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Abstract
Persistence diagrams, an important summary in topological data analysis, consist
of a set of ordered pairs, each with positive multiplicity. Persistence diagrams are
obtained via Möbius inversion and may be compared using a one-parameter family of
metrics called Wasserstein distances. In certain cases, Möbius inversion produces sets
of ordered pairs whichmay have negativemultiplicity.We call these virtual persistence
diagrams. Divol and Lacombe recently showed that there is a Wasserstein distance for
Radonmeasures on the half plane of ordered pairs that generalizes both theWasserstein
distance for persistence diagrams and the classical Wasserstein distance from optimal
transport theory. Following this work, we define compatible Wasserstein distances
for persistence diagrams and Radon measures on arbitrary metric spaces. We show
that the 1-Wasserstein distance extends to virtual persistence diagrams and to signed
measures. In addition, we characterize the Cauchy completion of persistence diagrams
with respect to the Wasserstein distances. We also give a universal construction of a
Banach spacewith a 1-Wasserstein norm. Persistence diagramswith the 1-Wasserstein
distance isometrically embed into this Banach space.
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430 P. Bubenik, A. Elchesen

1 Introduction

In computational settings, one-parameter persistent homology returns a finite indexed
set of ordered pairs (Edelsbrunner et al. 2000), called a persistence diagram. The col-
lection of persistence diagrams has a one-parameter family of metrics for p ∈ [1,∞]
called Wasserstein distances (Cohen-Steiner et al. 2007, 2010). The resulting metric
spaces have a Cauchy completion (Mileyko et al. 2011; Blumberg et al. 2014). Persis-
tence diagrams and their Wasserstein distances are central to large parts of topological
data analysis (Munch 2017; Robinson and Turner 2017; Seversky et al. 2016).

More recently, our understanding of persistence diagrams andWasserstein distance
has been extended in the following ways. Persistence diagrams may be derived from
themore elementary rank function viaMöbius inversion (Patel 2018). TheWasserstein
distance above may be extended to Radon measures onR2

< = {(x,y) ∈ R
2 | x < y} in

a way that is compatible with the classical Wasserstein distance for probability mea-
sures (Divol andLacombe2021).By interpreting the collectionof persistencediagrams
algebraically as a free commutativemonoid, theWasserstein distancesmaybe obtained
in a functorial way, which implies that they have corresponding universal properties
(Bubenik and Elchesen 2021). The same construction may be applied to intervals,
obtaining Wasserstein distances for barcodes (Collins et al. 2004), or to invariants of
multiparameter persistence (Bubenik andElchesen 2021). If one appliesMöbius inver-
sion to the graded rank function one obtains a variant of a persistence diagram inwhich
the multiplicity of the ordered pairs is allowed to be negative (Betthauser et al. 2021).
Generalized persistence diagrams which take on negative values have also arise natu-
rally in several other places (Kim andMémoli 2021; Botnan et al. 2021; Asashiba et al.
2019; McCleary and Patel 2020). These “virtual” persistence diagrams can be viewed
as signed measures and are closely related to the K-theory of spaces of persistence
modules (Grady and Schenfisch 2021). Several extensions of theWasserstein distance
to the setting of signed measures have been introduced and studied (Mainini 2012).

The main goal of our work is to give various larger formal settings for general-
ized persistence diagrams (arising in one-parameter, multi-parameter, and generalized
persistence) and their Wasserstein distances, which will be useful for new algorithms
and theory in computational topology and the development of analytic tools for topo-
logical data analysis. As an example of the former, some of our results were used to
define a stable Wasserstein distance for graded persistence diagrams (Betthauser et al.
2021). Our secondary goal is to help connect topological data analysis with optimal
transportation.

1.1 Our contributions

Wedevelop a number of constructions that unify and extend the results discussed above
in various ways. All of our constructions are universal. That is, they are functorial
constructions satisfying certain universal properties. They may be interpreted as the
existence of certain adjoint functors. Inspired by Divol and Lacombe (2021), instead
of restricting ourselves to the usual setting, R2

<, we work in the general setting of
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Virtual persistence diagrams, signed measures… 431

metric spaces, to facilitate interactions with optimal transport theory and to permit
applications to metric spaces of invariants for multiparameter persistent homology.

Let (X,d) be a metric space and A ⊂ X. We call (X,d,A) a metric pair (see
Sect. 2.1). Formal sums on (X,d,A) are (generalized) persistence diagrams (Bubenik
and Elchesen 2021). The following examples arise frompersistent homology: consider
(R2

�,d,Δ), where R
2
� = {(x,y) ∈ R

2 | x � y}, d is some metric on R
2
�, and

Δ = {(x,y) ∈ R
2 | x = y}; replacing real numbers with extended real numbers, we

have (R
2
�,d,Δ); and (Int(R),d, {∅}), where Int(R) denotes the set of intervals in R,

d is some metric on this set, and ∅ denotes the empty interval. Persistence diagrams
and barcodes are formal sums on these metric pairs (see Sect. 2.3). More generally, we
have (Int(P),d, {∅}), where P is some poset. In particular, multiparameter persistent
homology has P = R

d with the coordinatewise partial order. In this case, we can take
d to be Hausdorff distance or the volume (i.e. Lebesgue measure) of the symmetric
difference (Bubenik et al. 2018). Most computational approaches to multiparameter
persistent homology reduce to one-dimensional ‘slices’. LetLbe a set of lines (or,more
generally, curves) inRd that are images of order preserving maps (R,�) → (Rd,�).
Let d ′ be a metric on R2

� and {c�}�∈L be a set of nonnegative scaling constants. If L

is finite, a set of persistence diagrams indexed by L is a formal sum in the metric pair
(R2

� × L,d,Δ × L), where the metric d is given by d((a, �), (b ′, � ′)) = c�d
′(a,a ′)

if � = � ′ and ∞ otherwise. If L is finite or infinite, then given two sets of persistence
diagrams indexed by L we may compute the Wasserstein distance for each � ∈ L and
then compute the p-norm of the resulting function on L by summing or integrating
with respect to an appropriate measure on L.

We now list our main results.

1.1.1 Virtual persistence diagrams onmetric pairs

Motivated by the growing number of settings in which signed persistence diagrams
and signed barcodes arise (Betthauser et al. 2021; Kim andMémoli 2021; Botnan et al.
2021; Asashiba et al. 2019; McCleary and Patel 2020; Grady and Schenfisch 2021)
and with the goal of systematically extending theWasserstein distances to this setting,
we develop a general framework for studying distances in the signed setting. Given a
set X, let K(X) denote the free abelian group on X. Let (X,d,A) be a metric pair. Let
K(X,A) denote the quotient group K(X)/K(A), which is isomorphic to K(X \A). We
call the elements of K(X,A) virtual persistence diagrams on (X,A). We prove there
is a universal construction of the abelian group (K(X,A),+) together with a metric
W1 given by

W1(α
+ − α−,β+ − β−) = W1(α

+ + β−,β+ + α−)

(see Definition 4.10). We show that this metric is 1-subadditive and translation invari-
ant. That is, W1(α + γ,β + γ) = W1(α,β) (see Corollary 4.9). We also consider
the corresponding constructions for the p-Wasserstein distances, which are �p ver-
sions of the 1-Wasserstein distance and which are widely studied in optimal transport
theory. We give the analogous constructions for Wp, p ∈ (1,∞], but they require
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432 P. Bubenik, A. Elchesen

d to be a p-metric. That is, d(x,y) � ‖(d(x, z),d(z,y))‖p for all x,y, z ∈ X (see
Theorem 4.8).

We note that the form of this metric was already introduced by Mainini in the
context of studying extensions of the classical Wasserstein distances to the setting
of signed Radon measures (Mainini 2012). Our contribution here is that we derive
this metric as the universal extension of a translation invariant metric compatible
with the monoid structure of the space of persistence diagrams. More generally, we
consider commutative metric monoids (M,d,+, 0) and state conditions to ensure that
the metric ρ on the Grothendieck group G(M) given by ρ(m+ −m−,n+ − n−) :=
d(m+ + n−,n+ + m−) is the canonical extension to the signed setting.

1.1.2 Measures onmetric pairs

Given a metric space (X,d), let M+(X) denote the commutative monoid of all Radon
measures on X. Let (X,d,A) be a metric pair, with A ⊂ X a Borel subset, and
let p ∈ [1,∞]. We define M+(X,A) to be the quotient monoid M+(X)/M+(A),
which is isomorphic to M+(X \ A). We call the elements of M+(X,A) Radon
measures on (X,A) (Definition 5.11). Let M+

p (X,A) denote the submonoid of mea-
sures that are p-finite. That is,

∫

X\A d(x,A)p dμ < ∞. There is a p-subadditive

metric Wp on (M+
p (X,A),+) (Definition 5.15) which we call the p-Wasserstein

distance. We also show that this metric agrees with that introduced in Divol and
Lacombe (2021) for measures on R

2
< (Corollary 5.20). By taking A = ∅, we

recover the classical Wasserstein distances between measures of equal mass. If we
consider persistence diagrams to be discrete measures on (X,A), then we obtain an
inclusion (D(X,A),+) ↪→ (M+

p (X,A),+) and corresponding isometric embedding
(D(X,A),Wp) ↪→ (M+

p (X,A),Wp) (Proposition 5.24).

1.1.3 Signedmeasures

Given a metric space (X,d), letM+
fin(X) andMfin(X) denote the commutative monoid

of finiteRadonmeasures onX and the abelian group of finite signedRadonmeasures on
X, respectively.We show that the metricW1 extends fromM+

fin(X) to its Grothendieck
group Mfin(X) (Proposition 5.7 and Definition 5.8). We use the transshipment formu-
lation of the 1-Wasserstein distance (Definition 5.6) to show that W1 on Mfin(X) is a
solution to the signed transportation problem (Definition 5.9 and Theorem 5.10).

Let (X,d,A) be a metric pair, with A ⊂ X a Borel subset. Let Mfin(X,A) denote
the quotient group Mfin(X)/Mfin(A), which is isomorphic to Mfin(X \ A). We call
the elements of Mfin(X,A) finite signed Radon measures on (X,A) (Definition 5.11).
We show thatMfin(X,A) is the Grothendieck group ofM+

fin(X,A) (Proposition 5.12).
Moreover, we show that W1 is translation invariant for the pair (R2,R�) and hence
extends to a metric between finite signedmeasures onR< whose positive and negative
parts are 1-finite (Corollary 5.23).
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Virtual persistence diagrams, signed measures… 433

1.1.4 Cauchy completion of persistence diagrams onmetric pairs

Given a set X, let D(X) denote the commutative monoid of all formal countable
sums in X. Let (X,d,A) be a metric pair and p ∈ [1,∞]. Let D(X,A) denote the
quotientD(X)/D(A), which is isomorphic toD(X\A). We call elements ofD(X,A)
countable persistence diagrams in (X,A) (Definition 6.12). Let Dp(X,A) denote
the submonoid of D(X,A) consisting of those countable persistence diagrams that,
after removing at most finitely many summands, have finite Wp-distance to the zero
persistence diagram, i.e., the p-finite diagrams (Definition 6.14). We show that there
is a universal construction of the commutative monoid (Dp(X,A),+) together with
the metric Wp such that (Dp(X,A),Wp) is a complete metric space and Wp is
p-subadditive (Theorems 6.20 and 6.21).

1.1.5 Free Banach spaces onmetric pairs

Given a set X there is a universal (real) vector space, V(X), consisting of formal linear
sums onX. Let (X,d,A) be ametric pair. LetV(X,A) denote the quotientV(X)/V(A).
Weconstruct a universal normedvector space (V(X,A), ‖ ‖W1

) (Theorem7.4). Taking
the Cauchy completion of this vector space, we obtain the free Banach space on the
pair (X,d,A)) (Theorem 7.8).

1.1.6 Isometric embeddings

Given a pointed metric space (X,d, x0) we have constructed a sequence of isometric
embeddings (Theorem 7.9)

(X,d) ↪→ (D(X, x0),W1) ↪→ (K(X, x0),W1) ↪→ (V(X, x0),W1) ↪→ (V̂(X, x0),W1)

into metric free commutative monoid, a metric free abelian group, a normed vec-
tor space, and a Banach space, where each of the latter are canonically constructed.
Given ametric pair (X,d,A)we have constructed a sequence of isometric embeddings
(Corollary 7.10)

(D(X,A),W1) ↪→ (K(X,A),W1) ↪→ (V(X,A),W1) ↪→ (V̂(X,A),W1).

1.2 Remark on our constructions

Our constructions are universal. That is, they arise as adjoints to certain forgetful
functors. Benefits of having such constructions include the following. (1) We may be
confident that our constructions are, in some sense, the right ones, rather than being
ad-hoc. (2) Our constructions have corresponding universal properties. (3) Our con-
structions are functorial. Not only do we have various spaces of persistence diagrams
but given any Lipschitz map between metric pairs we have a corresponding morphism
between the resulting spaces of persistence diagrams. This may useful for metric pairs
arising from multi-parameter and generalized persistence.
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1.3 Related work

The Wasserstein distance has been thoroughly studied in the context of measures
(Rachev et al. 1998; Villani 2003). Persistence diagrams on (R2

�,Δ) and theirWasser-
stein distances were introduced in Cohen-Steiner et al. (2007, 2010). Persistence
diagrams on (Int(R), ∅) are called barcodes and were introduced in Collins et al.
(2004). Divol and Lacombe (2021), connected the Wasserstein distances for mea-
sures and persistence diagrams on (R2

�,Δ). Turner and Skraba have given stability

results for persistence diagrams on (R2
�,Δ) and their Wasserstein distances Skraba

and Turner (2020).
The prequel to this paper (Bubenik and Elchesen 2021) introduces persistence

diagrams on metric pairs and their Wasserstein distances. It shows that these arise
from an adjoint functor on metric pairs and have corresponding universal properties.
Furthermore, it is shown that the canonical inclusion of a metric pair into its space of
persistence diagramswith thep-Wasserstein distance is 1-Lipschitz and is an isometric
embedding if p = 1. In addition, it is shown that the 1-Wasserstein distance satisfies
Kantorovich–Rubenstein duality.

The freeBanach space has been constructed and studied independently several times
(Arens and Eells 1956; Flood 1984; Pestov 1986; Godefroy and Kalton 2003; Weaver
2018). Giusti and Lee (2021) have independently arrived at the connection between
the Wasserstein distances and free Banach spaces (see Sect. 7). The topological and
metric properties of spaces of persistence diagrams have been studied by Che et al.
(2021) and Bubenik and Hartsock (2021). Grady and Schenfisch (2021) have studied
the K-theory of generalized zigzag modules and related the K0 group of persistence
modules to the group of virtual persistence diagrams.

1.4 Organization of the paper

In Sect. 2, we review background used throughout and establish notation. In Sect. 3, we
introduce a general theory of theGrothendieck group completion ofmonoids equipped
with metric structures compatible with the monoid operation. We give sufficient con-
ditions to guarantee that the metric extends from the monoid to its Grothendieck group
completion in a compatibleway. In Sect. 4, we give a necessary and sufficient condition
for the p-Wasserstein distance to be translation invariant, which may be of indepen-
dent interest.We then introduce virtual persistence diagrams onmetric pairs and define
correspondingWasserstein distances. In Sect. 5, we extend our constructions to Radon
measures defined on metric pairs. In Sect. 6, we extend our constructions to countably
infinite persistence diagrams defined on metric pairs, and prove a universal property.
In Sect. 7, we study universal constructions of vector spaces and Banach spaces.

2 Background and notation

In this section we summarize background material and corresponding notation that
will be used throughout.
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2.1 Metric spaces and Lipschitz maps

Burago et al. (2001). A metric space (X,d) consists of a set X and a function d :
X×X → [0,∞] such that d(x, x) = 0 for all x ∈ X (point equality), d(x,y) = d(y, x)
for allx,y ∈ X (symmetry), andd(x,y) � d(x, z)+d(z,y) for allx,y, z ∈ X (triangle
inequality). Note that it is usually also assumed that a d satisfies d(x, x ′) = 0 =⇒
x = x ′ (separation) and im(d) ⊂ [0,∞) (finiteness), but we will only make these
assumptions in Sect. 7. With our definition, the q-norm for q ∈ [1,∞] induces not

only a metric on the plane R2 but also on the extended plane R
2
, where one doesn’t

have finiteness. Also, Int(R) with either the Hausdorff distance or the length of the
symmetric difference is a metric space which does not satisfy separation or finiteness.

