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Simple predator–prey type models have brought much insight into the dynamics
of both nonspecific and antigen-specific immune responses. However, until now
most attention has been focused on examining how the dynamics of interactions
between the parasite and the immune system depends on the nature of the function
describing the rate of activation or proliferation of immune cells in response to the
parasite. In this paper we focus on the term describing the killing of the parasite
by cell-mediated immune responses. This term has previously been assumed to
be a simple mass-action term dependent solely on the product of the densities of
the parasite and the immune cells and does not take into account a handling time
(which we define as the time of interaction between an immune cell and its target,
during which the immune cell cannot interact with and/or destroy additional tar-
gets). We show how the handling time (i) can be incorporated into simple models
of nonspecific and specific immunity and (ii) how it affects the dynamics of both
nonspecific and antigen-specific immune responses, and in particular the ability of
the immune response to control the infection.

c© 2000 Society for Mathematical Biology

1. INTRODUCTION

The immune response of hosts protects against a variety of invading parasites
such as viruses, bacteria, and protozoa. The immune response of vertebrate hosts
may be broadly divided into nonspecific and antigen-specific responses. In this
paper we focus on the cellular components of both nonspecific and antigen-specific
responses. We describe and analyse two models, one for macrophages and other
phagocytic cells which constitute the nonspecific arm of cell-mediated immune
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responses and one for cytotoxic T lymphocytes (CTL) which constitute the antigen-
specific arm of cell-mediated immune responses.

The cellular component of the nonspecific response is comprised predominantly
of the uptake and destruction of parasites by activated macrophages, neutrophils
and other phagocytic cells (Greenberg and Silverstein, 1993; Kuby, 1997). Such
a response is rapidly induced by the parasite and consists of the rapid recruitment
and activation of phagocytic cells from a limited population of these cells within the
body. A simple mathematical model of nonspecific immunity (Antia and Koella,
1994) illustrated how the dynamics of nonspecific and antigen-specific responses
might be expected to differ, nonspecific responses are clearing weak (slowly grow-
ing) infections without additional intervention of specific immunity, controlling
somewhat stronger (faster growing) infections and permanently reducing the rate
of growth of the strongest (fastest growing) infections.

In contrast to the nonspecific immune response, which can be very rapidly in-
duced, the specific immune responses are generated somewhat more slowly by a
process of clonal selection. In accord with clonal-selection theory (Burnett, 1959;
Kuby, 1997), prior to the exposure to the parasite there is only a small number
of cells which are capable of responding to the parasite. The parasite selects for
expansion (proliferation) of parasite-specific cells into a population which is suf-
ficiently large to control the parasite. There is extensive literature on models of
antigen-specific responses [see, for exampleBell (1970, 1973); Kevrikidis et al.
(1988); Aguret al. (1989); McLean and Kirkwood (1990); Schweitzeret al. (1992);
De Boer and Perelson (1995); Pilyugin et al. (1997)]. Most of these mathemati-
cal models feature predator–prey-like dynamics with the parasite as the replicating
prey, and the immune response as the predator (Bell, 1973).

Until now the models of both nonspecific and specific immune responses have,
for the most part, focused on the functional form of the term describing the gen-
eration of the immune response. The killing function was usually modeled by a
mass-action term proportional to the product of the parasite and immune-cell den-
sities, and thus to the probability rate of a single encounter between two randomly
chosen individual cells of these populations. However, as has been described in the
predator–prey literature [see for exampleBell (1973); Bazykin (1975); Hsu (1978);
Hofbauer and So (1990); Crawley (1992)] the form of the killing function is also
important in determining the dynamics of the response. In this paper we describe a
more realistic form for the killing of the parasite by the immune response. We do so
by using a formalism similar to that employed earlier (De Boer and Perelson, 1995;
Borghanset al., 1996; Burroughs and Rand, 1998). We first develop quasi-static
steady-state approximations which allow us to examine how thehandling timecan
be incorporated into the earlier models of parasite and immune response. Then we
examine the consequences of this change for the dynamics of the infection and in
particular thevulnerabilityof the hosts immune response. We say that a given type
of immune response (specific or nonspecific) isvulnerableto a given parasite if
the infection of a sufficiently large initial size is able to escape the control by this
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type of immune response. If the immune response is able to control infections of
arbitrarily large initial sizes, we say that such immune response isinvulnerableto
the parasite.

An outline of the paper is as follows. In Section2, we briefly sketch the relevant
biology, that is how cell-mediated responses kill the parasite. In Section3, we
propose a model for nonspecific immunity with handling time and show the effects
of handling time on the killing term. In the same section, we show that introducing
handling time always makes nonspecific immunity vulnerable, and estimate the
largest infection size that can be controlled by nonspecific immunity alone. In
Section4, we derive a model for specific immunity with handling time, and present
criteria for vulnerability of the specific immune response. Section5 contains the
discussion and concludes the paper. All mathematical derivations, steady-state
and stability analysis are presented in AppendixA (nonspecific immunity) and
AppendixB (specific immunity).

