Topological Data Analysis Worksheet 3

Consider the following filtered simplicial complex.

Its persistence diagram for \tilde{H}_0 is given by $\{(1,3), (2,6), (4,5)\}$. Its persistence diagram for \tilde{H}_1 is given by $\{(7,10), (8,9)\}$.

Definition 1. For b < d, let $f_{(b,d)} : \mathbb{R} \to \mathbb{R}$ be the piecewise-linear "tent" function given by

$$f_{(b,d)}(t) = \begin{cases} t-b & \text{if } b \leq t \leq \frac{d+b}{2} \\ d-t & \text{if } \frac{d+b}{2} < t \leq d \\ 0 & \text{otherwise.} \end{cases}$$

Consider a persistence module with persistence diagram $D = \{(b_1, d_1), \ldots, (b_m, d_m)\}$. For $k = 1, 2, 3, \ldots$, the k-th persistence landscape function, $\lambda_k : \mathbb{R} \to \mathbb{R}$, is given by letting $\lambda_k(t)$ be equal to the kth largest value of $\{f_{(b_1,d_1)}(t), \ldots, f_{(b_m,d_m)}(t)\}$. The sequence of these functions is called the *persistence landscape*. The persistence landscape may also be viewed as the function $\lambda : \mathbb{N} \times \mathbb{R} \to \mathbb{R}$ given by $\lambda(k, t) = \lambda_k(t)$.

Exercise 1. Graph the persistence landscapes for H_0 and H_1 .

Exercise 2. Compare the persistence landscape functions λ_k in the previous exercise with the graded persistence diagrams in Group Work 2 Exercise 3.

Exercise 3. Let $I \subset \mathbb{R}$ be an interval. For $\varepsilon \geq 0$, define the ε -erosion of I, by

$$I^{\varepsilon} = \{ x \in I \mid [x - \varepsilon, x + \varepsilon] \subset I \}.$$

Given an interval I define

$$f_I(t) = \sup\{\varepsilon \ge 0 \mid t \in I^\varepsilon\}.$$

- (a) For I = [b, d), give an expression for I^{ε} .
- (b) For I = [b, d), compute $f_I(t)$.
- (c) For I = [b, d), graph $y = f_I(t)$.

Exercise 4. Let $\mathcal{I} = \{I_j\}_{j \in J}$ where for each $j \in J$, I_j is an interval in \mathbb{R} . For $k \in \mathbb{N}$, define $\lambda_k(t) = \sup\{\varepsilon \ge 0, |\{j \in J, t \in I_j^\varepsilon\}| \ge k\}.$

Call $(\lambda_1, \lambda_2, \lambda_3, \ldots)$ the *persistence landscape* of \mathcal{I} . Compare this definition with the one in the first exercise.