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Abstract

This contribution presents a new method of analyzing the dynamics of a biological relevant neural network with different time

scales based on the theory of flow invariance. We are able to show that the resulting stability conditions are less restrictive and more

general than with K-monotone theory or singular perturbation theory. The theoretical results are further substantiated by

simulation results conducted for analysis and design of these neural networks.

r 2004 Elsevier Ltd. All rights reserved.
1. Introduction

The collective computational capabilities of neural
networks, such as optimization, association and oscilla-
tion, rely on the dynamic behaviors of the neural
networks. The qualitative analysis of neural networks,
including the analysis and stability and oscillations,
characterize the dynamics of these networks.

Neural networks dealing with static patterns can be
classified into two types according to the ways of
presenting the patterns to them (Matsuoka, 1992): (N1)
the key pattern is given as an initial state of the network;
(N2) the key pattern is given as a constant input to the
network.

The Hopfield network is an N1-type network and its
connections have to be symmetric in order to guarantee
stable convergence of the state (Cohen and Grossberg,
1983). The continuous additive bidirectional associative
memory represents the heteroassociative analogue of the
Hopfield network, and its global stability was shown in
(Kosko, 1992).

N2-type networks are recurrent neural networks in
which the recurrent connections are usually inhibited.
The constraint of symmetry in connection weights is not
valid for them for two reasons. First, confining the
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network to being symmetric might result in too strict a
restriction on the capability of the network. Second the
symmetry of the connections by itself does not
guarantee the uniqueness of the convergence state
because the final output depends not only on the
constant input but also on the initial state of the
network. Therefore, this network should be designed so
that its final state is independent of the initial state. Such
a network has the property of absolute stability.

On absolute stability of asymmetric recurrent neural
networks, several sufficient conditions can be seen in the
literature (Protopopescu et al., 1988; Hirsch, 1989;
Michel et al., 1989; Kelly, 1990; Matsuoka, 1992). The
results in Protopopescu et al. (1988) and Michel et al.
(1989) are too strict particularly in the case that mutual
connections between each pair of units have different
signs of weights. It is because they evaluate the absolute
values of connection weights and neglect their signs.

In Hirsch (1989) was the importance of global
stability noted and he obtained a few conditions using
Gersgorin’s circle theorem. In Kelly (1990) was the
contraction mapping technique applied to obtain some
sufficient conditions for global stability. In (Matsuoka,
1992) were generalized some of Hirsch’s and Kelly’s
results using a new Lyapunov function. He did not
evaluate like most before him the absolute values of
connection weights and neglected their signs but
established some absolute stability conditions which
were more relaxed than the previous results.
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1Our interest is to store patterns as equilibrium points in the N-

dimensional space. In fact, in Amari (1982) is demonstrated the

formation of stable one-dimensional cortical maps under the aspect of

topological correspondence and under the restriction of a constant

probability of the input signal.
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The matrix measure technique has been used to study
the stability property of nonlinear dynamical systems
and many well-known results have been unified and
generalized. Some general sufficient conditions for
nonlinear dynamical systems have been obtained and
have been applied to a class of assymmetrical recurrent
neural networks (Matsuoka, 1992; Fang and Kincaid,
1996).

Dynamic neural networks which contain both feed-
forward and feedback connections between the neural
layers play an important role in visual processing,
pattern recognition, neural computing and control.
Moreover, biological networks possess synapses whose
synaptic weights vary in time. Thus, competitive neural
networks with a combined activity and weight dynamics
constitute a more important class of neural networks
than the N1- and N2-type. Their capability of storing
desired patterns as stable equilibrium points requires
stability criteria which include the mutual interference
between neuron and learning dynamics.

This paper investigates the dynamics of cortical
cognitive maps, modeled by a system of competitive
differential equations, from a rigorous analytic stand-
point. The networks under study model the fast
dynamics of the neural activity levels, the short-term
memory (STM), and the slow dynamics of the un-
supervised synaptic modifications, the long-term mem-
ory (LTM).