2. BIOLOGICAL BACKGROUND

We now give a brief background to the cellular components of the nonspecific
and antigen-specific immune responses.

The cellular component of the nonspecific immune response includes macro-
phages and other phagocytic cells. The reader is directed to excellent reviews from
Adams and Hamilton (1984), Bancroft et al. (1991), Greenberg and Silverstein
(1993) andAderem and Underhill (1999) and to the specific references provided at
the end of this paper for additional details relevant to the model. There is a fixed to-
tal population of macrophages (they do not proliferate). In order for macrophages
to kill parasites they must first be ‘activated’. Prior to introduction of the par-
asite only a small fraction of macrophages are activated (Bancroftet al., 1986).
Infection rapidly results in the activation of the ‘resting’ macrophages. This acti-
vation can occur upon contact with common parasite antigens or induced by cy-
tokines such as interferon-γ , tumor necrosis factor (TNF), and interleukin-1 (IL-1)
which are produced by a variety of cell types including natural-killer (NK) cells
and T-cells. The initial activation is, however, predominantly T-cell independent:
macrophage activation is much faster than the generation of a T-cell response; vir-
tually all macrophages may be activated prior to the generation of the specific T-cell
response; moreover, the dynamics of macrophage activation is similar in severe
combined immuno deficiency disease (SCID) mice which lack specific immune
cells (Bancroftet al., 1986). In the absence of stimulation, activated macrophages
return to the inactive (resting) state. In order for nonspecific phagocytic cells to
kill parasites, they must first encounter the parasite and then kill it either following
phagocytosis or by secreting potent toxins such a reactive oxygen intermediates
and nitroxide radicals.

CTL form the cellular component of the antigen-specific immune response. The
reader is directed to excellent reviews fromWeiss (1993), Berke (1994) andKuby
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(1997) and to the specific references provided at the end of this paper for addi-
tional details relevant to the model. In order for CTL to kill infected cells they
must first encounter the parasite-infected cells and then deliver ‘lethal hits’ to these
cells. Initial recognition between the T-cell receptor (TCR) complex on the T-cell
and the MHC-peptide complex on the infected cell results in the redistribution of
surface molecules and the upregulation of adhesion between these two cells (Grak-
oui et al., 1999) which results on the formation of a conjugate complex between
the target cell and the T-cell which lasts for about 20–30 min (Zaguryet al., 1975;
Perelson and Bell, 1982; Yanelli et al., 1986). This interaction results in a vari-
ety of responses including specific cytotoxicity, cytokine secretion or proliferation
in a manner which has been suggested to depend on the level of TCR occupancy
(Valitutti et al., 1996). Delivery of the ‘lethal hit’ results predominantly in the
exocytosis of the contents of granules which kill the target cell, as well as by FasL–
Fas-induced apoptosis in the target cell. In order to elicit the expansion of CTL
from naive precursors it requires specific stimulation by both an antigen-specific
signal and cytokines such as IL-2 or, alternatively, presentation of an antigen on
specialized presenting cells such as dendritic cells (Bennettet al., 1998; Ridgeet
al., 1998). However, subsequent stimulation with the antigen-specific signal alone
is sufficient for further proliferation and will be expected to be the major factor in
the overall expansion. The time scales for delivery of the killing and division are
very different. Target-cell destruction is fairly rapid, being observed either during
the period of contact or shortly thereafter (Zaguryet al., 1975). In contrast, prolif-
eration of T-cells takes a longer time-frame with the mean doubling time being at
least 6 h (Murali-Krishnaet al., 1998).

Both nonspecific and specific cellular immune responses require two processes,
the first being the encounter between immune cells and thetarget (which corre-
sponds to the parasite for macrophages and infected cells for CTL) and the second
being the interaction between an immune cell and its target, during which the im-
mune cell cannot interact with and/or destroy additional targets. When the numbers
of both immune cells and targets are relatively low, the encounter rate will be the
slower of these two processes and thus be a better approximation to the killing
of targets by immunity. However, when either population becomes large, the rate
at which a given immune cell can kill the target becomes the limiting factor. We
address this situation by introducing the notion ofhandling timefor immune re-
sponses. We define the handling time as the time for the interaction between an
immune cell and its target, during which the immune cell cannot encounter and
destroy additional targets. The handling time at the very least equals the time of
the encounter between an immune cell and its target, but could be limited by other
factors: for instance, for macrophages and other phagocytic cells the time required
to ingest and then degrade phagocytosed bacteria, so as to be able to phagocytose
additional bacteria, may be greater than the actual time for phagocytosis; and for
cytotoxic T-cells, the time required to recycle between delivery of successive lethal
hits to infected cells may be greater than the time of the encounter.
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3. NONSPECIFIC I MMUNE RESPONSES WITH HANDLING T IME

In this section we introduce a model for nonspecific immune responses to infec-
tion which builds on an earlier model (Antia and Koella, 1994), and in addition
incorporates ahandlingtime.

