## MAP 4484 Review for Midterm 1

The test will be closed-book. The test will consist of 2-3 problems. Below are the representative problems.
(1) Find the fixed point of the given map and determine their stability for various values of $a$ and $b$ :

$$
x_{n+1}=\frac{a x_{n}}{b+x_{n}}, \quad x_{n} \geq 0, \quad a, b>0 .
$$

(2) Consider the piece-wise linear function $f$ defined as

$$
f(x)=\left\{\begin{array}{cc}
3 x, & 0 \leq x \leq 1 / 3 \\
2-3 x, & 1 / 3<x<2 / 3 \\
3 x-2, & 2 / 3 \leq x \leq 1
\end{array}\right.
$$

Find the fixed points and determine their stability. Does there exist an orbit of period 2? If yes, how many? Which orbits of period 2 are stable?
(3) Find the explicit solution of the following difference equation:

$$
x_{n+2}=3 x_{n+1}-2 x_{n}, \quad n \geq 0, \quad x_{0}=1, \quad x_{1}=3 .
$$

(4) Consider the following competition model:

$$
\left\{\begin{array}{l}
x_{n+1}=\frac{4 x_{n}}{1+x_{n}+3 y_{n}}, \\
y_{n+1}=\frac{4 y_{n}}{1+3 x_{n}+y_{n}}
\end{array}\right.
$$

Show that there exists a unique coexistence fixed point $\left(x^{*}, y^{*}\right)$. Find it. Evaluate the Jacobian matrix at $\left(x^{*}, y^{*}\right)$. Is this coexistence point stable or unstable?

