MTG 4302/5316: Elements of/Introduction to Topology 1 Final Exam Practice Problems

These problems are candidates for the final exam. Work on them individually and with your classmates. Wherever possible, give direct arguments rather that using general results. *Do not read another person's solutions. Write up your own solutions.* You may ask for help in class and we will have time for review before the final exam.

Chapter 1.

1. Suppose that X_{α} is nonempty for every $\alpha \in A$. Show that

$$\prod_{\alpha \in A} X_{\alpha} \neq \emptyset.$$

2. Suppose that $X_{\alpha} \neq \emptyset$ for all $\alpha \in A$. Let $\beta \in A$ and define

$$\pi_{\beta}: \prod_{\alpha \in A} X_{\alpha} \to X_{\beta}$$

by $(x_{\alpha}) \mapsto x_{\beta}$. Show that π_{β} is onto for every $\beta \in A$.

3. Show that for every set X, there is no function $f: X \to 2^X$ such that f is onto.

Chapter 2.

1. Let $\{X_{\alpha}\}$ be a collection of topological spaces. Let $\beta \in A$ and let

$$\pi_{\beta}: \prod_{\alpha \in A} X_{\alpha} \to X_{\beta}$$

be given by $(x_{\alpha}) \mapsto x_{\beta}$. Show that π_{β} is continuous.

- 2. Let X be a topological space and $A \subset X$. The *closure* of A is defined by $\overline{A} = \bigcap \{ C \mid C \text{ is closed in } X \text{ and } C \supset A \}.$
 - (a) Show that \overline{A} is a closed set in X.
 - (b) Show that $\overline{\overline{A}} = \overline{A}$.

Chapter 3.

- 1. Suppose that $f: X \to Y$ is continuous and that $A \subset X$ is connected. Show that $f(A) \subset Y$ is connected.
- 2. Suppose that $f: X \to Y$ is continuous and that $A \subset X$. Show that if A is compact, then f(A) is compact.
- 3. Show that there is no continuous function $f: [0,1] \to [0,1)$ which is onto.
- 4. Show that there is no continuous function $f : \mathbb{R} \to \{0, 1\}$ which is onto.
- 5. Show that if $A \subset \mathbb{R}$ is connected then A is an interval.

- 6. State the Intermediate Value Theorem.
- 7. Give an example of a connected space X that is not path connected.
- 8. A component of a space X is a maximal connected subset. Show that if A is a component, then A is closed.
- 9. Show that if A and B are components of X, then either A = B or $A \cap B = \emptyset$.
- 10. Let X be a metric space with metric d. Show that X is a normal space.
- 11. Let (X, d) be a metric space and let (X, \mathcal{T}) be the associated topological space. Show that
 - (a) in (X, \mathcal{T}) points are closed,
 - (b) (X, \mathcal{T}) is a Hausdorff space,
 - (c) (X, \mathcal{T}) is a regular space,
 - (d) (X, \mathcal{T}) is a normal space.
- 12. Suppose that X is a compact Hausdorff space. Show that if $A \subset X$ is compact, then A is closed.

Chapter 4.

- 1. State the Urysohn Lemma.
- 2. State the Tietze Extension Theorem.
- 3. Let \mathbb{R}_{ℓ} be the real numbers with the topology having as basis $\{[a, b) \mid a < b \in \mathbb{R}\}$. Show that \mathbb{R}_{ℓ} is a normal space.

Chapter 7.

- 1. Give examples of complete metric spaces and metric spaces that are not complete.
- 2. Let X be a metric space and let $f: X \to X$ be a continuous function. Suppose that there is a point $x_0 \in X$ such that $f^n(x_0) \to z$ as $n \to \infty$. Show that f(z) = z.
- 3. State the Contraction Mapping Theorem.
- 4. Show that every compact metric space is complete.
- 5. Show that there is a continuous map $f: [0,1] \to [0,1] \times [0,1]$ that is onto.

FIRST YEAR TOPOLOGY EXAM PROBLEMS

Chapter 3.

- 1. Prove that if X is a compact Hausdorff space, then X is a normal space.
- 2. Give an example of a topological space X that is Hausdorff but not regular.
- 3. Give an example of a topological space X that is regular but not normal.

Chapter 4.

- 1. State and prove Urysohn's Lemma.
- 2. State and prove the Tietze Extension Theorem.
- 3. Suppose that X is a normal space with a countable basis. Show that there is a metric ρ on X that generates the topology on X.

Chapter 7.

- 1. Show that \mathbb{R}^d is a complete metric space.
- 2. State and prove the Contraction Mapping Theorem.
- 3. Let X be a complete metric space. A point $x \in X$ is an *isolated point* if $\{x\}$ is open. Suppose that X is countable and non-empty. Show that X has an isolated point.
- 4. Show that any nonempty complete metric space with no isolated points is uncountable.