The modified model features a parasite population and nonspecific phagocytic
cells which are placed in one of three compartments: inactive orrestingcells,ac-
tivated freecells, andactivated engagedcells. Inactive cells are unable to phago-
cytose parasites. Upon activation, but before they engage in clearing the parasite,
immune cells become activated free. Activated engaged cells are those currently
phagocytosing parasites and consequently unable to phagocytose additional para-
sites. The total population of nonspecific immune cells is set at the constant value
J so that(J− X−S), X, andSare the numbers of inactive, activated free, and ac-
tivated engaged cells respectively. The modified model incorporates the following
processes.

(1) Parasites grow at an exponential rater > 0 and are removed following en-
counter and phagocytosis by activated nonspecific immune cells at a rate
modeled by the mass-action termh1X P.

(2) Recruitment of cells from inactive to the activated free pool occurs at a back-
ground ratea ≥ 0, and in a parasite-dependent manner which we model by
a mass-action term(a+ s P)(J − X − S). We introduce the terma to take
into account the low level of background activation observed prior to in-
troduction of a parasite (Bancroftet al., 1986). In the absence of parasite
stimulation, activated free cells return to the inactive state at a background
rated as described by the termd X.

(3) We assume that activated free cells become engaged with the parasite at a
rate proportional to the number of both parasite and activated free cells with
a rate constanth2. Adjusting the value ofh2 allows us to model the situation
where a single free cell can encounter several parasites before becoming
engaged. Upon completion of phagocytosis, engaged cells return to the free
state at a rateg. Here, 1/g is an average time required for a single cell to
complete phagocytosis, or simply the handling time.

The flow diagram of the model is presented in Fig.1.
We describe the model by the following system of differential equations,

P′(t) = r P(t)− h1X(t)P(t), (3.1)

X′(t) = (a+ s P(t))(J − X(t)− S(t))− h2X(t)P(t)+ gS(t)− d X(t),

(3.2)

S′(t) = h2X(t)P(t)− gS(t), (3.3)
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Figure 1. Flow diagram of the nonspecific immunity model.

with nonnegative initial conditionsP(0) ≥ 0, X(0) ≥ 0, S(0) ≥ 0 such that
X(0)+ S(0) ≤ J.

Assuming that the average handling time 1/g is small, that is, the dynamics
of (3.3) is fast compared with the dynamics of (3.1) and (3.2), we make the follow-
ing quasi-steady-state assumption (QSSA-1):

0= h2X(t)P(t)− gS(t) or S(t) = (h2/g)X(t)P(t) = αX(t)P(t),

whereα = h2
g . We use QSSA-1 to reduce the model (3.1)–(3.3) to a system of only

two equations:

P′(t) = r P(t)− h1X(t)P(t), (3.4)

X′(t) = (a+ s P(t))(J − X(t)− αX(t)P(t))− d X(t), (3.5)

with P(0) ≥ 0 and 0≤ X(0) ≤ J.
We thus see that the incorporation of the handling time for the nonspecific re-

sponse can be approximated by an appropriate reduction in the number of acti-
vated free immune cells (macrophages), that is, it removes macrophages at a rate
of αX(t)P(t) from the population available for killing parasites.

In the remainder of this section we describe the steady states of (3.4) and (3.5)
and their stability, show that nonspecific immunity is always vulnerable, and dis-
cuss asymptotic behavior of bounded solutions.

The system (3.4) and (3.5) can have anywhere from one to three steady states.
There always exists a trivial steady stateE0 =

(
0, a J

d+a

)
which is stable if a J

d+a >

r/h1 and unstable if a J
d+a < r/h1 (see AppendixA for details). The quantity

a J
d+a represents the background level of activated free cells whenP is absent. The
quantity r/h1 is the exact magnitude of nonspecific immunity to equilibrate the
growth of P, thus stability ofE0 implies that the background level of activated free
cells is already sufficiently high to control and clear the infection, while instability
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of E0 implies that infection will never be cleared. In the latter case, the parasite
will either reach a nonzero plateau, or it will escape the control by nonspecific
immunity. Whichever outcome occurs will depend on the number of nontrivial
steady states (withP > 0), and the initial size of infectionP(0). In particular, if
J < r/h1 then nonspecific immunity will never be able to control the infection.
For the remainder of this section, we will assume thatJ > r/h1.

At any given steady state withP > 0, X must equalr/h1. The P-coordinate of
a nontrivial steady state must satisfy

F(P) =
(a+ s P)J

d + (a+ s P)(1+ αP)
=

r

h1
. (3.6)

The functionF(P) increases forP < P̂, has a maximum atP = P̂, and declines

to zero forP > P̂ whereP̂ =
√

d
sα −

a
s . F(P) represents the number of activated

free immune cells corresponding to a constant level of parasiteP. For lower values
of P, the response is low because of an insufficient activation rate, but whenP
becomes large, most of the activated free cells are engaged with the parasite, and
nonspecific immunity loses control of the parasite. This property of our model is
new compared with the previous model, which did not take into account a handling
time (Antia and Koella, 1994).

