Topological Data Analysis with R workshop January 2017 Peter Bubenik

1. INTRODUCTION

In this workshop, you will use R and some persistent homology software to perform topological data analysis. This document is available as pdf with clickable links on the Software page of my webpage http://people.clas.ufl.edu/peterbubenik/.

2. Getting started

2.1. **R** and **RStudio.** First, download R from https://cran.rstudio.com/, then download RStudio Desktop from https://www.rstudio.com/products/rstudio/download/.

If you are new to R, work through the R introduction at http://www.r-tutor.com/r-introduction.

2.2. Folder structure. Create a directory (folder) for this workshop using your operating system (e.g. windows). For example, C:\Users\Peter\Desktop\R\workshop or ~/R/workshop. Next create a subdirectory named bin of this working directory.

2.3. Persistence software.

2.3.1. *Perseus.* Download the executable file for your operating system from http://people.maths.ox.ac.uk/nanda/perseus/ and put in the bin folder. For Mac/Linux you will need to make the file executable. For example, chmod u+x perseusMac.

2.3.2. Persistence Landscape Toolbox. Download the appropriate executables from https://www.math.upenn.edu/~dlotko/persistenceLandscape.html, extract the contents and put the files PlotOfLandscape and configure in the bin folder. For Windows, in addition copy the files libgcc_s_dw2-1.dll and libstdc++-6.dll into the bin folder. For Mac/Linux you will need to make the file executable: chmod u+x PlotOfLandscape.

2.4. For Mac users. You need to install XQuartz from https://www.xquartz.org/.

2.5. The Data. Download the file nonrigid3d.zip from http://tosca.cs.technion.ac. il/book/resources_data.html, extract the contents and move the resulting nonrigid3d folder to be a subdirectory of your working directory.

2.6. My R files. Download the following R files: tda_workshop_script.R, tda_functions.R, and persistence_script.R, from my web page http://people.clas.ufl.edu/peterbubenik/ software/ and put them in your workshop directory. Rename the files from ending in .txt to ending in .R.

3. Doing some Topological Data Analysis with R

Hints.

- You can step through the script by executing each line with <Control>-<Return>.
- After stepping through a script one command at a time once, you can run the entire script at once using source("workshop_script.R"), for example.
- The following commands are particularly useful for resetting RStudio: rm(list=ls()) and graphics.off().
- 1. Open the R file workshop_script.R. After a summary of what the script does, it contains a number of parameters that the user may change. Change the value of the parameter main_directory to the path of your workshop directory. Also change the parameter operating_system to the correct value.
- Step through the commands in workshop_script.R one at a time using <Ctrl><Enter> or <Cmnd><Enter>. Try and understand how each command works and what it is doing. Stop after you execute the line source("persistence_script.R").
- 3. Once you have executed persistence_script.R, you should have 3d views of some of the figures. You should be able to rotate these and zoom in. Now go to the file workshop_script.R and change show_individual_figures <- TRUE from TRUE to FALSE. Also increase max_pose_num to 50. Make sure you execute these two lines to get the new values into memory. Now rerun source("persistence_script.R").</p>
- 4. You should now have the persistence landscapes of enough figures to do some statistics and machine learning. Step through the remaining lines in workshop_script.R.
- 5. Now that you have compared two of the figures: change figures_to_compare to change the pair of figures to compare; change figures_to_use (this can be a list of more than two types) to change the list of figures on which to apply classification; and and rerun your topological data analysis.

If you are interested, take a careful look persistence_script.R and at the functions in the file tda_functions.R and figure out how they work.

Bonus. There is an easter egg in the code that will generate animations of the filtered simplicial complexes of the figures. See if you can get it to run. Note: the saved animated gif isn't cropped properly. See if you can fix this.

4. То до

Your assignment consists of doing some of the following.

- 1. Experiment with comparing and classifying various combinations of the figures.
- 2. Understand the pipeline used in the analysis.
- 3. Understand in detail some part of the analysis.
- 4. Modify the R code to use a different filtering function.
- 5. Modify the R code to analyze some new synthetic or experimental data.
- 6. Extend the R code to add some new feature.