A function f : X → Y between metric spaces (X,dX) and (Y,dY) is Lipschitz if
there exists a constantC � 0 such thatdY(f(x), f(x ′)) � CdX(x, x ′) for all x, x ′ ∈ X.
In this case, f is said to be C-Lipschitz and C is called a Lipschitz constant for f. For
f : X → Y Lipschitz, the Lipschitz norm of f, denoted ‖f‖Lip, is defined to be the
infimum of all such C. This infimum is in fact a minimum so that dY(f(x), f(x ′)) �
‖f‖LipdX(x, x ′) for all x, x ′ ∈ X. If f : X → Y, g : Y → Z are Lipschitz then
‖g ◦ f‖Lip � ‖f‖Lip‖g‖Lip. The collection of metric spaces together with Lipschitz
maps forms a category denotedLip.Metricsd, ρdefinedon the same setX are said to be
equivalent if there are constantsC,K > 0 such thatCρ(x, x ′) � d(x, x ′) � Kρ(x, x ′)
for all x, x ′ ∈ X.

A pair is a tuple (X,A) where X is a set and A ⊂ X. A metric pair is a tuple
(X,d,A) where (X,d) is a metric space and A ⊂ X. When A = {x0} is a point then
a pair (X, {x0}) is also called a pointed set and is denoted by (X, x0). Similarly, the
metric pair (X,d, {x0}) is called a pointed metric space and is denoted (X,d, x0). The
distinguished point x0 is called the basepoint. A map of pairs f : (X,A) → (Y,B)
is a map f : X → Y such that f(A) ⊂ B. If A = {x0} and B = {y0} then f is
a basepoint-preserving (or pointed) map. Metric pairs together with Lipschitz maps
betweenmetric pairs form a category which we denote byLippairs. ByLip∗ we denote
the full subcategory whose objects are pointed metric spaces. Let X be a set, (Y,d) a
metric space, and f : X → Y any function. The pullback of d through f is a metric
on X defined by f∗d(x, x ′) = d(f(x), f(x ′)) for all x, x ′ ∈ X. A Lipschitz map of
pairs f : (X,dX,A) → (Y,dY ,B) is an isomorphism in Lippairs if and only if f is
bijective, f(A) = B, and dX and f∗dY are equivalent metrics on X. In particular, if
d, ρ are equivalent metrics on the metric pair (X,A) then (X,d,A) and (X, ρ,A) are
isomorphic objects in Lippairs. We denote the one-point metric space, viewed as a
pointed metric space, by ∗. It is straightforward to check that ∗ is the terminal object
in Lippairs, i.e., for every metric pair (X,dX,A) there exists precisely one Lipschitz
map of pairs f : X → ∗. ∗ is also the terminal object of the subcategory Lip∗.

Let (X,d,A) be a metric pair and let X/A = (X \ A)∪ {A} denote the quotient set
obtained by collapsing A to a point. For p ∈ [1,∞], we define a metric dp on X/A

by

dp(x,y) = min
(
d(x,y), ‖(d(x,A),d(y,A))‖p

)
.
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436 P. Bubenik, A. Elchesen

The proof that eachdp is indeed ametric can be found inBubenik andElchesen (2021).
Moreover, dp metrizes the quotient topology on X/A and satisfies the following
universal property. Fix p ∈ [1,∞], let (Y,dY ,y0) ∈ Lip∗, and let φ : (X,dX,A) →
(Y,dY ,y0) be a morphism in Lippairs. Then there is a unique basepoint preserving
Lipschitz map φ̃ : (X/A,dp,A) → (Y,dY ,y0) satisfying φ̃ ◦π = φ, where π : X →
X/A denotes the quotient map.

Definition 2.1 (Bubenik and Elchesen 2021) Let X = (X,dX) and Y = (Y,dY) be
metric spaces. For each p ∈ [1,∞] let d ×p d : X × Y → [0,∞] be the function
defined by

d ×p d((x,y), (x ′,y ′)) =
∥∥(

dX(x, x
′),dY(y,y

′)
)∥∥

p
,

for all x, x ′ ∈ X, y,y ′ ∈ Y. We refer to d ×p d as the p-product metric on X × Y.

We will also denote d ×1 d more simply by d+ d. It follows from the Minkowski
inequality that d ×p d is a metric on X × Y for each p ∈ [1,∞], with d ×p d and
d ×q d being equivalent for any p,q. Since d ×∞ d metrizes the product topology
on X × Y, it follows from metric equivalence that d ×p d also metrizes the product
topology on X × Y for all 1 � p � ∞ (Bubenik and Elchesen 2021). Note that a
metric d : X × X → R is Lipschitz with respect to the p-product metric.

For any choice of p ∈ [1,∞], the canonical projections πX : X × Y → X and
πY : X × Y → Y are Lipschitz whenever X × Y is equipped with d ×p d. When
considering the product of a space X with itself, we will denote the projections more
simply by π1 and π2.

Proposition 2.2 LetX = (X,dX,A), Y = (Y,dY ,B) bemetric pairs viewed as objects
inLippairs. For any choice ofp ∈ [1,∞], the categorical product ofX and Y inLippairs
is given (up to isomorphism in Lippairs) by (X × Y,d ×p d,A × B).

2.2 Monoids

Hungerford (1980, I.1) A monoid is a tuple (M,+, 0), where M is a set, + : M ×
M → M is an associative binary operation, and 0 ∈ M is an identity element
satisfying 0 + m = m + 0 = m for all m ∈ M. A monoid is commutative if
m + n = n + m for all m,n ∈ M and is cancellative if m + p = n + p =⇒
m = n for all m,n,p ∈ M. Submonoids are defined in the obvious way. Groups
are monoids in which every element has a two-sided inverse and are automatically
cancellative. A monoid homomorphism between monoids M = (M,+M, 0M) and
N = (N,+N, 0N) is a function f : M → N such that f(m+Mn) = f(m)+Nf(n) for
allm,n ∈ N and f(0M) = 0N.We remark that, unlike for group homomorphisms, the
requirement that f(0M) = 0N does not follow automatically from the first condition.

The free commutative monoid on a nonempty set X, denoted D(X), is defined by

D(X) = {f : X → N | f(x) = 0 for all but finitely many x ∈ X},

with the monoid operation being addition of functions. We also set D(∅) = 0, the
zero monoid. The indicator for x ∈ X is defined by 1x(x

′) = 1 if x ′ = x and is 0
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otherwise. Note that every element of D(X) can be written uniquely as a finite sum of
such indicators. By identifying the indicator 1x with x, we identify elements of D(X)
with (finite) formal sums of elements of X, with addition of functions corresponding
to addition of formal sums. Since N is cancellative, so is D(X). If A ⊂ X then D(A)
can be identified as a submonoid of D(X) in the obvious way. For a given set X, there
is a canonical map i = iX : X → D(X) given by i(x) = x (the right-hand-side being
a formal sum with just one summand). The free commutative monoid together with
this canonical map satisfy the following universal property.

Proposition 2.3 For any commutative monoid M and map φ : X → M, there exists a
unique monoid homomorphism φ̃ : D(X) → M such that φ = φ̃ ◦ i.

If h : X → Y is any function then we defineDh : D(X) → D(Y) byDh(x1+ · · ·+
xn) = h(x1) + · · · + h(xn). Equivalently, viewing elements of D(X) as functions,
for f : X → N with finite support, we have Dh(f) = h∗(f) where for y ∈ Y,
h∗(f)(y) =

∑

x∈h−1(y) f(x). Then Dh is a monoid homomorphism. Moreover, the
assignments X �→ D(X), h �→ Dh specify a functor D : Set → CMon, where
Set denotes the category of sets and functions and CMon denotes the category of
commutativemonoids andmonoid homomorphisms.LettingU : CMon → Set denote
the forgetful functor, Proposition 2.3 is equivalent to the statement thatD is left adjoint
to U.

An equivalence relation ∼ on a monoid M is called a congruence if a ∼ b and
c ∼ d implies a+ c ∼ b+ d. If ∼ is a congruence then there is a well-defined monoid
structure on the set of equivalence classes M/ ∼ defined by [a] + [b] = [a + b]. Let
M be a commutative monoid and let N ⊆ M be any submonoid. Define a relation ∼

on M by a ∼ b iff ∃x,y ∈ N such that a + x = b + y. It is easily verified that ∼ is a
congruence. We denote the commutative monoid M/ ∼ by M/N and refer to it as the
quotient of M by N and the equivalence class of a ∈ M under the congruence ∼ is
denoted a + N. We will denote the congruence of elements a and b under the above
congruence relation by a = b (mod N) and say that a equals b mod N. Note that if
M is cancellative then so is M/N.

Of particular importance for us is the quotient D(X)/D(A), where A ⊂ X. In this
case, f = g (mod D(A)) if and only if f|X\A = g|X\A. Equivalently, x1+· · ·+xm =

x ′
1+ · · ·+x ′

n (mod D(A)) iff x1+ · · ·+xm+a1+ · · ·+as = x ′
1+ · · ·+x ′

n+a ′
1+

· · · + a ′
t, for some a1, . . . ,as,a ′

1, . . .a
′
t ∈ A. Hence, D(X)/D(A) ∼= D(X \ A). If

f : (X,A) → (Y,B) is a map of pairs then the induced map Df : D(X,A) → D(Y,B)
is defined by x1 + · · · + xn + D(A) �→ f(x1) + · · · + f(xn) + D(B).

2.3 Persistence diagrams

Bubenik and Elchesen (2021). Let (X,A) be a pair. A persistence diagram on (X,A)
is an element of the commutative monoid D(X,A) = D(X)/D(A). The monoid
D(R2,R2

�) ∼= D(R2
�,Δ) is the monoid of classical persistence diagrams with finitely

many points. The monoid D(Int(R), ∅) is the monoid of barcodes.
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We remark that other terminology may be preferable for some readers. Persistence
diagrams on a metric pair could instead be referred to as formal sums on a metric pair
or discrete measures on a metric pair.

2.4 Wasserstein distance

Bubenik and Elchesen (2021). Let (X,d,A) be a metric pair and let α,β ∈ D(X,A).
Let π1,π2 : X × X → X denote the canonical projections. We call σ = (x1, x ′

1) +
· · ·+(xr, x ′

r) ∈ D(X×X) amatching between α and β if (π1)∗σ = α (mod D(A))
and (π2)∗σ = β (mod D(A)). Let p ∈ [1,∞]. The p-cost of σ (with respect to d) is
defined by

Costp[d](σ) =
∥∥(

d(xi, x
′
i)

)r
i=1

∥∥
p
.

Let (X,d,A) be a metric pair. For each p ∈ [1,∞] the p-Wasserstein distanceWp[d] :
D(X,A) × D(X,A) → [0,∞] is defined as follows. Given α,β ∈ D(X,A), we set

Wp[d](α,β) = inf
σ

Costp[d](σ),

the infimum being taken over all matchings between α and β.

Remark 2.4 For p ∈ [1,∞), we could equivalently define the p-Wasserstein dis-
tance by defining Costp[d](σ) =

∑r
i=1 d(xi, x ′

i)
p and then setting Wp[d](α,β) =

(infσ Costp[d](σ))
1/p. This is the convention often used in the optimal transport

literature (Villani 2003). We will stick to the convention introduced above for persis-
tence diagrams as it includes the p = ∞ case as well, but use the optimal transport
convention later when we work with measures (see Definitions 5.1, 5.15, and 5.17).

Consider the metric pair (R2
�,d,Δ) where d is the metric induced by the ∞-norm

and the monoid D(R2
�,Δ) of classical persistence diagrams. Let α = (0, 1) + (2, 4)

and letβ = (3, 5). Thenσ = ((0, 1), (1/2, 1/2))+((2, 4), (3, 5)) is matching between
α and β with Cp[d](σ) = 3/2. Thus Wp[d](α,β) � 3/2, and it is not too hard to see
that this matching is optimal.

Let p ∈ [1,∞]. A metric d on a monoid (M,+) is called p-subadditive (Bubenik
et al. 2018) if

d(a + b,a ′ + b ′) �
∥∥(

d(a,a ′),d(b,b ′)
)∥∥

p
,

for all a,a ′,b,b ′ ∈ M. The metric Wp[d] is p-subadditive for any metric pair
(X,d,A) and p ∈ [1,∞] (Bubenik and Elchesen 2021, Lemma 4.17).

2.5 The Grothendieck group completion

Weibel (2013, II.1). Monoids can be completed into groups in a universal way. Given
a commutative monoid M = (M,+), the Grothendieck group completion of M (or
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just theGrothendieck group of M), denotedK(M), is defined as follows. Let ∼ denote
the equivalence relation on M × M given by (a,b) ∼ (c,d) if and only if there exists
k ∈ M such that a + d + k = b + c + k. As a set, we define K(M) = (M × M)/∼,
the set of equivalence classes of M × M under ∼. We denote the equivalence class of
(a,b) by a − b. The binary operation on K(M) (also denoted +) is given by

(a − b) + (c − d) = (a + c) − (b + d).

It is straightforward to check that this operation is well-defined and makes K(M) into
an abelian group with identity 0 = 0 − 0 and with inverses −(a − b) = b − a for
all a − b ∈ K(M). We caution that a − b = c − d does not necessarily imply that
a+d = b+c. However, ifM is cancellative then a−b = c−d iff a+d = b+c. For
example, the Grothendieck group of the monoid N of natural numbers is isomorphic
to the group Z of integers.

The canonical map u : M → K(M) is the monoid homomorphism given by
u(a) = a−0. If we use the notation a = a−0 in K(M) then the canonical map takes
the form u(a) = a for all a ∈ M. Again, we must caution that with this notation,
a = b in K(M) if and only if there exists some k ∈ M such that a + k = b + k in
M, but that when M is cancellative we have a = b in K(M) iff a = b in M. Since
all of the monoids we encounter in this paper will be cancellative, this convention
should cause no confusion. The Grothendieck group together with the canonical map
u satisfy the following universal property.

Proposition 2.5 For any abelian group H and monoid homomorphism v : M → H,
there exists a unique group homomorphism φ : K(M) → H such that φ ◦ u = v.

For a monoid homomorphism f : M → N between commutative monoids M,N,
the function Kf : K(M) → K(N) given by a − b �→ f(a) − f(b) is a well-defined
group homomorphism, and this assignment makes G into a functor K : CMon → Ab.
LetU : Ab → CMon denote the inclusion functor of abelian groups into commutative
monoids. Then Proposition 2.5 is equivalent to the statement that K is left adjoint to
U.

For cancellative monoids, the description of the Grothendieck group of a quotient
monoid is particularly simple.

Proposition 2.6 Let M be a cancellative commutative monoid and let N be a sub-
monoid of M. Then K(M/N) ∼= K(M)/K(N).

Proof First, note that since M is cancellative, K(N) can be identified naturally as
a subgroup of K(M). Now define φ : K(M) → K(M/N) by m − m ′ �→ (m +
N) − (m ′ + N). Clearly φ is surjective, and since M/N is cancellative, m − m ′ ∈
ker(φ) ⇐⇒ m+N = m ′ +N ⇐⇒ m+ n = m ′ + n ′ for some n,n ′ ∈ N. But
now m + n = m ′ + n ′ ⇐⇒ m − m ′ = n − n ′ ∈ K(N) so that ker(φ) = K(N),
and the result now follows from the first isomorphism theorem. ��
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2.6 Universal constructions

Riehl (2016, Sections 2.3, 2.4, 4.2, 4.6). Many of our main results are stated in terms
of the existence of an object with a property called a universal property. Equivalently,
they may be stated as the existence of a certain adjoint functor. For a discussion of
universal properties and adjunctions including the example of a free commutative
monoid, see Bubenik and Elchesen (2021, Section 2.5).

3 Grothendieck groups of Lipschitz monoids

Many objects carry both the structure of a metric and of a commutative monoid.
Persistence diagrams, which motivate this work, are an example, as we will see. It is
natural to ask whether or not the metric structure of a given monoid can be extended
to its Grothendieck group in a natural way. The purpose of this section is to describe
sufficient conditions on the metric that guarantee this is possible.