If a J
d+a −

r
h1
> 0, then there exists a unique solutionP∗ > P̂ > 0 of (3.6),

and the corresponding steady stateE1 = (P∗, r/h1) is unstable (a saddle). If
a J

d+a −
r
h1
< 0 andF(P̂) < r

h1
, then there are no steady states withP > 0. In this

case, no infection can be controlled by nonspecific immunity. Ifa J
d+a −

r
h1
< 0 and

F(P̂) > r
h1

, then there exist two distinct steady statesE1 andE2 with 0 < P∗1 <

P̂ < P∗2 ; moreover,E1 is stable, andE2 is unstable (see Fig.2 for details)
If there exists at least one steady state of (3.4) and (3.5) with positive P = P∗,

then depending on the initial conditions, the infection will be either controlled,
or it will escape the nonspecific control. Therefore, nonspecific immunity is al-
ways vulnerable (according to our definition of vulnerability). The steady stateE
of (3.4) and (3.5) with the largest value ofP∗ is always unstable (a saddle), whose
stable manifold is a separatrix between the region of bounded solutions (immune
control) which lies to the left of this separatrix, and the region of unbounded so-
lutions (escape) which lies to the right of it. Due to nonlinearity of system (3.4)
and (3.5), finding the shape of the separatrix is a tedious task. This separatrix is
given by a graph of a strictly increasing functionX = X(P) passing through the
saddle pointE. Any solution of (3.4) and (3.5) with X(0) < r

h1
and P(0) > P∗

lies to the right of the separatrix, and all solutions with such initial conditions are
unbounded. The value ofP∗ gives a threshold for the largest infection that can
be controlled by nonspecific immunity.P∗ increases when eitherJ or g increase,
and decreases whenrh1

increases. In the former case, increasing the total number
of immune cells and/or reducing the handling time will certainly diminish chances
of the parasite escaping control, while in the latter case, a parasite that requires a
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Figure 2. Vulnerability of nonspecific immunity. Steady states, regions of clearance, con-
trol and escape, and typical trajectories for three structurally distinct situations. (a)E0 is
stable,E0 attracts all bounded solutions (region of clearance);E1 is unstable, all solu-
tions to the right ofE1 are unbounded (region of escape). (b)E0 is unstable,E1 attracts
all bounded solutions (region of control);E1 is unstable, all solutions to the right ofE1
are unbounded (region of escape). (c)E0 is unstable, no positive steady state exists, all
solutions are unbounded (escape).

greater magnitude of immune response naturally has higher chances to escape the
control by nonspecific immunity.

If the infection cannot be controlled by the nonspecific immunity, then the par-
asite will replicate to large numbers and in particular, a saturation in the killing
rate will be reached due to the handling time and QSSA-1 (for largeP, X ≈ 0).
Consequently, the per capita replication rate of the parasite will not be affected
by nonspecific immunity. This implies that nonspecific immunity is capable only
of transientreduction in the replication rate of the parasite, thus it may be impor-
tant for the outcome of the infection how fast the specific immunity can achieve
levels sufficient to control the parasite. This feature is novel in comparison with
the previous model ofAntia and Koella (1994). In their model, the nonspecific
immunity, although unable to completely control the parasite, was still capable of
permanently reducing its per capita replication rate.
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The asymptotic behavior of the bounded solutions of (3.4) and (3.5) is simple
(we refer a more mathematically oriented reader to the analysis presented in Ap-
pendix A). Any bounded solution converges to a steady state. If onlyE1 ex-
ists, then except for two critical solutions which correspond to the separatrix, all
bounded solutions converge toE0 (any controlled infection is cleared). If bothE1

and E2 exist, thenE0 is unstable and all bounded solutions converge toE1, and
thus the model predicts that any controlled infection will persist at a positive level
(see Fig.2 for details).

4. SPECIFIC I MMUNE RESPONSES WITH HANDLING T IME

We model the specific immune response with the handling time in a similar man-
ner to earlier approaches (De Boer and Perelson, 1995; Borghanset al., 1996; Bur-
roughs and Rand, 1998), and use the resulting model to compare vulnerability of
the specific response with that of the nonspecific response discussed in the previous
section.

In accordance with earlier models, we let the pathogen density be represented
simply by the infected (or target) cells and model the T-cell–target-cell interaction
by the following reaction,

F + P
kb



kc

C
kd

−→ (1+ γ )F.

A free T-cell F forms a complexC with an infected cellP which presents the
antigen. The rate at which these complexes are formed is proportional to the sizes
of both populationsF and P with the rate constantkb. If the T-cell does not
recognize the target the complex can dissociate with rate constantkc, or if the
target cell is recognized the complex is destroyed with rate constantkd, in any case
the T-cell is released from the complex. In this model, we only consider complexes
including a single T-cell and a single infected cell. In general, this model must be
modified to include the actual surface-to-surface interactions between cells when
the number of infected cells approaches the carrying capacity of the infected tissue.
Since our main goal is to study vulnerability of the immune response, we do not
include such interactions here.

