The test will be closed-book. The test will consist of 2-3 problems. Here is a collection of sample problems.

(1) Find the equilibria and determine their stability using the linearization method:

\[x' = x(2 - x), \]

also sketch the phase line for this differential equation. Argue that all positive solutions \(x(t) > 0 \) approach the limiting value 2 as \(t \to \infty \), and that the convergence is exponential.

(2) Consider the following model of microbial growth:

\[s' = D(s_0 - s) - p(s)x, \quad x' = p(s)x - Dx. \]

Here, \(s(t) \) is the concentration of a growth limiting resource, and \(x(t) \) is the microbial concentration. Let \(p(s) = \frac{ms}{k+s} \). Interpret the meaning of this function and the remaining parameters of the model. Find the equilibria and determine their stability using linearization (note: there may be one or two equilibria, depending on the parameters). Show that the total biomass \(s + x \) approaches \(s_0 \) in the limit \(t \to \infty \).

(3) Sketch the bifurcation diagram of the equation

\[x' = x^2(1 - x^2) + \mu, \]

treating \(\mu \) as the bifurcation parameter. Determine the bifurcation points/values. What type of bifurcations are these?

(4) Let \(A \) be a \(2 \times 2 \) matrix. Classify the eigenvalues of \(A \) in terms of the trace and the determinant of \(A \). Derive the necessary and sufficient conditions for \(A \) to have both eigenvalues with negative real parts.

(5) Sketch the phase portrait of the \(SI \) epidemic model

\[S' = -bSI, \quad I' = bSI - dI. \]