3.1 Lipschitz monoids and Lipschitz groups

A commutative Lipschitz monoid (CL monoid) is a commutative monoid internal to
Lip. Explicitly, this is a metric space (M,d) equipped with a binary operation + and
an identity element 0 so that (M,+, 0) is a commutativemonoid and+ : M×M → M

is Lipschitz, where M × M is the categorical product in Lip (see Proposition 2.2).
Using the metric d ×p d on M × M, the latter condition means that

d(x + y, x ′ + y ′) � ‖ + ‖Lip(d(x, x, ′ ) + d(y,y ′)),

for all x, x ′,y,y ′ ∈ M. A morphism between CL monoids is a Lipschitz monoid
homomorphism. CL monoids together with these morphisms form the category
CMon(Lip).

An abelian Lipschitz group (AL group) is an abelian group internal to Lip. This
requires, in addition to the requirements for a CL monoid, that the map − : M → M

taking a group element to its inverse be Lipschitz. AL groups together with Lipschitz
group homomorphisms form the category Ab(Lip).

Wewill also consider the categoryCMon(Lippairs) ofmetric pairs with compatible
monoid structures, themorphisms beingLipschitzmaps of pairswhich are alsomonoid
homomorphisms. Similarly, we have the category CMon(Lip∗) of pointed metric
spaceswith compatiblemonoid structures,whosemorphisms are basepoint-preserving
Lipschitz monoid homomorphisms.

3.2 Translation invariant metrics onmonoids

Ametric d on a commutative monoid (M,+) is translation invariant if d(m+p,n+
p) = d(m,n) for all m,n,p ∈ M.
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Proposition 3.1 Let (M,+) be a commutative monoid equipped with a translation
invariant metric d. Then

1. (M,d,+) is a CLmonoid with ‖+‖Lip = 1, unless d = 0 in which case ‖+‖Lip =
0; and

2. If M is a group then (M,d,+) is an AL group.

Proof (1) If d = 0 then the conclusion is immediate, so suppose that d �= 0. By the
triangle inequality and translation invariance for d we have

d(x + y, x ′ + y ′) � d(x + y, x ′ + y) + d(x ′ + y, x ′ + y ′) = d(x, x ′) + d(y,y ′).

Thus the monoid operation is Lipschitz with ‖ + ‖Lip � 1. On the other hand, if
a,b ∈ M are such that d(a,b) �= 0 and c ∈ M is any other element then we have
d(a+c,b+c) = d(a,b) = d(a,b)+d(c, c), fromwhich it follows that ‖+‖Lip � 1
as well.

(2) By part (1),+ is Lipschitz. By translation invariance of dwe have d(−a,−b) =
d(a,b). Thus the inversion operation is an isometry, and hence Lipschitz. ��

We will also consider the following weakening of the cancellative property.

Definition 3.2 AcommutativemonoidM equippedwith ametricd is said to beweakly
cancellative if a + c = b + c =⇒ d(a,b) = 0 for all a,b, c ∈ M.

Lemma 3.3 IfM is a commutativemonoid equippedwith a translation invariantmetric
d then M is weakly cancellative. Moreover, if d satisfies the separation axiom then
M is cancellative.

Proof If a,b, c ∈ M are such that a+ c = b+ c then 0 = d(a+ c,b+ c) = d(a,b)
so that M is weakly cancellative. If d satisfies the separation axiom then d(a,b) =
0 =⇒ a = b so that M is cancellative. ��
Corollary 3.4 If M is a commutative monoid equipped with a translation invariant
metric d and a − b = a ′ − b ′ in K(M) then d(a+ b ′,a ′ + b) = 0. In particular, if
a = b in K(M) then d(a,b) = 0.

Proof Since a − b = a ′ − b ′ in K(M), there exists some c ∈ M such that a +
b ′ + c = a ′ + b + c in M. By Lemma 3.3, M is weakly cancellative and hence
d(a + b ′,a ′ + b) = 0. The second statement follows by letting a ′ = b ′ = 0. ��

If M is only weakly cancellative then the canonical map u : M → K(M) need
not be injective. However, by also weakening the definition of injectivity we obtain
something analogous.

Definition 3.5 Let (X,d) be a metric space and Y any set. A map f : X → Y is weakly
injective if f(x) = f(x ′) =⇒ d(x, x ′) = 0.

Proposition 3.6 Let M be a commutative monoid equipped with a metric d and let
K(M) be the Grothendieck group of M. Then M is weakly cancellative if and only if
the canonical map u : M → K(M) is weakly injective.
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Proof Let a,b, c ∈ M. If M is weakly cancellative and u(a) = u(b) then a + k =
b + k for some k ∈ M. Hence d(a,b) = 0 by weak cancellation so that u is
weakly injective. Conversely, if u is weakly injective and a + c = b + c in M then
u(a) + u(c) = u(a + c) = u(b + c) = u(b) + u(c) so that u(a) = u(b). Hence
d(a,b) = 0 by weak injectivity so that M is weakly cancellative. ��

Wewill denote the full subcategories ofCMon(Lip) andAb(Lip)whoseobjects are
translation invariant commutative Lipschitz monoids (TICL monoids) and translation
invariant abelian Lipschitz groups (TIAL groups) by CMon(Lip)ti and Ab(Lip)ti,
respectively.

3.3 The Grothendieck Lipschitz group

There is an obvious inclusion functor U : Ab(Lip)ti → CMon(Lip)ti. Our goal is to
show that a metric can be put on the Grothendieck group of a TICL monoid so as to
define a functor K : CMon(Lip)ti → Ab(Lip)ti that is left adjoint to U.

Definition 3.7 Given a TICL monoid (M,d,+), let (K(M),+) be the corresponding
Grothendieck group completion of (M,+).We define a function ρ : K(M)×K(M) →
[0,∞] by

ρ(a − b, c − e) = d(a + e, c + b). (3.1)

We will show that (3.1) is a metric which makes K(M) into a TIAL group.

Proposition 3.8 Let K(M) be the Grothendieck group of a TICL monoid (M,d,+).
Then the function ρ given by (3.1) defines a translation invariant metric on K(M).

Proof First, we verify that ρ is well-defined. Suppose that a − b = a ′ − b ′ and
c − e = c ′ − e ′ in K(M). Then d(a + b ′,a ′ + b) = 0 = d(c + e ′, c ′ + e)
by Corollary 3.4. Hence, by translation invariance and the triangle inequality for d,
ρ(a−b, c−e) = d(a+e, c+b) = d(a+e+b ′, c+b+b ′) � d(a+e+b ′,a ′+b+
e)+d(a ′+b+e, c+b+b ′) = d(a+b ′,a ′+b)+d(a ′+e, c+b ′) = d(a ′+e, c+b ′),
and furthermore, d(a ′+e, c+b ′) = d(a ′+e+e ′, c+b ′+e ′) � d(a ′+e+e ′, c ′+
b ′ + e) + d(c ′ + b ′ + e, c+ b ′ + e ′) = d(a ′ + e ′, c ′ + b ′) = ρ(a ′ − b ′, c ′ − e ′),
since d(c ′ + b ′ + e, c + b ′ + e ′) = d(c ′ + e, c + e ′) = 0. Thus ρ(a − b, c − e) �
ρ(a ′ − b ′, c ′ − e ′). The reverse inequality is obtained symmetrically, which shows
that ρ is well-defined.

To see that the point equality holds for ρ, note that if a−b = a ′ −b ′ then, since d

is translation invariant, ρ(a− b,a ′ − b ′) = d(a+ b ′,a ′ + b) = 0 by Corollary 3.4.
Symmetry of ρ follows immediately from the symmetry of d. To verify the triangle
inequality for ρ, let a − b, c − e, x − y ∈ K(M). Then by the triangle inequality
for d, ρ(a − b, x − y) + ρ(x − y, c − e) = d(a + y, x + b) + d(x + e, c + y) =
d(a + y + e, x + b + e) + d(x + b + e, c + b + y) � d(a + y + e, c + b + y)
= d(a + e, c + b) = ρ(a − b, c − e). Thus ρ is a metric on K(M).

Lastly, by translation invariance ofdwehaveρ((a−b)+(x−y), (c−e)+(x−y)) =
ρ((a + x) − (b + y), (c + x) − (e + y)) = d(a + x + e + y, c + x + b + y)
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= d(a + e, c + b) = ρ(a − b, c − e), which shows that ρ is translation invariant as
well. ��

Corollary 3.9 (K(M), ρ,+) is a TIAL group, i.e., an object of Ab(Lip)ti.

Proof By Proposition 3.8, ρ is translation invariant and so by Proposition 3.1,
(K(M), ρ,+) is an AL group. ��

Definition 3.10 When the canonical map u : M → K(M) is weakly injective, we say
that a metric ρ on K(M) extends d if u∗ρ = d.

Proposition 3.11 Let (M,d,+) be a TICL monoid and let K(M) be its Grothendieck
group. Themetricρdefinedby (3.1) is the unique translation invariantmetric extending
d to K(M).

Proof Since d is translation invariant, u is weakly injective by Lemma 3.3 and
Proposition 3.6. Furthermore, ρ is translation invariant by Proposition 3.8 and
ρ(u(a),u(b)) = ρ(a − 0,b − 0) = d(a,b). Thus ρ is a translation invariant metric
on K(M) extending d. Moreover, if η is any such metric then η(a − b, c − d) =
η((a−b)+ (b+d), (c−d)+ (b+d)) = η(a+d,b+ c) = η(u(a+d),u(b+ c))
= d(a + d,b + c) = ρ(a − b, c − d). ��

Definition 3.12 Given a TICL monoid M = (M,d,+), we call the TIAL group
(K(M), ρ,+) the Grothendieck Lipschitz group of M.

Proposition 3.13 Let (M,d,+) be a TICL monoid.

(1) The canonical map u : (M,d,+) → (K(M), ρ,+) is Lipschitz with ‖u‖Lip = 1
if d �= 0 and ‖u‖Lip = 0 otherwise.

(2) ‖ +K(M) ‖Lip = ‖ +M ‖Lip.

Proof (1) Clearly if d = 0 then ‖u‖Lip = 0. Suppose that d �= 0. Since
ρ(u(a),u(b)) = d(a,b) for all a,b ∈ M, ‖u‖Lip � 1. On the other hand, given
a,b ∈ M with d(a ′,b ′) �= 0, we have ρ(u(a),u(b))/d(a,b) = 1 and hence
‖u‖Lip � 1 as well.

(2) Note that ρ = 0 ⇐⇒ d = 0. It follows then from Proposition 3.1 that
‖ +K(M) ‖Lip = ‖ +M ‖Lip = 0 if d = 0 and ‖ +K(M) ‖Lip = ‖ +M ‖Lip = 1
otherwise. ��

The Grothendieck Lipschitz group satisfies the following universal property.

Theorem 3.14 Let M = (M,d,+) be a TICL monoid and let K(M) = (K(M), ρ,+)
denote its Grothendieck Lipschitz group.

(1) For any TIAL group H and any Lipschitz monoid homomorphism φ : M → H,
there exists a unique Lipschitz group homomorphism φ̃ : K(M) → H such that
φ̃ ◦ u = φ.

(2) ‖φ̃‖Lip = ‖φ‖Lip.
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Proof (1) By the universal property of the Grothendieck group, there is a unique group
homomorphism φ̃ : K(M) → H such that φ̃ ◦ u = φ. It remains only to check that φ̃
is Lipschitz. Let dH denote the metric on H. Then

dH(φ̃(a − b), φ̃(a ′ − b ′)) = dH(φ̃(a) − φ̃(b), φ̃(a ′) − φ̃(b ′))
= dH(φ̃(a) + φ̃(b ′), φ̃(a ′) + φ̃(b)) = dH(φ̃(a + b ′), φ̃(a ′ + b))

= dH(φ̃(u(a + b ′)), φ̃(u(a ′ + b))) = dH(φ(a + b ′),φ(a ′ + b))

� ‖φ‖Lipd(a + b ′,a ′ + b) = ‖φ‖Lipρ(a − b,a ′ − b ′).

Thus φ̃ is Lipschitz with ‖φ̃‖Lip � ‖φ‖Lip.
(2) By Proposition 3.13(1), ‖u‖Lip = 1. Hence ‖φ‖Lip = ‖φ̃ ◦ u‖Lip �

‖φ̃‖Lip‖u‖Lip = ‖φ̃‖Lip. By the proof of (1), ‖φ̃‖Lip � ‖φ‖Lip and the result follows.
��

Consider again the Grothendieck group completion functor K : CMon → Ab.
Given TICL monoids (M,dM,+), (N,dN,+), consider their corresponding TIAL
groups (K(M), ρM,+), (K(N), ρN,+), and let f : M → N be a Lipschitz monoid
homomorphism. Then for a − b,a ′ − b ′ ∈ K(M) we have

ρN(Kf(a − b),Kf(a ′ − b ′)) = ρN(f(a) − f(b), f(a ′) − f(b ′))
= dN(f(a) + f(b ′), f(a ′) + f(b))

= dN(f(a + b ′), f(a ′ + b))

� ‖f‖LipdM(a + b ′,a ′ + b)

= ‖f‖LipρM(a − b,a ′ − b ′).

ThusKf is a Lipschitz group homomorphismwith ‖Kf‖Lip � ‖f‖Lip. Hence we obtain
a functor K : CMon(Lip)ti → Ab(Lip)ti. Then Theorem 3.14 implies the following.

Corollary 3.15 K is left adjoint to the inclusion functor U : Ab(Lip)ti →
CMon(Lip)ti.

Example 3.16 Continuing with the example of the natural numbers (Sect. 2.5), the
absolute value norm on N induces a translation invariant metric dN given by

dN(n,m) = |n − m| = max(n,m) −min(n,m).

By Proposition 3.11, dN extends to a unique translation invariant metric ρZ onZ given
by

ρZ(a − b, c − d) = dN(a + d,b + c) = max(a + d,b + c) −min(a + d,b + c).

This is of course the usual metric on Z induced by absolute value, more readily seen
by using the absolute value notation: ρZ(a − b, c − d) = |a + d − (b + c)| =
|(a − b) − (c − d)|.
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4 Virtual persistence diagrams

In this section, we define virtual persistence diagrams on metric pairs and define
Wasserstein distances between these objects.

4.1 Translation invariance of theWasserstein distances

Since we are interested in translation invariant metrics, we would like to determine
for which p and for what conditions on d we are assured that Wp[d] is translation
invariant.

Definition 4.1 For p ∈ [1,∞], a metric d on X is called a p-metric if d(x,y) �∥∥(
d(x, z),d(z,y)

)∥∥
p
for all x,y, z ∈ X.

Note that a 1-metric is just a metric while an ∞-metric is an ultrametric (also
known as a non-Archimedean metric). Since the �p norms are decreasing in p, we
see that a q-metric is also a p-metric whenever 1 � p � q � ∞. By induction, a
p-metric satisfies d(x,y) � ‖(d(x, z1),d(z1, z2), . . . ,d(zn,y))‖p for anyn ∈ N and
x,y, z1, . . . , zn ∈ X.

Definition 4.2 (Bubenik and Elchesen 2021, Definition 3.12) Let (X,d,A) be ametric
pair. For each p ∈ [1,∞], we define a new metric dp on X according to

dp(x, x
′) = min

(
d(x, x ′),

∥∥(
d(x,A),d(x ′,A)

)∥∥
p

)
, (4.1)

for all x, x ′ ∈ X. We refer to dp as the p-strengthening of d with respect to A.

It is an easy observation that dp = q∗dp, where dp is the p-quotient metric
and q : X → X/A is the quotient map (see Sect. 2.1). Thus dp is indeed a metric.
Moreover, it is clear from the definition that dp � d. The following proposition shows
that passing from d to dp leaves the Wasserstein distance unchanged.

Proposition 4.3 Foranyp ∈ [1,∞]wehaveWp[d] = Wp[dp]andWp[d](ι(x), ι(y))
= dp(x,y), where ι : X → D(X,A) is the composition X → D(X) → D(X,A) of
the inclusion map with the quotient map.

