)‖ ≤ C‖x − y‖ for some constant C .

Definition

For h,K : Rd → R, their convolution is

(h ∗ K )(t) =

∫
Rd

h(s)K (t − s)ds =

∫
Rd

h(t − s)K (s)ds.
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Kernel functions

We stabilize our unstable function h by convolving it with certain

stable functions called kernels.

The triangular kernel

K (x) = max(1− ‖x‖, 0)

The Epanechnikov kernel

K (x) = max(1− ‖x‖2, 0)

The Gaussian kernel

K (x) = e−‖x‖
2/2
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Stability Theorems

Theorem

If h is locally bounded, and K is the triangular kernel or the

Epanechnikov kernel, then h ∗ K is locally Lipschitz.

Theorem

If h is bounded and K is the Gaussian kernel, then h ∗ K is

Lipschitz.
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Convolution and “perturb and average”

Procedure

• Start with an unstable h : Rd → R and observation a ∈ Rd .

• Choose a kernel K . View K as a probability density.

• Sample ε1, . . . , εM from K .

• Compute 1
M

∑M
i=1 h(a− εi ).

Theorem

By the law of large numbers, this converges (almost surely) to

E [h(a− x)] =
∫
Rd h(a− x)K (x)dx = (h ∗ K )(a).
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Stability of the convolution

Theorem

The map K → h ∗ K is stable

(as a map from L1(Rd) to L∞(Rd)).
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Other examples



Detecting long-range pseudoknots in RNA
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Edges responsible for degree-one persistent homology
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Spreading out a minimum
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Spreading out a minimum
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Density Threshold
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Parameters used for pre-processing

Persistent homology computations may be unstable with respect to

parameters used in pre-processing.

Suppose we have input data a ∈ Rd and parameters b ∈ Re .

We may consider our computation as h : Rd → R, h : Re → R, or

h : Rd+e → R.

In each case, h ∗ K is stable.
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Conclusion



Conclusion

• Practitioners would like to point to a spot in their data which

is responsible for significant persistent homology features.

• The corresponding critical points, birth simplices or generating

cycles are unstable.

• Parameters used in pre-processing are also unstable.

• A simple perturb and average procedure provides stability.

• This stability is obtained by convolving with a stable kernel.

• For more details see our preprint on the arXiv.
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Thank you!
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