The flow diagram of this model is presented in Fig.3.
We describe the model by the following system of differential equations,

P′(t) = r P(t)− kdh1C(t), (4.1)

F ′(t) = a− d F(t)− kbF(t)P(t)+ kcC(t)+ kd(1+ γ )C(t), (4.2)

C′(t) = kbF(t)P(t)− (kc + kd)C(t)− dC(t), (4.3)

where the following biological processes are included.
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Figure 3. Flow diagram of the specific immunity model.

(1) Viral growth/clearance. In the absence of immune response, the number
of infected cells grows exponentially at a rater . We assume that a given
hit delivered by a T-cell within the complex is successful with probability
0< h1 < 1, so that the rate of destruction of infected cells equals that of the
complex dissociation multiplied byh1.

(2) Formation/dissociation of complexes.The rate at which complexes are
formed is proportional to the sizes of both populationsF and P with the
rate constantkb. The complex can dissociate without the T-cell getting a sig-
nal or delivering a lethal hit with rate constantkc or following stimulation of
the T-cell and destruction of the target cell with rate constantkd.

(3) T-cell proliferation/death. We assume that T-cells divide upon receiving
antigen-specific signals and dissociation from the complexes with infected
cells with probabilityγ . A given T-cell destroys 1/γ targets on average
before it divides. In this model, we also include an external sourcea of
free T-cells, and a background death rated of both free and bound T-cells
d � ka, kb, kc.

The processes featured in this model have different time scales. For CD8 cells, the
lysis of the target can be performed on a time-scale of 20–30 min (Zaguryet al.,
1975; Perelson and Bell, 1982; Yanelli et al., 1986) which corresponds tokd in the
order of 50 d−1. During an acute infection, one round of division for T-cells takes
as long as 6–8 h (ρ = kdγ ≈ 2 d−1). At present, there are no reliable estimates
for the T-cell death rate, so we assumed to be in the order of 0.01–0.1 d−1. A
typical value of the viral growth rater is between 0.1 and 0.5 d−1. Therefore,
it is reasonable to make the following QSSA (QSSA-2). Since the dynamics of
complex dissociation (4.3) is faster than that of (4.1) and (4.2), we can approximate
C by lettingC′ = 0 and solving forC = kb

kc+kd+d F P, or equivalently,

C =
P

k+ P
(F + C), k =

kc + kd + d

kb
.

We let X = F + C be the total number of T-cells, substitute the QSS value of
C into (4.1), and add equations (4.2) and (4.3) to obtain the reduced model of the
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form,

P′(t)= r P(t)− h
P(t)

k+ P(t)
X(t), (4.4)

X′(t)= a+

(
ρ

P(t)

k+ P(t)
− d

)
X(t), (4.5)

whereh = h1kd andρ = kdγ .
In this model, both the proliferation rate of T-cells and the killing rate of infected

cells saturate as the number of infected cellsP becomes large (h is the maximal
killing rate of the infected cells by specific immunity, andρ is the maximal prolif-
eration rate of the specific immune cells). In the reduced model, cytotoxic activity
and proliferation of T-cells are directly correlated, which is supported by the exper-
imental observation that effector and precursor T-cells are indistinguishable during
the acute infection phase (Razviet al., 1995).

The reduced model (4.4)–(4.5) is easier to analyse because the system is two di-
mensional. We will show that the dynamic behavior of (4.4)–(4.5) closely resem-
bles the behavior of standard predator–prey models (Bell, 1973; Bazykin, 1975;
Schweitzeret al., 1992), and in particular, the dynamics of the Gause model (Hsu,
1978; Hofbauer and So, 1990). We use this model to address the following ques-
tions. (i) For which values of the operating parameters is specific immunity vulner-
able (invulnerable)? (ii) What does this model predict for the behavior of controlled
infections in the long run?

Analysis presented in AppendixB (TheoremB1) shows that vulnerability of
the specific immunity can be determined by comparing the quantitiesρ − d and
r . If ρ − d > r and a > 0, then all solutions with positive initial conditions
are bounded which implies that infections of arbitrarily large initial sizes will be
controlled by specific immunity. On the contrary, ifρ−d < r , then for a nonempty
set of initial conditions, solutions of (4.4) and (4.5) become unbounded, so that the
corresponding infections will escape the control by specific immunity (in this case,
specific immunity is vulnerable). In AppendixB, we use an approximating system
and show that ifρ − d < r , then all solutions starting on the right of the curve

P∗(X) =
h(a+ (ρ − d)X)[(r − (ρ − d))X + a]

r (r − (ρ − d))
(4.6)

are unbounded, and the ones starting on the left of this curve are bounded [see
AppendixB, (B5)–(B7)].

If the infection cannot be controlled by the specific immunity, then the parasite
will replicate to large numbers so that the killing rate will saturate ath, and the
proliferation rate of immune cells will saturate atρ − d, thus effectively making

X(t) ≈ X̃e(ρ−d)t , P(t) ≈ P̃er t
[1− Ce(ρ−d−r )t

].
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Figure 4. Bifurcations in the specific immunity model (see the detailed description in Ap-
pendixB). Steady states, limit cycles and typical trajectories for four structurally distinct
situations. (a)a > a∗, E0 is globally stable,E1 does not exist. (b)a∗ < a < a∗, E0
is unstable,E1 attracts all positive solutions; ata = a∗, E1 undergoes Hopf bifurcation.
(c) 0 < a < a∗, both E0 and E1 are unstable, the limit cycle0 attracts all positive so-
lutions (exceptE1). (d) a = 0, both E0 and E1 are unstable, all positive solutions are
unbounded.