Proof To prove the first statement, note that since dp � d, it follows immedi-
ately from the definition of the Wasserstein distances that Wp[dp] � Wp[d]. To
prove the reverse inequality, let α,β ∈ D(X,A), let ε > 0 be given, and let
σ = (x1, x ′

1) + · · · + (xr, x ′
r) ∈ D(X × X) be a matching between α and β with

Costp[dp](σ) < Wp[dp](α,β)+ ε. Define σ ′ ∈ D(X×X) as follows. For each i, if
dp(xi, x ′

i) �= d(xi, x ′
i), so that dp(xi, x ′

i) =
∥∥(d(xi,A),d(x ′

i,A))
∥∥

p
, then replace

the term (xi, x ′
i) in σ with (xi,ai) + (a ′

i, x
′
i), where ai,a ′

i ∈ A are chosen such
that

∥∥(d(xi,ai),d(a ′
i, x

′
i))

∥∥
p

� dp(xi, x ′
i) + ε/r. Otherwise do nothing. Note that

making such a substitution still retains a matching between α and β. Moreover, we
have

Costp[d](σ
′) �

∥∥(
dp(xi, x

′
i) + ε/r

)r
i=1

∥∥
p

� Costp[dp](σ) + ‖(ε/r, . . . , ε/r)‖p
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� Costp[dp](σ) + ε,

from which the result follows.
To prove the second statement, note that (x,y) and (x,a) + (a ′,y) are matchings

between ι(x) and ι(y) for any choice ofa,a ′ ∈ A. It follows thatWp[d](ι(x), ι(y)) �
dp(x,y). On the other hand, any matching between ι(x) and ι(y) contains a term of
one of these two forms and hence has cost at least dp(x,y), proving the reverse
inequality. ��

The following is known for the classical Wasserstein distances (Mainini 2012). We
give a direct proof for persistence diagrams here.

Lemma 4.4 (Translation Subinvariance) For any metric pair (X,d,A), p ∈ [1,∞],
and α,β,γ ∈ D(X,A), we have Wp[d](α + γ,β + γ) � Wp[d](α,β).

Proof Let α = x1 + · · · + xn, β = x ′
1 + · · · + x ′

m, γ = x ′′
1 + · · · + x ′′

r ∈ D(X,A).
Let ε > 0 be given. Then there exists a matching σ ∈ D(X × X) between α and β

with Costp(σ) < Wp[d](α,β) + ε. Let σ̃ = σ + (x ′′
1 , x

′′
1 ) + · · · + (x ′′

r , x
′′
r ). Then

(π1)∗σ̃ = α + γ (mod D(A)), (π2)∗σ̃ = β + γ (mod D(A)), and

Wp[d](α + γ,β + γ) � Costp(σ̃) = Costp(σ) < Wp[d](α,β) + ε,

which gives the result. ��
We can now state the main result of this section.

Theorem 4.5 Let (X,d,A) be a metric pair and let p ∈ [1,∞]. Then the following
are equivalent.

1. Wp[d] is translation invariant;
2. dp : X × X → [0,∞] is a p-metric.

Proof (1 ⇒ 2) Suppose that Wp[d] is translation invariant and let x,y, z ∈ X. Let
ι : X → D(X,A) denote the composition X → D(X) → D(X,A) of the inclusion
map and quotient map. Then by Proposition 4.3 and p-subadditivity of Wp[d] we
have

dp(x,y) = Wp[d](ι(x), ι(y)) = Wp[d](ι(x) + ι(z), ι(z) + ι(y))

�
∥∥(

Wp[d](ι(x), ι(z)),Wp[d](ι(z), ι(y))
)∥∥

p

=
∥∥(

dp(x, z),dp(z,y)
)∥∥

p
,

and so dp is a p-metric.
(2 ⇒ 1) Assume that dp is a p-metric. By Lemma 4.4, Wp[d](α + γ,β + γ) �

Wp[d](α,β). So it remains to show that Wp[d](α,β) � Wp[d](α + γ,β + γ). By
Proposition 4.3, we may instead show that Wp[dp](α,β) � Wp[dp](α+ γ,β+ γ).

Let ε > 0. Then there is a matching σ ∈ D(X × X) between α + γ and β + γ

such that Costp[dp](σ) � Wp[dp](α + γ,β + γ) + ε. Now, consider (π1)∗σ and

123



Virtual persistence diagrams, signed measures… 447

(π2)∗σ as sets, where we use indices to avoid higher multiplicities. Then σ may be
viewed as bipartite perfect matching between these two sets. Next, add edges to this
bipartite graph between all corresponding (indexed) elements of γ. We now have a
bipartite graph such that vertices in γ have degree 2 and all other vertices have degree
1. Let n be the number of connected components of this graph. Then the connected
components of the graph produce a partition of σ,

σ = σ1 + · · · + σn, σi = (xi,1,yi,1) + · · · + (xi,mi
,yi,mi

), i = 1, . . . ,n,

where for i = 1, . . . ,n, xi,1 ∈ α + A, yi,mi
∈ β + A, and all other terms in σi lie

in γ. Let σ ′ = (x1,1,y1,m1) + · · · + (xn,1,yn,mn). Then (π1)∗σ ′ = α mod A and
(π2)∗σ ′ = β mod A. That is, σ ′ is a matching of α and β. Since dp(xi,1,yi,mi

) �∥∥(dp(xi,1,yi,1), . . . ,dp(xi,mi
,yi,mi

))
∥∥

p
for i = 1, . . . ,n, it follows that

Costp[dp](σ
′) =

∥∥(dp(xi,1,yi,mi
))ni=1

∥∥
p

�
∥∥∥∥
(∥∥∥(dp(xi,j,yi,j))

mi
j=1

∥∥∥
p

)n

i=1

∥∥∥∥
p

= Costp[dp](σ).

ThereforeWp[dp](α,β) � Wp[dp](α+γ,β+γ)+ε, which gives the desired result.
��

Corollary 4.6 For any metric pair (X,d,A), the metricW1[d] is translation invariant.

Example 4.7 1. Let G = (V ,E,ω) be a (possibly directed) weighted graph, where
ω : E → [0,∞] defines the edge weights. For a path γ = (e1, . . . , en) in G

and p ∈ [1,∞], the p-cost of γ is Cp(γ) =
∥∥(ω(ei))

n
i=1

∥∥
p
. Define a metric

ρp : V × V → [0,∞] by setting

ρp(v, v
′) = min

{

Cp(γ) | γ a path from v to v ′} ,

if this set is non-empty, and by setting ρp(v, v ′) = ∞ otherwise. Then ρp is a
p-metric on V . It follows from Theorem 4.5 that Wp[ρp] is translation invariant
for any choice of A ⊂ V .

2. The p-reflection distance (Elchesen and Mémoli 2019) is a p-metric on the col-
lection of (equivalence classes of) zigzag modules of a fixed length. This can be
seen as a special case of the previous example by defining a directed weighted
graph whose vertices are equivalence classes of zigzag modules of fixed length n

for which there is a directed edge between two vertices if there one of the corre-
sponding zigzag modules can be obtain from the other via a reflection, and with
all edge weights set to 1.

3. (Metrics on length spaces cannot be p-metrics for p > 1). Let (X,d) be a
length space, i.e., for any x,y ∈ X, we have d(x,y) = inf{�(p) | p : I →
X a path from x to y}, where �(p) denotes the length of the path p. To avoid triv-
ialities, assume that there exists x,y ∈ X with d(x,y) > 0. In a length space,
we always have approximate midpoints, i.e., for all x,y ∈ X and ε > 0 there is a
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z ∈ X such that 0 � d(x, z)− 1
2d(x,y) < ε/2 and 0 � d(y, z)− 1

2d(x,y) < ε/2.
If d is a p-metric for some p ∈ [1,∞], then for all ε > 0 we have

d(x,y) �
∥∥(

d(x, z),d(z,y)
)∥∥

p
<

∥∥(
d(x,y)/2+ ε/2,d(x,y)/2+ ε/2

)∥∥
p

=
1
2
(d(x,y) + ε) ‖(1, 1)‖p = 21/p−1(d(x,y) + ε).

Hence d(x,y) � 21/p−1d(x,y) which is only possible if p � 1.

4. (Classical persistence diagrams). Consider the pair (R2,R2
�). Note that R2 is a

length space (and in fact a geodesic metric space) whenever themetricd is induced
by a q-norm, 1 � q � ∞, and this is still true when we replace d with dp. Thus
by the preceding example, Wp[d] is translation invariant if and only if p = 1.

4.2 Grothedieck group completion

Having described persistence diagrams of metric pairs, we now apply the the general
results of Sect. 3 to define virtual persistence diagrams.

Theorem 4.8 Let (X,d,A) be a metric pair, let p ∈ [1,∞], and suppose that dp is a
p-metric. Then (D(X,A),Wp[d],+) is a TICLmonoid andWp[d] extends to a metric
on the Grothendieck group of D(X,A) so as to obtain a TIAL group.

Proof By Theorem 4.5, Wp[d] is translation invariant and hence by Proposition 3.1,
(D(X,A),Wp[d],+) is a TICL monoid. Then by Proposition 3.8 and Corollary 3.9,
Wp[d] extends to a metric on the Grothendieck group of D(X,A) so as to obtain a
TIAL group. ��

Corollary 4.9 Let (X,d,A) be a metric pair. Then (D(X,A),W1[d],+) is a TICL
monoid and W1[d] extends to a metric on the Grothendieck group of D(X,A) so as
to obtain a TIAL group.

Definition 4.10 The corresponding Grothendieck Lipschitz group in Theorem 4.8 is
denoted (K(X,A),Wp[d],+) and is called the group of virtual persistence diagrams.
Elements of K(X,A) are called virtual persistence diagrams.

It is straightforward to see that K(X,A) is the quotient F(X)/F(A), where F(S)
denotes the free abelian group generated by a set S. Hence elements of K(X,A) can
be viewed as Z-linear combinations of elements of X, with elements of A acting as
the identity. By the results of Sect. 3, the Wasserstein distances extend to this space in
a natural way that is compatible with the group operation, at least when the distance
is translation invariant to begin with.

Virtual persistence diagrams appear in Betthauser et al. (2021) where they arise as
the Möbius inversion of the kth graded rank function. In that work the authors prove a
stability result for the distanceW1[d], where d is the metric obtained from the 1-norm
on R2.
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Example 4.11 Consider the metric pair (R2
�,d,Δ), where d denotes the Euclidean

distance. We can visualize virtual persistence diagrams in this setting by graphing
points in R

2
� together with a multiplicity which is allowed to be negative.

5 Wasserstein distance for signedmeasures

The Wasserstein distance studied in the present paper is related to a more general
distance defined between Radon measures supported on a metric space. This connec-
tion has been made precise (Divol and Lacombe 2021), with the Wasserstein distance
between persistence diagrams being a special case of a “partial” Wasserstein distance.
In this section, we apply the tools developed in the previous sections to the notions
of Wasserstein and partial Wasserstein distance. When applied to the monoid of finite
Radon measures on a metric space, we obtain a metric of the form introduced in
Mainini (2012).

5.1 Themonoid of Radonmeasures

Let (X,d) be a metric space and let μ be a measure on the Borel σ-algebra of X.
We say that μ is inner regular if for any open set U ⊂ X, μ(U) = sup{μ(K) | K ⊂
X compact, K ⊂ U}; outer regular if for any Borel set B, μ(B) = inf{μ(U) | U ⊂
X open, B ⊂ U}; and locally finite if every point of X has a neighborhood U for which
μ(U) is finite. A Radon measure is a measure which is inner regular, outer regular,
and locally finite. We will denote the set of all Radon measures by M+(X) and the set
of all finite Radon measures on X by M+

fin(X). M
+
fin(X) is a cancellative monoid with

the monoid operation taken to be addition of measures, the zero measure being the
monoid identity. Recall that for ameasurable function f : (X1,Σ1,μ) → (X2,Σ2) from
a measure space to a measurable space, the pushforward measure f∗μ is a measure on
(X2,Σ2) defined by (f∗μ)(E) = μ(f−1(E)) for all E ∈ Σ2.

5.2 The transportation problem and theWasserstein distance betweenmeasures

In this section, we describe the namesake of the Wasserstein distances between per-
sistence diagrams described in previous sections. This is a classical notion of distance
between probability measures, or more generally, between measures of equal mass,
and is related to the transportation problem for measures.While the similarity between
the two notions is evident, the more general notion of partial transportation and the
corresponding partial Wasserstein distance, described in Sect. 5.4, are needed to make
the connection precise (Divol and Lacombe 2021). The classical Wasserstein distance
arises from the transportation problem between measures of equal mass supported on
a metric space (X,d).

Definition 5.1 (The Transportation Problem) Let (X,d) be a metric space and let
μ,ν ∈ M+(X) be two positiveRadonmeasures supported onX. A coupling betweenμ

andν is a Radonmeasureπ onX×X for whichπ(E×X) = μ(E) andπ(X×E) = ν(E)
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for all Borel sets E ⊂ X. The set of all couplings between μ and ν is denoted Π(μ,ν).
For p ∈ [1,∞), the p-cost of a coupling is defined by

Cp(π) =

∫

X×X
d(x,y)pdπ(x,y). (5.1)

The transportation problem is to find a coupling between μ and ν of minimum cost.
The p-Wasserstein distance between μ and ν is given by

Wp[d](μ,ν) =

(
inf

π∈Π(μ,ν)
Cp(π)

)1/p

,

if Π(μ,ν) �= ∅, and is set to ∞ otherwise.

Remark 5.2 The p-Wasserstein distance is typically viewed as a partial metric in the
sense that it is only defined between measures of equal mass. Note that with our
definition, the p-Wasserstein distance is an (extended) metric on the space of all
measures, with the distance between measures of unequal mass always being infinite.
Indeed, if π ∈ Π(μ,ν) �= ∅ then |μ| = μ(X) = π(X × X) = ν(X) = |ν|. Hence if
|μ| �= |ν| then Π(μ,ν) = ∅ and thus Wp[d](μ,ν) = ∞.

The following duality result applies in the p = 1 case.

Theorem 5.3 (Kantorovich–Rubinstein Duality, Kantorovich and Rubinstein 1958;
Kellerer 1985; Edwards 2011, Theorem 4.1) Letμ,ν ∈ M+(X) be Radonmeasures on
(X,d) which satisfy the finiteness conditions

∫

X d(x, x0)dμ(x),
∫

X d(x, x0)dν(x) <

∞ for some x0 ∈ X. Then

W1[d](μ,ν) = sup
{ ∫

X fdμ −
∫

X fdν
∣∣ f : X → R, ‖f‖Lip � 1

}

.

Remark 5.4 It is usually assumed in the statement of the previous theorem that |μ| =
|ν|. This is not necessary with our definition of Wasserstein distance. For if |μ| > |ν|

then, for any c ∈ R we have
∫

X cdμ −
∫

X cdν = c(|μ| − |ν|) → ∞ as c → ∞.
Since the constant function c : X → R is 1-Lipschitz, the right hand side is infinite.
On the other hand, the left hand side is infinite by definition, since Π(μ,ν) = ∅ (see
Remark 5.2).

It follows immediately fromKantorovich-Rubinstein duality that the 1-Wasserstein
distance is translation invariant with respect to addition of measures. This fact together
with Proposition 3.1 immediately implies the following.

Corollary 5.5 Let (X,d) be a metric space. Then (M+
fin(X),W1[d],+) is a TICL

monoid.

In the next section, we will also make use of a generally weaker formulation of the
mass transportation problem for p = 1, called the transshipment problem (Edwards
2011; Rachev et al. 1998), Chapter 6).
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Definition 5.6 (The Transshipment Problem) Let (X,d) be a metric space and let μ,ν
be two Radon measures supported on X with finite first moments. A weak coupling
between μ and ν is a Radon measure π on X × X for which π(E × X) + ν(E) =
π(X×E)+μ(E) for all E ⊂ X Borel. Denote by Γ(μ,ν) the set of all weak couplings
between μ and ν. The p-cost of π is defined as for couplings (Definition 5.1).

When the cost is defined by (5.1) and p = 1, the transshipment problem and the
transportation problem are equivalent (Edwards 2011, Theorem 4.5), i.e.

inf
π∈Π(μ,ν)

C1(π) = inf
π∈Γ(μ,ν)

C1(π). (5.2)

This is no longer true if d is replaced by a more general function, but we will not
consider more general cost functions here.

5.3 Extending theWasserstein distance to signedmeasures

Since the 1-Wasserstein distance is translation invariant on the monoid M+
fin(X) of

finite Radon measures supported on (X,d), it follows from the results of Sect. 3 that
the 1-Wasserstein distance extends to the corresponding Grothendieck group. In this
section, we describe the Grothendieck group of M+

fin(X) and describe a transportation
formulation of the resulting metric on this group.

The following proposition is essentially the Jordan decomposition theorem.

Proposition 5.7 The Grothendieck group of M+
fin(X) is the group Mfin(X) of finite

signed Radon measures.