Such networks may be considered extensions of
Grossberg’s shunting network (Grossberg, 1976) or
Amari’s model for primitive neuronal competition
(Amari, 1982). These earlier networks are modeled as
a pool of mutually inhibitory neurons with fixed
synaptic connections. Our results extend the previous
studies to systems where the synapses can be modified
by external stimuli. Also, the learning algorithm is
unsupervised. In Jin and Gupta (1999) the dynamical
behavior of discrete-time neural networks is studied
using stable dynamic backpropagation algorithms. Two
new stable learning concepts, the multiplier and the
constrained learning rate methods, are employed. They
describe supervised learning algorithms, and evaluate an
error function. Generalized dynamic neural networks
described in Galicki et al. (1999) are recurrent neural
networks with time-dependent weights. The algorithm
for learning continuous trajectories is based on a
variational formulation of the Pontryagin maximum
principle, and is also supervised. A robust local stability
condition has been presented in Suykens et al. (2000) for
multilayer recurrent neural networks with two hidden
layers. The NLq theory was proposed as a stability
theory for multilayer recurrent neural with application
to neural control. The Hebbian adaptive bidirectional
associative memory in Kosko (1992) adapts according
to the Hebbian learning law its weights in an unsuper-
vised mode, and its global stability was proven.
In this paper we apply the theory of flow invariance
on large-scale neural networks, which have two types of
state variables (LTM and STM) describing the slow
unsupervised and the fast dynamics of the system. We
will give the mathematical conditions for showing when
the STM and LTM trajectories are bounded. Our design
is more general than that given in Lemmon and Kumar
(1989) since it is not required to assume a high gain
approximation and it does not treat the two dynamics
seperately. It also does not require the excitatory region
to comprise only one neuron or that the weights have to
be symmetric as in Kosko (1992).

We consider a laterally inhibited network with a
deterministic signal Hebbian learning law (Hebb, 1949)
that is similar to the spatiotemporal system of Amari
(1983). The general neural network equations describing
the temporal evolution of the STM and LTM states for
the jth neuron of an N-neuron network are:

STM : E ’xj ¼ �ajxj þ
XN

i¼1

Dij f ðxiÞ þ Bj

Xp

i¼1

mijyi; ð1:1Þ

LTM : ’mij ¼ �mij þ yi f ðxjÞ; ð1:2Þ

where xj is the current activity level, aj is the time
constant of the neuron, Bj is the contribution of the
external stimulus term, f ðxiÞ is the neuron’s output, yi is
the external stimulus, and mij is the synaptic efficiency. E
is the fast time-scale associated with the STM state. Dij

represents a synaptic connection parameter between the
ith neuron and the jth neuron. We assume here, that the
recurrent neural network consists of both feedforward
and feedback connections between the layers and
neurons forming complicated dynamics.

The neural network is modeled by a system of
deterministic equations with a time-dependent input
vector rather than a source emitting input signals with a
prescribed probability distribution.1 By introducing the
dynamic variable Sj ¼ yTmj ; we get a state space
representation of the LTM and STM equations of the
system:

E ’xj ¼ �ajxj þ
XN

i¼1

Dij f ðxiÞ þ BjSj ; ð1:3Þ

’Sj ¼ �Sj þ jyj2f ðxjÞ: ð1:4Þ

The input stimuli are assumed to be normalized vectors
of unit magnitude jyj2 ¼ 1: This system is subject to our
analysis considerations to show that the LTM and STM
trajectories are bounded.
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2. Equilibrium and local asymptotic stability analysis of

neuro-synaptic systems

In this section, we present a new condition for the
uniqueness and global exponential stability for neuro-
synaptic systems which improves the previous stability
results. The existence and uniqueness of the equilibrium
is given based on flow-invariance while the global
exponential stability is shown by a strict Lyapunov
function.