Since the term in square brackets approaches unity, the model predicts that spe-
cific immunity is capable of only transient reduction in the replication rate of the
parasite.

It is also interesting that whena = 0, all nonconstant solutions are theoretically
unbounded independently of the relation betweenρ−d andr (AppendixB, Theo-
remB1). Nevertheless, ifρ−d > r , every unbounded positive solution eventually
passes through the region of arbitrarily small values ofP, and thus any infection
will be practically eliminated, see Fig.4 (a = 0) for details and alsoAntia et al.
(1996).

Finally, for bounded solutions of (4.4) and (4.5) which correspond to controlled
infections, we describe their asymptotic behavior. The model (4.4) and (4.5) may
have one or two steady states,E0, a trivial steady-state

(
P = 0, X = a

d

)
, andE1

with positive coordinatesP∗, X∗ > 0. In AppendixB, we choosea as a bifurcation
parameter and show how the behavior of solutions of (4.4)–(4.5) changes asa goes
from zero to infinity. In the biologically relevant case (ρ − d > r ), behavior
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of the model (4.4) and (4.5) belongs to one of the following four classes: when
a = 0 (no input), thenE1 is unstable, and all positive solutions are unbounded;
whena < a∗ is small but positive (low input), the positive steady stateE1 is still
unstable, but there is a stable limit cycle which attracts positive solutions; when
a∗ < a < a∗ (intermediate input),E1 is stable and attracts all positive solutions;
finally, if a > a∗ (high input),E1 does not exist, and all solutions converge toE0.
The bifurcation pointsa = a∗ anda = a∗ are discussed in detail in AppendixB.

5. DISCUSSION

Many of the conventional mathematical models of immunity were based on the
assumption that the clearance of the parasite by cell-mediated immune responses
obeys a simple mass action term dependent solely on the product of the densities of
immune cells and the target (parasite or infected cells). This corresponds to the as-
sumption that the time scale for an encounter between immune cells and the target
is longer than the time scale for the subsequent handling of the target by immune
cells. The relative magnitude of the encounter and handling time will be expected
to change as the densities of pathogen and immune cells fluctuate during the course
of the infection. At the onset of infection, the densities of immune cells and the
targets are low, and thus reducing the model to the earlier approximation is reason-
able; however, at a later stage when the density of the targets is high the length of
the handling time may be the rate-limiting step. In this discussion we summarize
our results by describing: (i) the biology of the handling time, (ii) how introduction
of a handling time can be incorporated into simple predator–prey models of cellular
immune responses, (iii) the consequences of doing this focusing on the vulnerabil-
ity to infection, and (iv) critically discuss the limitations of the current models.

The handling time can arise for a variety of biological reasons. For phagocytic
cells the handling time may arise due to the rate of phagocytosis or the rate of
degradation of phagocytosed parasite. As more than one parasite can be phagocy-
tosed at a time we might expect the latter to contribute more to the handling time.
For cytotoxic cells the handling time may arise due to the killing of a given target
by a CTL, or due to the exhaustion of lytic granules after multiple hits are deliv-
ered. More is known about the former than the latter. The ability of a CTL to kill
only one target at a time has been documented, and even when CTL binds to more
than one target cell the lethal hits are delivered sequentially (Zaguryet al., 1975;
Perelson and Bell, 1982).

We have added the handling time to the nonspecific and specific immunity by
including an additional equation to describe the complexes of immune cells which
are engaged in handling and killing their targets [see (3.1)–(3.3) and (4.1)–(4.3)].
Since changes in the numbers of complexes occur faster than changes in the pop-
ulation of immune cells or target cells we can set the rate of change in the den-
sity of complexes to zero allowing us to generate a simplified set of equations for
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immunity and target cells. For the nonspecific immune response we find that in-
corporation of a handling time results in a decline in the number of activated free
macrophages and can be approximated by a decline in the rate of activation of
macrophages [see (3.4) and (3.5)]. For specific immunity the addition of a han-
dling time results in the rate at which specific immune cells can kill the parasite
and can be approximated by a saturation in the killing of infected cells by immu-
nity [see (4.4) and (4.5)]. These modified equations may be useful in modeling the
nonspecific and specific responses in more complex situations.

We have shown how the introduction of a handling time makes a qualitative
change on the dynamics of both nonspecific and specific immune responses. The
effect of introducing a handling time is to make the immune system vulnerable
to high parasite inocula. We have shown that the nonspecific response is unable
to clear a sufficiently large initial dose of even a slowly growing parasite, but the
specific immunity is unable to clear only rapidly growing parasites. We have also
shown that whenever a parasite is able to escape the control by immunity, the re-
duction in the parasites per capita rate of growth due to the immune response (spe-
cific or nonspecific) will only be transient. The qualitative change in dynamics has
implications for our interpretation for measurements of the virulence of pathogens
and provides us with ways in which the model can be experimentally tested.