Proof By the Jordan decomposition theorem, every signed measure μ ∈ Mfin(X)
can be written uniquely as a difference μ = μ+ − μ−, where μ+,μ− are mutually
singular positive measures. Define the map φ : Mfin(X) → K(M+

fin(X)) by μ =
μ+−μ− �→ μ+−μ− (here, the expression on the left hand side denotes elementwise
subtraction of positivemeasures, while the expression on the right hand side represents
an equivalence class in K(M+

fin(X))). The verification thatφ is an isomorphism is now
straightforward. ��

Since (M+
fin(X),W1[d],+) is a TICLmonoid by Corollary 5.5, by Proposition 3.11,

W1[d] extends to a unique metric on Mfin(X).

Definition 5.8 Let μ = μ+−μ− and ν = ν+−ν− be finite signed measures, written
in their Jordan decompositions. The 1-Wasserstein distance betweenμ andν is defined
by

W1[d](μ,ν) = W1[d](μ
+ + ν−,μ− + ν+).

Note that the above formula is precisely the global cost extension of the 1-
Wasserstein distance (Mainini 2012). Next, we describe a transportation formulation
of the Wasserstein distance between signed measures.
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Definition 5.9 (The Signed Transportation Problem) Let Δ : X → X × X be the
map x �→ (x, x). For μ,ν ∈ Mfin(X), let Σ(μ,ν) denote the collection of all σ ∈
Mfin(X × X) of the form

σ = π − Δ∗γ

for some π ∈ M+
fin(X × X) and γ ∈ M+

fin(X) which satisfy

σ(E × X) = μ(E) and σ(X × E) = ν(E)

for all Borel subsets E ⊂ X. The cost of σ ∈ Σ(μ,ν) is

C(σ) =

∫

X×X
d(x,y)dσ(x,y).

The signed transportation problem for μ,ν ∈ Mfin(X) is to find an element ofΣ(μ,ν)
of minimum cost.

The relationship between the signed transportation problem and the Wasserstein
distance between signed measures is the following.

Theorem 5.10 For μ,ν ∈ Mfin(X) we have W1[d](μ,ν) = infσ∈Σ(μ,ν) C(σ).

Proof Bydefinition,W1[d](μ,ν) = infπ∈Π(μ++ν−,μ−+ν+) C1(π). Letσ ∈ Σ(μ,ν)
with σ = π − Δ∗γ for some π ∈ M+

fin(X × X) and γ ∈ M+
fin(X). Then

μ(E) − ν(E) = σ(E × X) − σ(X × E) = π(E × X) − π(X × E).

Therefore, π ∈ Γ(μ+ + ν−,ν+ + μ−). By change of variables,

∫

X×X
d(x,y)dΔ∗γ(x,y) =

∫

X
d(x,y)Δ(x)dγ(x) =

∫

X
d(x, x)dγ(x) = 0

and hence we have C1(π) =
∫

X×X d(x,y)dπ(x,y) =
∫

X×X d(x,y)dσ(x,y) =
C(σ). Thus, using the transshipment formulation of the 1-Wasserstein distance (Equa-
tion (5.2)), we see that

W1[d](μ,ν) � inf
σ∈Σ(μ,ν)

C(σ).

On the other hand, let π ∈ Π(μ+ + ν−,ν+ + μ−). Then σ = π − Δ∗(μ− + ν−)
satisfies

σ(E × X) = π(E × X) − Δ∗(μ− + ν−)(E × X) = π(E × X) − μ−(E) − ν−(E)

= μ+(E) + ν−(E) − μ−(E) − ν−(E) = μ(E),

inf
σ∈Σ(μ,ν)

C(σ) � W1[d](μ,ν). ��
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5.4 The partial transportation problem and partialWasserstein distances

Let (X,d,A) be a metric pair with A ⊂ X Borel. The partial transport problem is
concerned with measures supported on X \ A. Informally, the problem is to find the
most efficient way to transport the mass of one measure to another, allowing mass to
be borrowed from or pushed to the subspace A. Expanding upon work of Figalli and
Gigli (2010), Divol and Lacombe (2021) defined the problem for the case that X is
some Euclidean space and A is a closed subset of X. Motivated by their work, and by
adopting the perspective taken in the present paper on theWasserstein distance between
persistence diagrams, we generalize their definition of the partial transport problem
and the resulting metrics. By taking A = ∅, we recover the classical Wasserstein
distances as well.

Instead of working with measures on X \ A directly, we will instead mimic the
algebraic setup we established for persistence diagrams in Sect. 4 and consider the
quotient M+(X)/M+(A). Here, we are viewing measures μ supported on A as also
being measures on X according to μ(E) = μ(E ∩ A) for all E ⊂ X Borel.

Definition 5.11 Wedefine the commutativemonoidofRadonmeasures onX relative to
A by M+(X,A) = M+(X)/M+(A). Similarly, we define the commutative monoids
M+

fin(X,A) = M+
fin(X)/M+

fin(A) of finite Radon measures on X relative to A and
Mfin(X,A) = Mfin(X)/Mfin(A) of finite signed Radon measures on X relative to A.

Elements of M+(X,A) are cosets of the form μ + M+(A), and similarly for
Mfin(X,A) and M+

fin(X,A). Note that μ = ν (mod M+(A)) ⇐⇒ μ + α = ν + β

for some α,β ∈ M+(A), and similarly for Mfin(X,A) and M+
fin(X,A).

Proposition 5.12 Let (X,d,A) be a metric pair with A Borel. Then K(M+
fin(X,A)) ∼=

Mfin(X,A).

Proof By Proposition 5.7,K(M+
fin(X))

∼= Mfin(X) andK(M+
fin(A)) ∼= Mfin(A). Since

the monoid of measures is cancellative, it follows from Proposition 2.6 that

K(M+
fin(X,A)) ∼= K(M+

fin(X))/K(M+
fin(A)) ∼= Mfin(X)/Mfin(A) = Mfin(X,A).

��
Lemma 5.13 Let A ⊂ X Borel and μ ∈ M+(X). Then there exists unique measures
μA ∈ M+(A) and μC ∈ M+(X\A) such that μ = μA +μC. Analogous statements
hold for Mfin(X) and M+

fin(X).

Proof For E ⊂ A Borel, define μA(E) = μ(E), and for E ′ ⊂ X \ A Borel, define
μC(E ′) = μ(E ′). ViewμA as ameasure onX by definingμA(E ′′) = μA(E ′′∩A) for
E ′′ ⊂ XBorel, and similarly forμC. ThenμA(E ′′)+μC(E ′′) = μ(E ′′∩A)+μ(E ′′∩
(X \ A)) = μ(E ′′) for all E ′′ ⊂ X Borel. To see that this decomposition is unique,
suppose thatμ = μ ′

A+μ ′
C for someμ ′

A ∈ M+(A) andμ ′
C ∈ M+(X\A). ForE ⊂ A

Borel, we have μA(E) = μA(E) + μC(E) = μ(E) = μ ′
A(E) + μ ′

C(E) = μ ′
A(E),

since μC(E) = μ ′
C(E) = 0, and hence μA = μ ′

A. A similar argument shows that
μC = μ ′

C.The proofs for Mfin(X) and M+
fin(X) are identical. ��
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Proposition 5.14 Let (X,d,A) be a metric pair with A ⊂ X Borel. There are
monoid isomorphisms M+(X,A) ∼= M+(X \ A), M+

fin(X,A) ∼= M+
fin(X \ A), and

Mfin(X,A) ∼= Mfin(X \ A).

Proof Define Φ : M+(X \ A) → M+(X)/M+(A) by ν �→ ν + M+(A). Clearly Φ

is a monoid homomorphism. To see that Φ is surjective, let μ ∈ M+(X) be given. By
Lemma 5.13, there exists unique measures μA ∈ M+(A) and μC ∈ M+(X\A) such
that μ = μA +μC. Thus μ = μC (mod M+(A)) and hence Φ(μC) = μ+M+(A).
To see that Φ is injective, suppose that Φ(ν) = Φ(ν ′). Then there are measures
α,β ∈ M+(A) such that ν + α = ν ′ + β. Since ν,ν ′ ∈ M+(X \ A) and α,β ∈
M+(A), by the uniqueness statement of Lemma 5.13 we have ν = ν ′, as desired.
The second isomorphism is proven similarly. The last isomorphism then follows from
the second and Propositions 5.7 and 5.12. ��

We now introduce a generalization of the Wasserstein distances, of which the clas-
sical Wasserstein distances can be seen as a special case.

Definition 5.15 Let p ∈ [1,∞) and let μ,ν ∈ M+(X). We say that μ,ν are p-finite
with respect to A if

∫

X
d(x,A)pdμ(x) < ∞,

∫

X
d(x,A)pdν(x) < ∞. (5.3)

Let M+
p,A(X) denote the submonoid of M+(X) consisting of all measures that are

p-finite with respect to A. For μ,ν ∈ M+
p,A(X), we denote by ΠA(μ,ν) the subset

of M+(X × X) of all Radon measures σ supported on X × X which satisfy

(π1)∗σ = μ (mod M+(A)), (π2)∗σ = ν (mod M+(A)).

The p-cost of σ ∈ ΠA(μ,ν), denoted CA
p (σ), is defined as in the ordinary transporta-

tion cost (5.1). The partial optimal transportation distance between μ and ν with
respect to A is then defined on M+

p,A(X) by

WA
p [d](μ,ν) =

(
inf

σ∈ΠA(μ,ν)
CA

p (σ)

)1/p

when ΠA(μ,ν) �= ∅, and we setWA
p (μ,ν) = ∞ otherwise.

Let M+
p (X,A) = M+

p,A(X)/M+(A).WA
p [d] is zero on M+(A) and thus induces

a distance on M+
p (X,A) which we denote byWp[d].

Remark 5.16 1. The p-finite conditions are analogous to the finiteness conditions
in Theorem 5.3 and guarantee that the partial optimal transport distance is finite
between measures satisfying this condition.

2. CA
p can also be defined as an integral over (X × X) \ (A × A) without changing

theWasserstein distance, since measures are only considered modulo measures on
A.
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3. By Proposition 5.14, we can alternatively viewWp[d] as a metric between Radon
measures supported on X \ A that are p-finite with respect to A.

Divol and Lacombe define the partial optimal transport distance slightly differently
for measures supported on an open subset S ⊂ R

d. This distance was originally
introduced by Figalli and Gigli for bounded subsets of Euclidean spaces (Figalli and
Gigli 2010).

Definition 5.17 (Divol and Lacombe, Figalli and Gigli Divol and Lacombe 2021;
Figalli and Gigli 2010) Let p ∈ [1,∞), let S ⊂ R

d be open, and let μ,ν be Radon
measures supported on S which satisfy

∫

S
d(x, ∂S)pdμ(x) < ∞,

∫

S
d(x, ∂S)pdν(x) < ∞. (5.4)

Let Adm(μ,ν) denote the set of all Radon measures σ on S × S which satisfy

σ(E × S) = μ(E), σ(S × E ′) = ν(E ′),

for all E,E ′ ⊂ S Borel. The p-cost of σ ∈ Adm(μ,ν) is defined by

COT
p (σ) =

∫

S×S
d(x,y)pdσ(x,y).

Then define

OTp(μ,ν) =

(
inf

σ∈Adm(μ,ν)
COT

p (σ)

)1/p

.

Lemma 5.18 For A ⊂ R
d and x /∈ A we have d(x,A) = d(x, ∂A).

Proof Since A = int(A) ∪ ∂A is closed and d(x,A) = d(x,A), there exists a ∈ A

such that d(x,A) = d(x,a). Suppose that a ∈ int(A). Let ε > 0 be such that
Bε(a) ⊂ int(A) and let a ′ = a + ε x−a

‖x−a‖ . Then a ′ ∈ Bε(a) ⊂ A and d(x,a ′) =
d(x,a) − ε < d(x,A), a contradiction. ��

Recall that a retraction of a topological space X onto a subspace A ⊂ X is a
continuous map r : X → A such that r(a) = a for all a ∈ A.

Proposition 5.19 Let S ⊂ R
d be an open subset and let μ,ν be Radon measures

supported on S which satisfy (5.4). Let X = R
d and A = X \ S. Suppose also that

there is a 1-Lipschitz retraction r : X → S with r(A) ⊂ ∂A. Then

WA
p [d](μ,ν) = OTp(μ,ν),

where on the left-hand-side, we view μ and ν as measures supported on X in the usual
way.
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Proof By Lemma 5.18 and the fact that d(x,A) = 0 for all x ∈ A, we have

∫

X
d(x,A)pdμ(x) =

∫

S
d(x,A)pdμ(x)

=

∫

S
d(x, ∂A)pdμ(x) =

∫

S
d(x, ∂S)pdμ(x),

and similarly for ν. Thus μ,ν satisfy (5.3) if and only if they satisfy (5.4). Now let
σ ∈ Adm(μ,ν). Viewσ as an element ofM+(X×X) by settingσ(U) = σ(U∩(S×S))
for all U ⊂ X × X Borel. Then, for the projection π1 : X × X → X, we have

(π1)∗σ(E) = σ(E × X) = σ((E × X) ∩ (S × S)) = σ((E ∩ S) × S)

= σ((E ∩ S) × S) + σ((E ∩ ∂S) × S) = μ(E ∩ S) + σ((E ∩ ∂S) × S)

for E ⊂ X Borel. It follows that (π1)∗σ(E) + μ(E ∩ A) = μ(E ∩ S) + μ(E ∩ A) +
σ((E ∩ ∂S) × S) = μ(E) + σ((E ∩ ∂S) × S). Now let α,β ∈ M+(A) be defined by
α(F) := μ(F ∩ A) and β(F) := σ((F ∩ ∂S) × S) for all F ⊂ A Borel. View α as a
measure on X by defining α(E ′) = α(E ′ ∩ A) for E ′ ⊂ X Borel, and similarly for β.
Then we have

(π1)σ∗(E) + α(E) = (π1)∗σ(E) + μ(E ∩ A) = μ(E) + σ((E ∩ ∂S) × S)

= μ(E) + β(E),

for all E ⊂ X Borel. Thus (π1)∗σ = μ (mod M+(A)). Similarly, we have
(π2)∗σ = ν (mod M+(A)). Now, since σ is supported on S × S, we have
∫

X×X d(x,y)pdσ(x,y) =
∫

S×S d(x,y)pdσ(x,y) so that Cp(σ) = COT
p (σ). It fol-

lows that WA
p [d](μ,ν) � OTp(μ,ν).

To prove the reverse inequality, let σ ∈ Π(μ,ν) be given. Define σ ′ = (r × r)∗σ.
Then σ ′ is supported on S × S. To see that σ ′ ∈ Adm(μ,ν), let E ⊂ S be a Borel set.
Thenσ ′(E×S) = σ((r×r)−1(E×S)) = σ(r−1(E)×r−1(S)). Since r(A) ⊂ ∂A = ∂S

and S ⊂ R
d is open by assumption, we have r−1(E) = E. Thus, σ ′(E × S) =

σ(r−1(E)× r−1(S)) = σ(E × X). Since σ ∈ Π(μ,ν), there are α,β ∈ M+(A) such
that σ(E × X) + α(E) = μ(E) + β(E). Since E ⊂ S, α(E) = β(E) = 0 so that
σ ′(E × S) = μ(E). Similarly, σ ′(S × E) = ν(E) and thus σ ′ ∈ Adm(μ,ν). Now, by
the change of variables formula together with the fact that r is 1-Lipschitz, we have

COT
p (σ ′) =

∫

S×S
d(x,y)pdσ ′(x,y)

=

∫

X×X
d(r(x), r(y))pdσ(x,y) �

∫

X×X
d(x,y)pdσ(x,y) = Cp(σ).

Thus OTp(μ,ν) � WA
p [d](μ,ν). ��

Corollary 5.20 WA
p [d] = OTp for S = R

2
< ⊂ R

2 and A = R
2\S = R

2
�.
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Proof LetX = R
2 andA = X\S = R2

�. The map r : X → S = R
2
� given by r(x) = x

for x ∈ R
2
� and r((x,y)) = (x+y

2 , x+y
2 ) for (x,y) ∈ R

2
> is a 1-Lipschitz retraction

of X onto S with r(A) ⊂ ∂A = Δ. The result then follows from Proposition 5.19. ��
The classical transportation problem can be seen as the special case of the partial

transportation problem in which the subset A is taken to be empty. The Wasserstein
distance is then just the partial optimal transportation distance for the metric pair
(X,d, ∅). In this case, Adm(μ,ν) reduces to the set of all measures π supported on
X×X which satisfy π(E×X) = μ(E) and π(X×E) = ν(E) for all Borel sets E ⊂ X,
i.e. Adm(μ,ν) = Π(μ,ν).