The theory of flow-invariance gives a qualitative
interpretation of the dynamics of a system, taking into
account the invariance of the flow of the system.
In other words a trajectory gets trapped in an invariant
set.

Before stating the stability results based on the
concept of flow-invariance, we define several important
notions used in nonlinear analysis.

Definition 1. Let F : RN-RN be a Lipschitz continuous
map and let S be a subset of RN : We say that S is flow-

invariant with respect to the system of differential
equations

x0ðtÞ ¼ F ðxðtÞÞ ðSÞ

if any solution xðtÞ starting in S at t ¼ 0 remains in S for
all tX0 as long as xðtÞ is defined. In dynamical systems
terminology, such sets are called positively invariant
under the flow generated by (S).

Definition 2. We say that system (S) is dissipative in RN

if there exists a precompact (bounded) set UCRN such
that for any solution xðtÞ of (S) there exists TX0 such
that xðtÞAU for all tXT : In other words, all solutions of
(S) enter this bounded set U in finite time.

If (S) is dissipative then all solutions of (S) are defined
for tX0; and there exists a compact set ACU which
attracts all solutions of (S). The set A is invariant under
the flow of (S) and it is called the global attractor of (S)
in RN :

After we have introduced the definitions, we are ready
to state the stability results based on the concept of flow-
invariance. For simplicity reasons, we will omit E in
Eq. (1.3).

Theorem 1. Consider the system of differential equations

x0
jðtÞ ¼ � ajxjðtÞ þ

XN

i¼1

Dij f ðxiðtÞÞ þ BjSjðtÞ;

j ¼ 1;y;N; ð2:1Þ

S0
jðtÞ ¼ �SjðtÞ þ f ðxjðtÞÞ; j ¼ 1;y;N ð2:2Þ

and suppose that aj > 0 for all j ¼ 1;y;N: Also suppose

that f is locally Lipschitz and bounded, that is, there exists

a constant M > 0 such that �Mpf ðxÞpM for all xAR:
Let

lj ¼
M

aj

XN

i¼1

jDij j þ jBj j

 !
> 0; j ¼ 1;y;N: ð2:3Þ

Then for any E > 0 and for any initial condition

fxjð0Þ;Sjð0ÞgAR2N there exists a TX0 such that

SjðtÞA½�M � E;M þ E�; xjðtÞA½�lj � E; lj þ E�

for all j ¼ 1;y;N and all tXT :

Proof. Since f is locally Lipschitz, system (2.1) and (2.2)
enjoys local existence and uniqueness of solutions.
Moreover, since f is uniformly bounded, there exist
constants K1;y;K5 > 0 such that

jx0
jðtÞjpK1 þ K2jxjðtÞj þ K3jSjðtÞj;

jS0
jðtÞjpK4 þ K5jSjðtÞj;

thus all solutions are defined globally (for all tX0).
Given E > 0; we define

dj ¼
min

ajE
2jBj j

; E
� �

; Bja0;

E; Bj ¼ 0

8<
:

for j ¼ 1;y;N: It follows that dj > 0 and �jBj jdj þ
ajEXajE=2 for all j ¼ 1;y;N: Then for tX0 and for
SjðtÞp� M � dj the following inequality holds:

S0
jðtÞX � ð�M � djÞ þ f ðxjðtÞÞ

¼ dj þ ðf ðxjðtÞÞ þ MÞXdj > 0:

Similarly, for tX0 and for SjðtÞXM þ dj we have that

S0
jðtÞp � ðM þ djÞ þ f ðxjðtÞÞ

¼ � dj þ ðf ðxjðtÞÞ � MÞp� djo0:

Therefore, for any jAf1;y;Ng there exists a Ts
j X0

such that

SjðtÞA½�M � dj ;M þ dj�D½�M � E;M þ E� ð2:4Þ

for all tXTs
j : Let Ts ¼ maxj Ts

j ; then (2.4) holds for all
jAf1;y;Ng and for all tXTs:

Now we consider tXTs: For xjðtÞp� lj � E; (2.1) and
(2.4) imply that

x0
jðtÞXajðlj þ EÞ þ

XN

i¼1

Dijf ðxiÞ þ Bjð�M � djÞ:

Using the definition of lj given by (2.3), we find that for
tXTs and xjðtÞp� lj � E;

x0
jðtÞX ajlj þ ajE� M

XN

i¼1

jDij j þ jBj j

 !
� jBj jdj

¼ � jBj jdj þ ajEX
ajE
2

> 0:
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Similarly, for tXTs and for xjðtÞXlj þ E; (2.1) and (2.4)
imply that

x0
jðtÞp� ajðlj þ EÞ þ

XN

i¼1

Dijf ðxiÞ þ BjðM þ djÞ:

Using (2.3) again, we find that for tXTs and xjðtÞXlj þ
E;

x0
jðtÞp � ajlj � ajEþ M

XN

i¼1

jDij j þ jBj j

 !
þ jBj jdj

¼ � ajEþ jBj jdjp�
ajE
2
o0:

Consequently, for any jAf1;y;Ng there exists a
Tx

j XTs
X0 such that

xjðtÞA½lj � E; lj þ E� ð2:5Þ

for all tXTx
j : Let T ¼ maxj Tx

j ; then both (2.4) and (2.5)
hold for all jAf1;y;Ng and all tXT :

Corollary 1. System (2.1) and (2.2) is dissipative in R2N

and therefore it has a compact global attractor

ADD ¼
YN
j¼1

½�lj ; lj � �
YN
j¼1

½�M ;M�:

Corollary 2. It follows from the proof of Theorem 1 that

the set D is flow invariant under (2.1) and (2.2). In other

words, D is a positively invariant set of (2.1) and (2.2),
that is, any solution starting in D at t ¼ 0 remains in D for

all tX0:

Theorem 2. Suppose that aj > 1 for jAf1;y;Ng and

suppose that f ðxÞ is C1 with jf 0ðxÞjpk for all x. If

k 1þmax
i

XN

j¼1

jDji j

 !
o

1

1þmaxj
jBj j

aj�1

; ð2:6Þ

then system (2.1) and (2.2) is globally exponentially

stable. That is, there exists a unique equilibrium e�AD

and all solutions converge to e� exponentially fast as

t-N:

Proof. Since all solutions of (2.1) and (2.2) are bounded
for tX0 by Theorem 1, it suffices to prove that every
solution is exponentially stable. Existence of e� follows
automatically from Corollary 2. Let fxjðtÞ;SjðtÞg be a
solution of (2.1) and (2.2). Consider the variational
system associated with fSjðtÞ;xjðtÞg:

f0
jðtÞ ¼ � ajfjðtÞ þ

XN

i¼1

Dij f 0ðxiðtÞÞfiðtÞ þ BjcjðtÞ;

j ¼ 1;y;N ; ð2:7Þ

c0
jðtÞ ¼ �cjðtÞ þ f 0ðxjðtÞÞfjðtÞ; j ¼ 1;y;N: ð2:8Þ

We will show that (2.6) is a sufficient condition for
exponential stability of (2.7) and (2.8). To do so, we
rewrite (2.7) and (2.8) in the matrix form:

Z0ðtÞ ¼ ðA þ BðtÞÞZðtÞ; ð2:9Þ

where Z ¼ ðf1;c1;f2;c2;y;fN ;cN Þ
T and matrices A

and BðtÞ are as follows:

A ¼ diagðAjjÞ
N
j¼1; Ajj ¼

�aj Bj

0 �1;

� �

BðtÞ ¼ ðBijðtÞÞ
N
i;j¼1;