A commonly employed measure of the virulence of a pathogen is theL D50, the
inoculum above which on average 50% of hosts die during the course of infec-
tion. The models proposed here suggest that theL D50 may arise for two reasons.
The first is that the immune system would if given sufficient time be able to con-
trol the parasite, but when the inoculum size is greater than theL D50 the parasite
transiently reaches levels which cause host mortality. The second possibility, sug-
gested by the models in this paper, is that theL D50 corresponds to the inocula
above which the immune system is not able to control the growth of the parasite.

The models we have described can be subject to experimental tests capable of
discriminating between these models and earlier models. We illustrate one such
test for the models of nonspecific immunity. Several experimental systems have
followed nonspecific responses to pathogens by following viral or bacterial infec-
tion in SCID mice which are not able to generate specific immune responses. These
models have typically shown that the nonspecific response alone is able to control
the pathogen, but not to clear the pathogen (Bancroftet al., 1986). The earlier mod-
els have ‘dose-independent’ steady states, while the models presented in this paper
exhibit lack of control of pathogens when the inoculum density is high and feature
dose-dependent behavior. We are currently conducting such tests of the models.

The models we have presented in this work are very simple and there are sev-
eral possible directions for future improvements. First, we have modeled nonspe-
cific and specific immunity acting in totally independent ways, yet there might be
additional interactions between the cells involved in the immune responses, such as
cytokine production and/or alternative signaling between different cells. Secondly,
we have not included possible individual features of the parasite. These need to be
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incorporated as appropriate for specific parasites. Thirdly, we have assumed that
the host is a homogeneous environment. The consequences of spatial heterogeneity
must be studied as well.
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APPENDIX A: DYNAMICS OF NONSPECIFIC I MMUNITY UNDER QSSA-1

This section contains the analysis of the dynamics of the model (3.4) and (3.5).
First, we analyse steady states of the model and their stability. Then we study
asymptotic behavior of bounded solutions.

The trivial steady stateE0 =
(
0, a J

a+d

)
always exists. The variational matrix

of (3.4) and (3.5) at E0 is given by

J(E0) =

(
r − h1

a J
a+d 0

J
a+d (sd− αa2) −d

)
,

so J(E0) has eigenvaluesr − h1
a J

a+d and−d. If r − h1
a J

a+d < 0 thenE0 is stable,
and if r − h1

a J
a+d > 0 thenE0 is unstable.

Stability properties of a nontrivial steady stateE can be determined from the
variational matrix of (3.4) and (3.5) evaluated at this steady state. The variational
matrix J(E) is given by

J(E) =
(

0 −h1P∗

s(J − X∗ − αX∗P∗)− αX∗(a+ s P∗) −d − (a+ s P∗)(1+ αP∗)

)
,

(A1)

with X∗ = r
h1

andF(P∗) = X∗. The trace ofJ(E) is always strictly negative, and
the determinant ofJ(E) is given by

Det(J(E)) = h1P∗(s(J − X∗ − αX∗P∗)− αX∗(a+ s P∗)) = h1P
∂X′

∂P
.

SinceX′ = (a+s P)(J−X−αX P)−d X = (d+ (a+s P)(1+αP))(F(P)−X)
from (3.5), it follows that

∂X′

∂P
|X∗ = ν(P

∗)′(F(P∗)− X∗)+ ν(P∗)F ′(P∗) = ν(P∗)F ′(P∗),
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whereν(P) = (d + (a+ s P)(1+ αP)) > 0 is a strictly positive function. Thus,
the sign of Det(J) is the same as the sign ofF ′(P∗) becauseh1P∗ > 0. Now we
apply Routh–Hurwitz criterion for matrices [see the appendix toCoppel (1965)]
to determine the signs of the real parts of the eigenvalues ofJ(E). If F ′(P∗) >
0, then both eigenvalues ofJ(E) have negative real parts and the corresponding
steady stateE = (P∗, X∗) is linearly stable, and ifF ′(P∗) < 0, thenJ(E) has one
positive and one negative eigenvalue, andE is unstable (a saddle). We point out
that in the case of a saddle, the negative eigenvalue exceeds the positive eigenvalue
in the absolute value because their sum given by Tr(J(E)) is negative. The case
F ′(P∗) = 0 is critical. This situation occurs whenP∗ coincides with the point
of maxima ofF , that is,P∗ = P̂ and F(P̂) = r

h1
. A typical perturbation of the

parameters in (3.4) and (3.5) will either destroy the steady state [ifF(P̂) < r
h1

], or
produce two steady states: one sink (stable node) with smallerP∗ and one saddle
with greaterP∗ [if F(P̂) > r

h1
]. This is a saddle-node bifurcation of a structurally

unstable configuration of the system [for more details seeHale and Kocak (1991)].
In particular, at the point of bifurcation the resulting steady state is semi-stable
degenerate with one zero and one negative eigenvalue.