In the case that X is R2 equipped with a Euclidean distance and A = R
2
�, Divol

and Lacombe have observed conversely that the partial optimal transport distance can
be formulated in terms of the classical Wasserstein distance.

Proposition 5.21 (Divol and Lacombe 2021, Proposition 3.7) Let μ,ν be finite Radon
measures supported on R

2
< which satisfy (5.4). Let t � μ(R2

<) + ν(R2
<). Define

measures on the quotient space R2/A by μ̃ = μ+ (t−μ(R2
<))δA and ν̃ = ν+ (t−

ν(R2
<))δA (here, we are viewing μ and ν as measures on the quotient space). Then

OTp(μ,ν) = Wp[d](μ̃, ν̃).

Denote by M+
p,A,fin(X) the submonoid of finite measures in M+

p,A(X), and

let M+
p,fin(X,A) = M+

p,A,fin/M+
fin(A). The preceding proposition together with

Kantorovich-Rubinstein duality imply the following.

Corollary 5.22 OT1, and hence W
R
2
�

1 [d], is translation invariant on M+
1,R2

�,fin
(R2).

Proof Let μ,ν,κ be finite measures supported on R
2
< which satisfy (5.4), which we

identify as elements of M+
1,,R2

�.fin
(R2). Let r � 2(μ(R2

<) + ν(R2
<) + κ(R2

<)), let

A := R
2
�, and let μ̃ = μ + (r/2 − μ(R2

<))δA, ν̃ = ν + (r/2 − ν(R2
<))δA, and

κ̃ = κ+(r/2−κ(R2
<))δA. Then by Proposition 5.21, OT1(μ+κ,ν+κ) = W1[d](μ̃+

κ̃, ν̃ + κ̃). By Kantorovich-Rubinstein duality, W1[d](μ̃ + κ̃, ν̃ + κ̃) = W1[d](μ̃, ν̃)
and again by Proposition 5.21,W1[d](μ̃, ν̃) = OT1(μ,ν), and thus OT1 is translation

invariant. Then W
R
2
�

1 [d] is translation invariant by Corollary 5.20. ��
Corollary 5.23 W1[d] extends to a unique metric on the Grothendieck group
K(M+

1,fin(R
2,R2

�)).

Proof By Corollary 5.22, W1[d] is translation invariant on M+
1,fin(R

2,R2
�). Hence,

by Proposition 3.1, (M+
1,fin(R

2,R2
�),W1[d],+) is a TICL monoid and result follows

from Proposition 3.11. ��

5.5 Persistence diagrams as Radonmeasures

Let (X,d,A) be a metric pair. Recall that there is a canonical embedding from X →
D(X) given by sending x ∈ X to the indicator function on X. Similarly, there is a
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canonical embedding fromX → M+
fin(X) given by sending x ∈ X to theDiracmeasure

onx. This embedding extends by linearity to a canonical embeddingD(X) → M+
fin(X).

This embedding induces a canonical embedding D(X,A) → M+
fin(X,A). That is,

persistence diagrams may be viewed as special cases of Radon measures. Similarly,
there is an embedding K(X) → Mfin(X) of virtual persistence diagrams into the
space of finite signed Radon measures, and this induces an embedding K(X,A) →
Mfin(X,A).

Proposition 5.24 Let α,β ∈ D(X). Under the canonical embedding D(X) →
M+

fin(X), we may view α and β as measures. Then Wp[d](α,β) = Wp[d](α,β).
Therefore,wehavea canonical isometric embedding (D(X,A),Wp[d])→(M+

fin(X,A),
WA

p [d]). Similarly, there is an isometric embedding (K(X,A)),W1[d]) → (Mfin(X,A),
W1[d]).

Proof By the fundamental theorem of linear programming together with the Birkhoff-
von Neumann theorem, there is a solution to the transportation problem for α and β

(viewed asmeasures) given by amatching ofα andβ (viewed as persistence diagrams).
The last statement then follows immediately from the definition of the extension to
the Grothendieck group (Definition 3.7). ��

6 Infinite persistence diagrams: the Cauchy completion ofD(X,A)

As we saw in Sect. 4, the space of finite persistence diagrams has a nice description in
terms of the free commutative monoid. While persistence diagrams arising in practice
are finite, these are sometimes finite approximations of infinite persistence diagrams.
Following the works of Mileyko et al. (2011) and Blumberg et al. (2014), in this sec-
tion we describe a family of infinite persistence diagrams satisfying a certain finiteness
condition in terms of the Cauchy completion of the Lipschitz monoid of finite per-
sistence diagrams. The main contribution of the work in this section is threefold: we
generalize the results of those papers to pairs of metric spaces, show that the monoid
operation of the space of finite diagrams extends to the Cauchy completion, and state
a corresponding universal property for the resulting space.

6.1 Cauchy completion of spaces of diagrams

Let (X,d,A) be a metric pair, let p ∈ [1,∞], and consider the CL monoid
(D(X,A),Wp[d],+). We will describe the Cauchy completion of the metric space
(D(X,A),Wp[d]) and show that the above monoid operation extends to this comple-
tion so as to again obtain a CL monoid. We will first introduce a definition.

Definition 6.1 For a metric space (X,d), let ∼0 denote the equivalence relation on X

given by x ∼0 y ⇐⇒ d(x,y) = 0. The corresponding quotient space is denoted
(X/∼0, d̃).

If (M,d,+) is a CL monoid, then addition descends to the quotient (M/∼0, d̃) so
as to obtain a CL monoid. Indeed, define [x]+̃[y] = [x+y]. This is well-defined since
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if [x] = [x ′] and [y] = [y ′] thend(x+y, x ′+y ′) � ‖+‖Lip(d(x, x ′)+d(y,y ′)) = 0.
Moreover, it is easily verified that ‖+̃‖Lip = ‖ + ‖Lip.

Definition 6.2 Let (X,d) be a metric space. Let X̃ denote the set of Cauchy sequences
in X. Define an equivalence relation ∼ on X̃ by declaring that (xn) ∼ (yn) ⇐⇒
limn→∞ d(xn,yn) = 0. Let X = X̃/ ∼ and let [xn] denote the equivalence
class of (xn) under ∼. We define a metric d on X by setting d([xn], [x ′

n]) =
limn→∞ d(xn, x ′

n). The metric space (X,d) is the Cauchy completion of (X,d).
The Cauchy completion of a metric pair (X,d,A) is defined to be (X,d,A/∼0).

The Cauchy completion (X,d) is complete and contains a dense isometric copy of
(X/∼0, d̃), the image of the map i : X → Xwhich sends x ∈ X to the equivalence class
of the constant sequence at x. If X satisfies the separation axiom then i is an isometric
embedding of X into X.

We record the following lemma for later reference.

Lemma 6.3 The canonical map i : X → X is an epimorphism in Lip.

Proof Let f,g : X → Z be Lipschitz and hence continuous. Since i(X) is dense, f and
g are completely determined by their values on i(X). Hence, if f◦ i = g◦ i then f = g

and thus i is an epimorphism. ��
We note, however, that i is a monomorphism if and only ifX satisfies the separation

axiom.WhenX does satisfy the separation axiom, i is an example of amorphismwhich
is both monic and epic but is not necessarily an isomorphism unless X is complete to
begin with. The following lemma shows that elements of the Cauchy completion can
be obtained as limits of constant sequences approximating them.

Lemma 6.4 Let (X,d)beametric spacewithCauchy completion (X,d)and let i : X →
X be the canonical map. For an element [xn] ∈ X we have [xn] = limm→∞ i(xm).

Proof Given [xn] ∈ X, we have limm→∞ d(i(xm), [xn]) = limm→∞ limn→∞

d(xm, xn) = 0, since (xn) is a Cauchy sequence, and hence limm→∞ i(xm) = [xn].
��

The Cauchy completion, together with the canonical inclusion i : X → X, satisfies
the following “enriched” universal property.

Theorem 6.5 Let (X,d) be a metric space. LetLipcpl,sep denote the full subcategory of
Lip whose objects are complete metric spaces satisfying the separation axiom. Then

(1) For any (N, ρ) ∈ Lipcpl,sep and Lipschitz map φ : X → N, there is a unique
Lipschitz map φ : X → N such that φ ◦ i = φ; and

(2) ‖φ‖Lip = ‖φ‖Lip.
Proof (1) Let φ : X → N be a given Lipschitz map and define φ : X → N by
φ([xn]) = limn→∞ φ(xn). Since φ is Lipschitz, Cauchy sequences are sent to
Cauchy sequences. Since N is complete, the limit defining φ exists and is unique
since N satisfies the separation axiom. Moreover, φ(i(x)) = limn→∞ φ(x) = φ(x)
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for all x ∈ X so that φ ◦ i = φ. Suppose ψ : X → N is Lipschitz and ψ ◦ i = φ. Then
by Lemma 6.4, we have

ψ([xn]) = ψ
(

lim
m→∞

i(xm)
)
= lim

m→∞

ψ(i(xm)) = lim
m→∞

φ(xm),

so that ψ = φ.
(2) We have

ρ(φ([xn]),φ([x ′
n])) = ρ

(
lim

n→∞

φ(xn), lim
n→∞

φ(x ′
n)

)
= lim

n→∞

ρ(φ(xn),φ(x ′
n))

� ‖φ‖Lip lim
n→∞

d(xn, x
′
n) = ‖φ‖Lipd([xn], [x

′
n]),

so thatφ is Lipschitzwith ‖φ‖Lip � ‖φ‖Lip.On the other hand, ‖φ‖Lip = ‖φ◦i‖Lip �
‖φ‖Lip‖i‖Lip = ‖φ‖Lip, since ‖i‖Lip = 1, and thus ‖φ‖Lip = ‖φ‖Lip. ��

The analogous result holds for metric pairs (X,d,A) and its Cauchy completion
(X,d,A/∼0), with Lipschitz maps replaced with Lipschitz maps of pairs.

Corollary 6.6 If (X̂, d̂) together with a Lipschitz map u : X → X̂ satisfy both conclu-
sions of Theorem 6.5, then (X̂, d̂) and (X,d) are isometric.

Proof Since i : X → X is Lipschitz, there exists a unique Lipschitz map î : X̂ → X

such that î ◦ u = i, and ‖î‖Lip = ‖i‖Lip = 1. Similarly, there is a unique Lipschitz
map u : X → X̂ such that u ◦ i = u, with ‖u‖Lip = ‖u‖Lip. Since idX̂ is the
unique Lipschitz map such that idX̂ ◦ u = u, we have ‖u‖Lip = ‖idX̂‖Lip = 1. Thus
‖u‖Lip = ‖u‖Lip = ‖idX̂‖Lip = 1.

Now, again by uniqueness, î ◦ u = idX and u ◦ î = idX̂. Since î and u are both
1-Lipschitz, they give the desired isometry. ��
Corollary 6.7 The Cauchy completion of (X×X,d+d) is (up to isometry) (X×X,d+
d).

Proof Let i : X → X be the canonical inclusion. Then i × i : X × X → X × X

is easily seen to satisfy both conclusions of Theorem 6.5. Hence by Corollary 6.6,
(X × X,d + d) is (up to isometry) the Cauchy completion of (X × X,d + d). ��

We can now see formally that addition on a Lipschitz monoid extends to its Cauchy
completion.

Proposition 6.8 Let (M,d,+) be a CL monoid. Then the Cauchy completion (M,d)
admits a CL monoid structure which restricts to that ofM/∼0 on the isometric embed-
ding of M/∼0 in M. Moreover, the canonical inclusion i : M → M is a monoid
homomorphism, and if d is translation invariant then so is d.

Proof Since M is a CL monoid, the map + : M × M → M is Lipschitz. By Corol-
lary 6.7, the Cauchy completion of (M × M,d + d) is (M × M,d + d), and by
the universal property of the Cauchy completion, there is a unique Lipschitz map
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+ : M×M → M such that+ ◦ (i× i) = i ◦+ (here, we denote the operations on M

and M both by +). The fact that + makes (M,d,+) a CL monoid is easily verified.
Moreover, the equality + ◦ (i × i) = i ◦+means exactly that i(x) + i(y) = i(x+ y)
and so i is an embedding of M/∼0 as a submonoid of M. We can then compute
addition in M explicitly as follows. For [xn], [yn] ∈ M we have [xn] + [yn] =
limn i(xn) + limn i(yn) = limn i(xn) + i(yn) = limn i(xn + yn) = [xn + yn].
Now to see that d is translation invariant on M, if [xn], [yn], [zn] ∈ X then we have
d([xn]+[zn], [yn]+[zn]) = limn→∞ d(xn+zn,yn+zn) = limn→∞ d(xn,yn) =
d([xn], [yn]). ��

The next proposition shows that the unique Lipschitz map provided by universality
of the Cauchy completion is a monoid homomorphism when the given Lipschitz map
is a monoid homomorphism between CL monoids.

Proposition 6.9 Let (M,d,+) be a given CL monoid. Suppose that (N, ρ,+) is any
other CL monoid and that φ : M → N is a Lipschitz monoid homomorphism. Then
the unique Lipschitz mapφ : M → N provided by Theorem 6.5 is a monoid homomor-
phism whenM is equipped with the CL monoid structure provided by Proposition 6.8.

Proof Consider the following diagram in Lip.

M × M N × N

M × M

M

M N

φ×φ

i×i

+M +N

φ×φ

+M

φi

φ

The outer square commutes since φ is a monoid homomorphism, the upper and lower
triangles commute by universality of the Cauchy completion, and the left trapezoid
commutes by construction (Proposition 6.8). It follows that+N ◦ (φ×φ) ◦ (i× i) =
φ◦+M◦(i×i). Since i×i is an epimorphism, it follows that+N◦(φ×φ) = φ◦+M,
which is precisely the statement that φ respects the monoid operations. Moreover,
φ(0) = φ(i(0)) = φ(0) = 0 and thus φ is a monoid homomorphism. ��

The following lemma shows that formal sums of Cauchy sequences are Cauchy
sequences in the space of persistence diagrams.

Lemma 6.10 Let (X,d,A) be a metric pair and let (xi
n)n be Cauchy sequences in X

for 1 � i � k. Then the sequence (x1n+ · · ·+xk
n)n is a Cauchy sequence inD(X,A).

Proof Since the inclusion (X,d) ↪→ (D(X,A),Wp[d]) is Lipschitz, each (xi
n)n is a

Cauchy sequence inD(X,A), and since addition inD(X,A) is Lipschitz, the term-wise
sum of these sequences is also a Cauchy sequence in D(X,A). ��
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We now consider an extension of the space of finite persistence diagram considered
earlier to a space of persistence diagrams allowing possibly countably infinitely many
summands.

Definition 6.11 For a set X, let D(X) = {f : X → N | f(x) = 0 for all but countably
many x ∈ X}.

Clearly D(X) is a commutative monoid with monoid operation given by pointwise
addition of functions and identity the zero function. Moreover, if A ⊂ X then we can
identify D(A) with a submonoid of D(X). Elements of D(X) can also be viewed as
countable formal sums of elements of X. There is a canonical map i : X → D(X)
which, when elements of D(X) are viewed as formal sums, is given by x �→ x.

Definition 6.12 Let (X,d,A) be a metric pair. Define the space of countable persis-
tence diagrams on X relative to A by D(X,A) = D(X)/D(A). We will also refer to
elements of D(X,A) as countable persistence diagrams on (X,A).

As with finite persistence diagrams, we have a monoid isomorphism D(X,A) ∼=
D(X \ A). Effectively, the existence of this isomorphism shows that every element of
the quotient D(X)/D(A) has a unique representative which takes value zero on all of
A, i.e., a formal sum with values in X \ A. We identify D(X,A) as a submonoid of
D(X,A) in the obvious way.

The Wasserstein distances are easily extended to D(X,A).