BijðtÞ ¼

Djj f 0ðxjðtÞÞ 0

f 0ðxjðtÞÞ 0

� �
; i ¼ j;

Dji f 0ðxiðtÞÞ 0

0 0

� �
; iaj:

8>>><
>>>:

To show exponential stability of (2.9), we employ
the standard stability argument for a nonautonomously
perturbed linear system with a constant matrix
(Adrianova, 1995): if jjetAjjpMe�at for tX0 with M; a >
0 and jjBðtÞjjpC1oa=M for tX0 then (2.9) is exponen-
tially asymptotically stable. The result of the theorem is
obtained by applying the above criterion to the matrix
norm generated by the lN vector norm in R2N : The
corresponding matrix norm is

jjQjj ¼ max
i

XN

j¼1

jQij j: ð2:10Þ

The matrix etA is given by

etA ¼ diag
e�aj t Bj

aj�1
ðe�t � e�aj tÞ

0 e�t

 !N

j¼1

;

so that

jjetAjjp 1þmax
j

ð1þ
jBj j

aj � 1

� �
e�t; ð2:11Þ

thus M ¼ 1þmaxj ðjBj j=aj � 1Þ and a ¼ 1: Since jf 0jpk;
the corresponding norm of B can be estimated as

jjBðtÞjjpk 1þmax
i

XN

j¼1

jDji j

 !
: ð2:12Þ

Finally, we combine estimates (2.10) and (2.11) with the
stability criterion to obtain inequality (2.6).
3. Comparisons

In this section, we compare the results obtained by
Theorem 2 with those in the literature.

In Adrianova (1995) the convergence to point
attractors is proved based on the condition of high
gain approximation which means that the output
nonlinearity is approximated by a step function. It is
also assumed that the synaptic connection parameter Dij
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is given by

Dij ¼
a; i ¼ j;

�b; iaj:

�

In this paper, we also employ the concept of flow
invariance but are able to prove the uniqueness and
existence of the equilibrium by only imposing that the
output nonlinearity is bounded in R:

The approach proposed in Meyer-B.ase et al. (1996) is
based on the theory of singular perturbations, and treats
both fast and slow dynamics seperately. It requires
certain growth conditions to be satisfied, and four
different inequalities to hold. While these imposed
conditions are too difficult to test for the N-dimensional
case, our approach requires only a simple inequality to
hold.
4. Examples

In this section, simulations results are given to verify
the theoretical results discussed in previous sections.
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Fig. 1. Time histories of the neural network in Example 1: (a) STM

states and (b) LTM states.
Example 1. Consider a two-neuron system with a
nonlinearity of a sigmoidal type and a diagonal synaptic
connection matrix D with

Dij ¼
a; i ¼ j;

�b; iaj:

�

As numerical values we choose a ¼ 0:5; b ¼ 0:1; A ¼ 20
and B ¼ 3:

The stability conditions imposed in Theorem 2 are
fulfilled, and we see from Fig. 1 that the trajectories of
the LTM and STM states converge to the zero
equilibrium point.

Example 2. The design of a three-neuron system with a
nonlinearity of sigmoidal type and a desired equilibrium
point at x ¼ ½5; 5; 5� and S ¼ ½1; 1; 1� is demonstrated.
The trajectories of the LTM and STM states are shown
in Fig. 2.
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Fig. 2. Time histories of the neural network in Example 2 with x ¼
½5; 5; 5� and S ¼ ½1; 1; 1� as an equilibrium point: (a) STM states and (b)

LTM states.
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5. Conclusions

In this paper we prove local exponential stability of
competitive neural networks with fast and slow
dynamics describing cognitive cortical maps developed
by self-organization. Based on the flow invariance
technique we can show the conditions that the LTM
and STM trajectories are bounded, being at the same
time less restrictive and more general than with the K-
monotone theory or singular perturbation theory.
Numerical simulation results are also given to verify
the theoretical results.
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