Definition 6.13 Let α,β ∈ D(X,A). We call σ ∈ D(X × X) a matching between α

and β if
∑

z∈X σ(x, z) = α(x) and
∑

z∈X σ(z, x) = β(x) for all x ∈ X\A. For
p ∈ [1,∞], the p-cost of σ is defined by

∥∥(d(xi, x ′
i))i∈I

∥∥
p
, where I is a countable

set such that σ =
∑

i∈I(xi, x ′
i). The p-Wasserstein distance between α and β is then

defined to be

Wp[d](α,β) = inf
σ

Costp[d](σ),

the infimum being taken over all matchings between α and β.

Like the finite Wasserstein distance, Wp is p-subadditive and translation sub-
invariant, the proofs being essentially identical to those given in the finite case [see
Bubenik and Elchesen (2021, Lemma 4.17) and Lemma 4.4 for the respective proofs
in the finite case].

In order to understand the Cauchy completion of the space of finite persistence
diagrams in our framework, we will consider the following subspace of D(X,A).
First, we need a preliminary definition. For α ∈ D(X,A), let α − D(X,A) = {β ∈
D(X,A) | α = β+ γ for some γ ∈ D(X,A)}. In words, α−D(X,A) is the set of all
countable persistence diagrams on (X,A) which differ from α by a finite persistence
diagram on (X,A).

Definition 6.14 Let (X,d,A) be a metric pair and let p ∈ [1,∞). We define

Dp(X,A) = {α ∈ D(X,A) | Wp[d](β, 0) < ∞ for some β ∈ α − D(X,A)}.

123



Virtual persistence diagrams, signed measures… 463

(6.1)

For each ε > 0 let Uε = {x ∈ X | d(x,A) > ε}. For p = ∞ we define

D∞(X,A) =

⎧

⎨

⎩

α ∈ D(X,A) |
∑

x∈Uε

α(x) < ∞ for all ε > 0

⎫

⎬

⎭

. (6.2)

For p ∈ [1,∞), elements of Dp(X,A) should be thought of as those countable
persistencediagramson (X,A)which, after removing atmost finitelymany summands,
have finite Wasserstein distance to the zero diagram. Elements of D∞(X,A) are those
diagrams for which there are only finitely many summands at a given positive distance
away fromA. Evidently,Dp(X,A) is a submonoid ofD(X,A) for all p ∈ [1,∞]. The
inclusion of D(X,A) into D(X,A) is in fact an inclusion D(X,A) ⊂ Dp(X,A). The
following lemma shows that Dp(X,A) ⊂ D∞(X,A) for all p � 1.

Lemma 6.15 Let (X,d,A) be a metric pair and let p ∈ [1,∞]. Then Dp(X,A) ⊂
D∞(X,A).

Proof Let p ∈ [1,∞) and let α ∈ Dp(X,A). Then there is some β ∈ α − D(X,A)

such that Wp(β, 0) < ∞. Let ε > 0. Since Wp(β, 0) � ((
∑

x∈Uε
β(x))εp)

1
p ,

∑

x∈Uε
β(x) < ∞. Sinceβ ∈ α−D(X,A), there is someγ ∈ D(X,A) such thatα =

β + γ. Since
∑

x∈X\A γ(x) < ∞,
∑

x∈Uε
γ(x) < ∞. Therefore

∑

x∈Uε
α(x) =

∑

x∈Uε
β(x) +

∑

x∈Uε
γ(x) < ∞ and thus α ∈ D∞(X,A). ��

The following result was first proved for classical persistence diagrams for p ∈
[1,∞) (Mileyko et al. 2011) and for bar codes for p = ∞ (Blumberg et al. 2014).
With a few changes, these proofs generalize to metric pairs (Bubenik and Hartsock
2021).

Proposition 6.16 (Bubenik and Hartsock 2021) Let (X,d,A) be a metric pair and fix
p ∈ [1,∞]. Then (Dp(X,A),Wp[d]) is complete if and only if the quotient space
(X/A,d1) is complete.

This result will allow us to completely describe the Cauchy completion of the space
of persistence diagrams on ametric pair (X,d,A).Wewill need the following lemmas.

Lemma 6.17 Let (X,d,A) be a metric pair, with Cauchy completion (X,d,A/∼0).
Let p ∈ [1,∞]. Consider the spaces (D(X,A),Wp[d]) and (Dp(X,A/∼0),Wp[d]).

Then for
∑

∞

j=1[x
j
n],

∑
∞

i=j[y
j
n] ∈ Dp(X,A/∼0), we have

Wp[d]

⎛
⎝

∞
∑

j=1

[
xj

n

]
,

∞
∑

j=1

[
yj

n

]
⎞
⎠ = lim

N→∞

lim
m→∞

Wp[d]

⎛
⎝

N
∑

j=1

xj
m,

N
∑

j=1

yj
m

⎞
⎠ .
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Proof Let
∑

∞

j=1[x
j
n],

∑
∞

j=1[y
j
n] ∈ Dp(X,A/ ∼0) be given. By translation sub-

invariance, we have

Wp[d]

⎛
⎝

∞
∑

j=1

[
xj

n

]
,

N
∑

j=1

[
xj

n

]
⎞
⎠ � Wp[d]

⎛
⎝

∞
∑

j=N+1

[
xj

n

]
, 0

⎞
⎠ .

By the definition of Dp(X,A/∼0), there is some β ∈ ∑
∞

j=1[x
j
n] − D(X,A/∼0)

such that Wp[d](β, 0) < ∞. Hence we have that Wp[d](
∑

∞

j=M[x
j
n], 0) < ∞ for

sufficiently large M. Therefore, for each ε > 0, Wp[d](
∑

∞

j=N+1[x
j
n], 0) < ε for

sufficiently large N and hence Wp[d](
∑

∞

j=N+1[x
j
n], 0) → 0 as N → ∞. Therefore

∑N
i=j[x

j
n] → ∑

∞

j=1[x
j
n] as N → ∞.

Now note that the canonical map i : X → X induces a distance preserving map
(D(X,A),Wp[d]) → (D(X,A/∼0),Wp[d]). Moreover, limm→∞ i(x

j
m) = [x

j
n] for

all j ∈ N (Lemma 6.4). Then

lim
N→∞

lim
m→∞

Wp[d]

⎛
⎝

N
∑

j=1

xj
m,

N
∑

j=1

yj
m

⎞
⎠

= lim
N→∞

lim
m→∞

Wp[d]

⎛
⎝

N
∑

j=1

i
(
xj

m

)
,

N
∑

i=1

i
(
yj

m

)
⎞
⎠

= Wp[d]

⎛
⎝ lim

N→∞

lim
m→∞

N
∑

j=1

i
(
xj

m

)
, lim
N→∞

lim
m→∞

N
∑

j=1

i
(
yj

m

)
⎞
⎠

= Wp[d]

⎛
⎝

∞
∑

j=1

[
xj

n

]
,

∞
∑

j=1

[
yj

n

]
⎞
⎠ ,

the second equality coming from the continuity of the metric. This completes the
proof. ��

For α ∈ Dp(X,A) and ε > 0, let Uε(α) be given by Uε(α)(x) = α(x) if
d(x,A) > ε and Uε(α)(x) = 0 otherwise. That is, Uε(α) =

∑

x∈Uε
α(x). By

Lemma 6.15, Uε(α) ∈ D(X,A). Let Lε(α) ∈ Dp(X,A) be given by Lε(α)(x) =
α(x) if d(x,A) � ε and Lε(α)(x) = 0 otherwise.

Note that α = Lε(α)+Uε(α). Moreover, by definition ofDp(X,A), we have that
Wp(Lε(α), 0) → 0 as ε → 0. Thus, by translation subinvariance, Wp(α,Uε(α)) =
Wp(Lε(α) + Uε(α),Uε(α)) � Wp(Lε(α), 0) and hence Wp(α,Uε(α)) → 0 as
ε → 0. Moreover, it is straightforward to see that for α,β ∈ Dp(X,A), α = β if and
only if Uε(α) = Uε(β) for all ε > 0.

Lemma 6.18 Let (X,d,A) be a separable metric pair and let p ∈ [1,∞]. The CL
monoid (Dp(X,A),Wp[d]) satisfies the separation axiom.
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Proof Let α,β ∈ Dp(X,A) and suppose that Wp(α,β) = 0. Then

Wp(Uε(α),Uε(β)) � Wp(Uε(α),α) + Wp(α,β) + Wp(β,Uε(β))

= Wp(Uε(α),α) + Wp(β,Uε(β))

and hence Wp(Uε(α),Uε(β)) → 0 as ε → 0. Suppose that Uε0(α) �= Uε0(β) for
some ε0 > 0. Then there is exists an x ∈ Xwith d(x,A) > ε0 such that α(x) �= β(x).
Suppose without loss of generality thatα(x) > β(x). For simplicity, assumeα(x) = 1
and β(x) = 0. The general argument is similar. Let δ = min(min{d(x,y) | y �=
x, β(y) �= 0},d(x,A) − ε0). We claim that W∞(α,β) � δ. To see this, suppose
that W∞(α,β) < δ, and let σ ∈ D(X × X) be a matching between α and β with
Cost∞(σ) < δ. Then, since d(x,A) � δ+ ε0 > δ, there exists y ∈ X with β(y) > 0
and σ(x,y) > 0. Therefore d(x,y) < δ. But no such point can exist by definition of
δ, and we have reached a contradiction. Thus Wp(α,β) � W∞(α,β) � δ > 0. But
now this contradicts our assumption that Wp(α,β) = 0. Hence Uε(α) = Uε(β) for
all ε > 0 and thus α = β. ��
Corollary 6.19 Let (X,d,A) be a metric pair and let p ∈ [1,∞]. Then the CL monoid
(Dp(X,A/∼0),Wp[d]) satisfies the separation axiom.

Proof By the definition of theCauchy completion, (X,d,A/∼0) satisfies the separation
axiom, and so the result follows from Lemma 6.18. ��
Theorem 6.20 Letp ∈ [1,∞]. Then (Dp(X,A/∼0),Wp[d]) is the Cauchy completion
of (D(X,A),Wp[d]).

Proof Wewill useCorollary 6.6 to establish the result. Let i : X → X denote the canon-
ical map and define j : D(X,A) → Dp(X,A/∼0) by

∑M
k=1 xk �→ ∑M

k=1 i(xk). We
will verify that (Dp(X,A/∼0),Wp[d]) together with j satisfy the universal prop-
erty of the Cauchy completion (Theorem 6.5). Since X is complete, so is X/(A/∼0).
Thus, by Proposition 6.16, (Dp(X,A/ ∼0),Wp[d]) is complete. By Lemma 6.19,
(Dp(X,A/∼0),Wp[d]) satisfies the separation axiom as well.

Let (N, ρ) be a complete metric space satisfying the separation axiom and let
φ : D(X,A) → N be Lipschitz. Define φ : (Dp(X,A/∼0),Wp[d]) → N by setting

φ

(
∞

∑

k=1

[
xk

n

]
)

= lim
M→∞

lim
n→∞

φ

(
M
∑

k=1

xk
n

)
.

To see that φ is well-defined, first note that, by Lemma 6.10, since each (xk
n)n is a

Cauchy sequence in X, for each M we have that (
∑M

k=1 xk
n)n is a Cauchy sequence

in D(X,A). Since φ is Lipschitz, (φ(
∑M

k=1 xk
n))n is a Cauchy sequence in N and

hence converges by completeness ofN. Further, suppose that, for each k, [xk
n] = [yk

n].
Then limn→∞ d(xk

n,y
k
n) = 0 for all k, and for all M we have,

ρ

(
lim

n→∞

φ

(
M
∑

k=1

xk
n

)
, lim
n→∞

φ

(
M
∑

k=1

yk
n

))
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= lim
n→∞

ρ

(
φ

(
M
∑

k=1

xk
n

)
,φ

(
M
∑

k=1

yk
n

))

� ‖φ‖Lip lim
n→∞

Wp[d]

(
M
∑

k=1

xk
n,

M
∑

k=1

yk
n

)
� ‖φ‖Lip lim

n→∞

M
∑

k=1

d
(
xk

n,y
k
n

)
= 0.

Since (N, ρ) satisfies the separation axiom, we thus have limn→∞ φ(
∑M

k=1 xk
n) =

limn→∞ φ(
∑M

k=1 yk
n). Finally, consider the sequence

(
limn→∞ φ(

∑M
k=1 xk

n)
)

M
in N. For an ordered pair M < K we have

ρ

(
lim

n→∞

φ

(
M
∑

k=1

xk
n

)
, lim
n→∞

φ

(
K

∑

k=1

xk
n

))

= lim
n→∞

ρ

(
φ

(
M
∑

k=1

xk
n

)
,φ

(
K

∑

k=1

xk
n

))

� ‖φ‖Lip lim
n→∞

Wp[d]

(
M
∑

k=1

xk
n,

K
∑

k=1

xk
n

)
� ‖φ‖Lip lim

n→∞

∥∥∥(
d

(
xk

n,A
))K

k=M+1

∥∥∥
p
.

Since
∑

∞

k=1[x
k
n] ∈ Dp(X,A/∼0),

∥∥(d(xk
n,A))∞k=L

∥∥
p

< ∞ for sufficiently large L.
Hence

lim
n→∞

∥∥∥(
d
(
xk

n,A
))K

k=M+1

∥∥∥
p

=

∥∥∥∥
(

lim
n→∞

d
(
xk

n,A
))K

k=M+1

∥∥∥∥
p

=
∥∥∥(

d
([

xk
n

]
,A/∼0

))K
k=M+1

∥∥∥
p

→ 0,

asM,K → ∞. Thus
(
limn→∞ φ(

∑M
k=1 xk

n)
)

M
is a Cauchy sequence in (N, ρ) and

hence converges, which shows that φ is well-defined.
Nowφ(j(x1+ · · ·+xn)) = φ(i(x1)+ · · ·+ i(xn)) = φ(x1+ · · ·+xn) since each

i(xk) is just the constant Cauchy sequence on xk. Thus φ ◦ j = φ. To see that φ is
unique, suppose thatψ : (Dp(X,A/ ∼0) → N is a Lipschitz map such thatψ◦ j = φ.
Then

ψ

(
∞

∑

k=1

[
xk

n

]
)

= ψ

(
lim

M→∞

M
∑

k=1

[
xk

n

]
)

= lim
M→∞

ψ

(
M
∑

k=1

[
xk

n

]
)

= lim
M→∞

ψ

(
lim

n→∞

M
∑

k=1

i
(
xk

n

)
)

= lim
M→∞

lim
n→∞

ψ

(
M
∑

k=1

i
(
xk

n

)
)

= lim
M→∞

lim
n→∞

ψ

(
j

(
M
∑

k=1

xk
n

))
= lim

M→∞

lim
n→∞

φ

(
M
∑

k=1

xk
n

)
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= φ

(
∞

∑

i=1

[
xi

n

]
)
,

and thus ψ = φ.
Lastly, we will show that ‖φ‖Lip = ‖φ‖Lip. We have

ρ(φ

(
∞

∑

i=1

[xi]n

)
,φ

(
∞

∑

i=1

[yi]n

)

= ρ

(
lim

N→∞

lim
n→∞

φ

(
N

∑

i=1

xi
n

)
, lim
N→∞

lim
n→∞

φ

(
N

∑

i=1

yi
n

))

= lim
n→∞

lim
N→∞

ρ

(
φ

(
N

∑

i=1

xi
n

)
,φ

(
N

∑

i=1

yi
n

))

� ‖φ‖Lip lim
n→∞

lim
N→∞

Wp[d]

(
N

∑

i=1

xi
n,

N
∑

i=1

yi
n

)

= ‖φ‖LipWp[d]

(
∞

∑

i=1

[xi]n,
∞

∑

i=1

[yi]n

)
,

the last equality coming from Lemma 6.17. Thus ‖φ‖Lip � ‖φ‖Lip. On the other
hand, we have ‖φ‖Lip = ‖φ◦ j‖Lip � ‖φ‖Lip‖j‖Lip = ‖φ‖Lip since ‖j‖Lip = 1. Thus
‖φ‖Lip = ‖φ‖Lip, completing the proof. ��

6.2 Universal property for the Cauchy completion of diagrams

In this section we extend the universality result of Bubenik and Elchesen (2021) to
the Cauchy completion of the space of persistence diagrams.

Theorem 6.21 (Universal Property for (Dp(X,A),Wp[d),+)) Let (X,d,A) be a
metric pair and let p ∈ [1,∞]. Let (N, ρ,+, 0) be a complete CL monoid satisfying
the separation axiom, and let φ : X → N be Lipschitz and satisfy φ(A) = {0}. Then

(1) There is a unique Lipschitz monoid homomorphism φ̃ : (Dp(X,A),Wp[d]) →
(N, ρ) such that φ = φ̃ ◦ ι, where ι : X → Dp(X,A) denotes the composition
X → D(X,A) → Dp(X,A); and

(2) ‖φ̃‖Lip = ‖φ‖Lip.

Proof Let δ : X → D(X,A) denote the canonical inclusion of X to its space of
persistence diagrams and let i : D(X,A) → Dp(X,A) denote the canonical map of
D(X,A) to itsCauchy completion.By the universal property of the space of persistence
diagrams (Bubenik and Elchesen 2021), there is a unique monoid homomorphism
φ ′ : D(X,A) → Nwithφ ′(A) = {0} and such thatφ ′ ◦δ = φ. Then by the universal
property of the Cauchy completion (Theorem 6.5), there is a unique map Lipschitz
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map φ̃ : Dp(X,A) → N such that φ̃ ◦ i = φ ′. Then φ̃ ◦ ι = φ̃ ◦ i ◦ δ = φ ′ ◦ δ = φ

and ‖φ̃‖Lip = ‖φ ′‖Lip = ‖φ‖Lip. Moreover, by Proposition 6.9, φ̃ is a monoid
homomorphism, completing the proof. ��

7 Universal Banach spaces

Wewill show that every pointedmetric space has a canonical embedding into a Banach
space. This universal Banach space has been constructed independently many times
(Arens and Eells 1956; Flood 1984; Pestov 1986; Godefroy and Kalton 2003; Weaver
2018). It is sometimes referred to as the Arens-Eells space (Weaver 2018) or the
Lipschitz-free Banach space (Godefroy and Kalton 2003). We present a construction
based on the partial optimal transport problem, which we formulate in the language
of linear programming.

In this section we restrict to metric spaces (X,d) that satisfy the separation and
finiteness conditions. That is, our notion of metric spaces agrees with the usual one.
In particular, Lip∗ will denote the category whose objects are pointed metric spaces
satisfying the separation and finiteness conditions and whose morphisms are pointed
Lipschitz maps. Also, all vector spaces will be real vector spaces.

7.1 Normed vector spaces

Let NVS denote the category whose objects are normed vector spaces (V , ‖ ‖) and
whosemorphisms are bounded linear operators,T : (V , ‖‖V ) → (W, ‖ ‖W), i.e. linear
maps T : V → W such that there exists aK for which ‖Tv‖W � K ‖v‖V for all v ∈ V .
For a bounded linear operator T : V → W, let ‖T‖op denote the operator norm of T ,
which equals the infimum of all K such that ‖Tv‖W � K ‖v‖V for all v ∈ V . There
is a forgetful functor U : NVS → Lip∗ given by U(V , ‖ ‖) = (V ,d‖ ‖, 0), where
d‖ ‖(v,w) = ‖v − w‖, and U(T : (V , ‖ ‖V ) → (W, ‖ ‖W)) = T : (V ,d‖ ‖V

, 0) →
(W,d‖ ‖W

, 0). Note that ‖T‖Lip = ‖T‖op.
Given a set X, let V(X) denote the free vector space on X of formal R-linear

combinations of elements of X. That is, V(X) is the set of functions from X to R

with finite support, together with pointwise addition and scalar multiplication. By
identifying x ∈ X with the indicator function on x, we may write each μ ∈ V(X)
as μ =

∑n
i=1 μixi for some n � 0, μi ∈ R \ 0, and distinct xi ∈ X. For a

pointed set (X, x0), let V(X, x0) = V(X)/V(x0). Define ρ : V(X) → V(X \ x0)
by ρ(μ) = μ|X\x0

, or equivalently, ρ(
∑n

i=0 μixi) =
∑n

i=1 μixi. Then ρ induces
a well-defined map ρ : V(X, x0) → V(X \ x0). Define ι : V(X \ x0) → V(X)
by ι(

∑n
i=1 μixi) =

∑n
i=0 μixi, where μ0 = −

∑n
i=1 μi. Then ι induces a map

ι : V(X \ x0) → V(X, x0) and ρ and ι are inverse maps. Define r : V(X, x0) → V(X)
by r = ι ◦ ρ. Then for μ ∈ V(X, x0), r chooses a canonical representative

∑n
i=0 μixi

with
∑n

i=0 μi = 0. A set map f : X → Y extends to a linear map f : V(X) → V(Y)
by f(

∑n
i=1 μixi) =

∑n
i=1 μif(xi). Furthermore, a pointed set map f : (X, x0) →

(Y,y0) extends to a linear map f : V(X, x0) → V(Y,y0).
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Definition 7.1 Given (X,d, x0) ∈ Lip∗, we define theWasserstein norm on V(X, x0)
as follows. Forμ ∈ V(X, x0), consider r(μ) =

∑n
i=0 μixi with

∑n
i=0 μi = 0. Define

‖μ‖W1[d] to be the solution of the linear programming problem

minimize
n

∑

i=0

n
∑

j=0

πijd(xi, xj)

subject to
n

∑

k=0

(πik − πki) = μi, i = 0, . . . ,n

πij � 0, i, j = 0, . . . ,n.

(7.1)

Call π =
∑n

i=0
∑n

j=0 πi,j(xi, xj) ∈ V(X × X) that satisfies the constraint of (7.1)
a coupling for μ and call

∑n
i=0

∑n
j=0 πijd(xi, xj) the cost of the coupling, denote

Cost1[d](π).

Proposition 7.2 For (X,d, x0) ∈ Lip∗, the Wasserstein norm ‖ ‖W1[d] is a norm on
V(X, x0).

Proof For subadditivity, consider μ,μ ′ ∈ V(X, x0) with r(μ) =
∑n

i=0 μixi and

r(μ ′) =
∑n ′

i=0 μ ′
ix

′
i, where x ′

0 = x0. Let ν = μ + μ ′. Then r(ν) =
∑n+n ′

i=0 νixi,
where for i = 1, . . . ,n, νi = μi, for i = 1, . . . ,n ′, νn+i = μ ′

i and xn+i = x ′
i, and

ν0 = μ0+μ ′
0. Let (πij)

n
i,j=0 be a coupling for a solution to (7.1) for μ. Let (π

′
ij)

n
i,j=0

be a coupling for a solution to (7.1) for μ ′. Define

τ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

π00 + π ′
00 π01 · · · π0n π ′

01 · · · π ′
0n ′

π10 π11 · · · π1n 0 · · · 0
...

...
. . .

...
...

. . .
...

πn0 πn1 · · · πnn 0 · · · 0
π ′
10 0 · · · 0 π ′

11 · · · π ′
1n ′

...
...

. . .
...

...
. . .

...
π ′

n ′0 0 · · · 0 π ′
n ′1 · · · π ′

n ′n ′

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Then τ is a coupling for ν and its cost is the sum of the costs of π and π ′. Therefore
‖μ + μ ′‖W1[d] � ‖μ‖W1[d] + ‖μ ′‖W1[d].

Let μ ∈ V(X, x0) and a > 0. Then π is a coupling for μ if and only if aπ is a
coupling for aμ. Furthermore π is a coupling for μ if and only if π�, the transpose of
π, is a coupling for −μ. Since Cost1[d](aπ) = aCost1[d](π) and Cost1[d](π�) =
Cost1[d](π), it follows that for all b ∈ R, ‖bμ‖W1[d] = |b| ‖μ‖W1[d].

Finally, let μ ∈ V(X, x0) with r(μ) =
∑n

i=0 μixi and ‖μ‖W1[d] = 0. Then there
is a coupling π for μ with zero cost. Thus, by the objective function in (7.1), πij = 0
for all i �= j. Therefore, by the constraint in (7.1), μi = 0 for all i and hence μ = 0. ��
Theorem 7.3 Let (X,d, x0) ∈ Lip∗. The canonical map i : (X,d, x0) →
(V(X, x0),d‖ ‖W1[d]

, 0) is an isometric embedding.
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Proof We need to verify that for all x1, x2 ∈ X, if μ is the equivalence class of x1−x2
in V(X, x0), then ‖μ‖W1[d] = d(x1, x2). To start, r(μ) = 0x0 + 1x1 + (−1)x2. Let π
be a coupling for μ. Since the terms πii have no impact on (7.1), we will assume they
equal 0. The constraints in (7.1) give us the following.

π01 + π02 − π10 − π20 = 0 (7.2)

π10 + π12 − π01 − π21 = 1

π20 + π21 − π02 − π12 = −1 (7.3)

Rearranging (7.2), we obtain

π10 = π01 + π02 − π20. (7.4)

Substituting (7.4) in (7.3), we obtain

π12 = 1+ π21 + π20 − π02. (7.5)

The cost of π is given by

(π12 + π21)d(x1, x2) + (π01 + π10)d(x1, x0) + (π02 + π20)d(x2, x0).

Substituting (7.5) and (7.4), we get

(1+ 2π21 + π20 − π02)d(x1, x2) + (2π01 + π02 − π20)d(x1, x0)

+(π02 + π20)d(x2, x0).

Rearranging we obtain

d(x1, x2) + 2π21d(x1, x2) + π20[d(x1, x2) − d(x1, x0) + d(x2, x0)]

+2π01d(x1, x0) + π02[d(x1, x0) + d(x2, x0) − d(x1, x2)]. (7.6)

By the triangle inequality, the two sums inside the square brackets are both nonnegative.
It follows that the cost is minimized by setting π21 = π20 = π01 = π02 = 0. By (7.4)
and (7.5), π10 = 0 and π12 = 1, respectively. Furthermore, by (7.6), the cost of this
optimal coupling is d(x1, x2). ��

Theorem 7.4 Let (X,d, x0) ∈ Lip∗. For any (W, ‖ ‖) ∈ NVS and ϕ : (X,d, x0) →
(W,d‖ ‖, 0) ∈ Lip∗, there exists a unique map ϕ̃ : (V(X, x0), ‖ ‖W1[d]) →
(W, ‖ ‖) ∈ NVS such that Uϕ̃ ◦ i = ϕ. Furthermore, ‖Uϕ̃‖Lip = ‖ϕ‖Lip.

Proof Let μ ∈ V(X, x0) with r(μ) =
∑n

i=0 μixi. Since ϕ̃ is a linear map, we must
have that ϕ̃(μ) =

∑n
i=1 μiϕ(xi) (since ϕ is a pointed map, ϕ(x0) = 0).

Let π be a coupling for μ which is a solution to the linear program (7.1). Then
r(μ) =

∑n
i=0

∑n
j=0(πij − πji)xi =

∑n
i=0

∑n
j=0 πij(xi − xj). Therefore ϕ̃(μ) =
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∑n
i=0

∑n
j=0 πijϕ̃(xi−xj) =

∑n
i=0

∑n
j=0 πij(ϕ(xi)−ϕ(xj)). By the subadditivity

of the norm ‖ ‖,

‖ϕ̃(μ)‖ �
n

∑

i=0

n
∑

j=0

πij

∥∥ϕ(xi) − ϕ(xj)
∥∥

� ‖ϕ‖Lip
n

∑

i=0

n
∑

j=0

πijd(xi, xj)

= ‖ϕ‖Lip ‖μ‖ .

Therefore ϕ̃ is a bounded linear map. Furthermore ‖Uϕ̃‖Lip = ‖ϕ̃‖op = ‖ϕ‖Lip. ��
Corollary 7.5 The forgetful functor U : NVS → Lip∗ has a left adjoint V :
Lip∗ → NVS which sends (X,d, x0) to (V(X, x0), ‖ ‖W1[d]) and sends f :

(X,d, x0) → (Y,d ′,y0) to the induced linear map f : (V(X, x0), ‖ ‖W1[d]) →
(V(Y,y0), ‖ ‖W1[d ′]). Furthermore, ‖f‖op = ‖f‖Lip.

7.2 Banach spaces

Recall that a Banach space is a complete normed vector space. Let Ban denote the
full subcategory of NVS consisting of Banach spaces. Every normed vector space
V isometrically embeds as a dense vector subspace into its Cauchy completion V̂ .
This defines a functor C : NVS → Ban that is left adjoint to the inclusion functor
Ban ↪→ NVS.

Combining this with Theorem 7.3, we have the following.

Corollary 7.6 Let (X,d, x0) ∈ Lip∗. The canonical map i : (X,d, x0) →
(V̂(X, x0),d‖ ‖W1[d]

, 0) is an isometric embedding.

Since adjoint functors compose we have the following.

Corollary 7.7 The forgetful functor U : Ban → Lip∗ has a left adjoint V :
Lip∗ → Ban which sends (X,d, x0) to (V̂(X, x0), ‖ ‖W1[d]) and sends f :

(X,d, x0) → (Y,d ′,y0) to the induced linear map f : (V̂(X, x0), ‖ ‖W1[d]) →
(V̂(Y,y0), ‖ ‖W1[d ′]). Furthermore, ‖f‖op = ‖f‖Lip.

Restating this as a universal property we have the following.

Theorem 7.8 Let (X,d, x0) ∈ Lip∗. For any (W, ‖ ‖) ∈ Ban and ϕ : (X,d, x0)
→ (W,d‖ ‖, 0) ∈ Lip∗, there exists a unique map ϕ̃ : (V̂(X, x0), ‖ ‖W1[d]) →
(W, ‖ ‖) ∈ Ban such that Uϕ̃ ◦ i = ϕ. Furthermore ‖Uϕ̃‖Lip = ‖ϕ‖Lip.

7.3 Isometric embeddings

We summarize the embeddings we have constructed as follows.
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Theorem 7.9 Let (X,d, x0) be a pointed metric space. We have the following sequence
of isometric embeddings of pointed metric spaces, where we omit the basepoint 0 from
the notation,

(X,d, x0) ↪→ (D(X, x0),W1[d]) ↪→ (K(X, x0),W1[d]) ↪→ (V(X, x0),d‖ ‖W1[d]
)

↪→ (V̂(X, x0),d‖ ‖W1[d]
)

and (D1(X, x0),W1[d]) ↪→ (V̂(X, x0),d‖ ‖W1[d]
).

Proof The first map is an isometric embedding by Bubenik and Elchesen (2021,
Lemma 4.18). The second map is an isometric embedding by Corollary 4.9. It is
well known that the last map is an isometric embedding. We prove that the third map
is an isometric embedding.

Let α,β,γ, δ ∈ D(X, x0). Then

d‖ ‖W1[d]
(α − β,γ − δ) = ‖α − β − (γ − δ)‖W1[d] = ‖α + δ − (β + γ)‖W1[d] .

From (7.1), we see that the latter equals the cost of the solution to the transshipment
problem (Definition 5.6) from α+ δ to β+γ. Since p = 1, this equals the cost of the
solution to the transportation problem (Definition 5.1) from α + δ to β + γ. That is,
‖α + δ − (β + γ)‖W1[d] = W1[d](α + δ,β + γ) = W1[d](α − β,γ − δ).

Since (D(X, x0),W1[d]) isometrically embeds in (V(X, x0),d‖ ‖W1[d]
), it follows

that the Cauchy completion of the former isometrically embeds in the Cauchy com-
pletion of the latter. ��

As a result, we may refer to each of the metrics in Theorem 7.9 as W1[d].
Given a metric pair (X,d,A), define V(X,A) = V(X)/V(A). By (Bubenik and

Elchesen 2021, Remark 4.14), for a metric pair (X,d,A), we have and isometric
isomorphism (D(X,A),W1[d],+, 0) ∼= (D(X/A,A),W1[d]). Combining this with
Theorem 7.9, we obtain the following.

Corollary 7.10 Let (X,d,A) be a metric pair. We have the following sequence of iso-
metric embeddings of pointed metric spaces, where we omit the basepoint 0 from the
notation,

(X/A,d,A) ↪→ (D(X,A),W1[d]) ↪→ (K(X,A),W1[d]) ↪→ (V(X,A),W1[d])

↪→ (V̂(X,A),W1[d])

and (D1(X,A),W1[d]) ↪→ (V̂(X,A),d‖ ‖W1[d]
).

Example 7.11 Consider the metric pair (R2
�,d,Δ). We have isometric embed-

dings of the spaces of classical persistence diagrams (D(R2
�,Δ),W1[d]) and

(D1(R
2
�,Δ),W1[d]) into the Banach space (V̂(R2,Δ), ‖ ‖W1[d]).
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