In what follows we will make use of the Poincaré–Bendixson theorem for two di-
mensional vector fields (Coddington and Levinson, 1955). The theorem states that
any bounded solution [of (3.4) and (3.5) in our case] must asymptotically approach
a compact set of solutions of either of the following three types: a steady state,
a periodic solution, or a saddle connection. We will eliminate the last two possi-
bilities and thus show that every bounded solution of (3.4) and (3.5) approaches a
steady state. In the proof, we use the fact that the only positive steady states of (3.4)
and (3.5) are either saddles, or sinks.

L EMMA A1. Any positive periodic solution of(3.4) and(3.5) is linearly stable.

Proof. Let γ (t) = (P(t), X(t)) be a periodic solution of (3.4) and (3.5) of pos-
itive periodω > 0. Let J(P, X) be the variational matrix of (3.4) and (3.5). The
trace Tr(J) is given by

Tr[J(P(ρ), X(ρ))] = [r − h1X(ρ)] + [−d − (a+ s P(ρ))(1+ αP(ρ))].

The integral
∫ ω

0 Tr(J(P(u), X(u)) du is negative because the first term in Tr(J)
integrates to zero [sinceP(t) isω-periodic by assumption], and the second term is
strictly negative. Since

∫ ω
0 Tr(J(P(u), X(u)) du< 0, stability ofγ follows. 2

The system (3.4) and (3.5) can have at most one saddle with positiveP, therefore
the only possible saddle connection is a homoclinic. Since the negative eigenvalue
exceeds the positive eigenvalue in the absolute value at a saddle point, such a homo-
clinic must be linearly stable relative its interior. Consequently, if either a periodic
solution or a homoclinic exists, it must contain at least one unstable steady state in
its interior. The only unstable steady states are saddles, and by computing the cor-
responding indices, one concludes that neither a periodic solution nor a homoclinic
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exists. Thus every bounded solution of (3.4) and (3.5) converges to a steady state
by the Poincaŕe–Bendixson theorem.

APPENDIX B: DYNAMICS OF SPECIFIC I MMUNITY UNDER QSSA-2

This section contains the analysis of the dynamics of the model (4.4) and (4.5).
First, we analyse steady states of the model and their stability. Then we present
conditions for vulnerability of the specific immunity and obtain estimates for the
critical thresholdP∗(0). Finally, we describe the asymptotic behavior of solutions
of (4.4) and (4.5) for different values of the bifurcation parametera.

The system (4.4) and (4.5) always has a trivial steady stateE0 with coordinates
P = 0 andX = a

d . The variational matrix atE0 is

J(E0) =

(
r − ha

kd 0
ρa
kd −d

)
, (B1)

whose eigenvalues arer − ha
kd and−d. If r − ha

kd > 0 thenE0 is unstable, and if
r − ha

kd < 0 thenE0 is stable. We definea∗ = krd
h > 0 so thatE0 is unstable for

a < a∗. Positive steady states of (4.4) and (4.5) are the points of intersection ofP-
andX-isoclines given by the graphs of

X1(P) =
r

h
(k+ P), X2(P) =

a

d − ρP
k+P

=
a(k+ P)

dk+ (d − ρ)P
. (B2)

Solving X1(P) = X2(P) for P > 0 gives

P∗ =
ah− krd

r (d − ρ)
,

which is positive if and only ifah−krd andd−ρ have the same sign. In particular,
E1 exists ifρ − d > 0 andE0 is unstable, or ifρ − d < 0 andE0 is stable. The
variational matrix atE1 is

J(E1) =

( r P∗

k+P∗ −h P∗

k+P∗
ρr

h(k+P∗) ρ P∗

k+P∗ − d

)
. (B3)

Direct calculation shows that Det(J(E1)) is positive forρ − d > 0 and negative
for ρ − d < 0. Thus,E1 is always unstable (a saddle) forρ − d < 0. The trace of
J(E1) is given by

Tr(J(E1)) = (r + ρ)
P∗

k+ P∗
− d. (B4)

If ρ − d > 0, then Tr(J(E1)) is a continuous decreasing function ofa which is
positive fora = 0

(
P∗ = dk

ρ−d

)
and negative fora = a∗ (P∗ = 0). We define
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a∗ (0 < a∗ < a∗) as the unique value ofa which solves Tr(J(E1)) = 0. It
follows immediately thatE1 is stable fora > a∗ and unstable fora < a∗. As a
crosses the valuea∗, the Hopf bifurcation occurs producing a stable limit cycle in
the neighborhood ofE1 for a < a∗.

The following result concerns the boundedness of positive solutions.

THEOREM B1. If a > 0 andρ − d > r , then every positive solution of(4.4) and
(4.5) is bounded. If a> 0 andρ − d < r , then there exists a nonempty region
of initial conditions where positive solutions of(4.4) and (4.5) are unbounded. If
a = 0, then all nonconstant positive solutions of(4.4) and(4.5) are unbounded.

Proof. First, we consider the case whena > 0 andρ − d > r . Let ε = 1
2(ρ −

d − r ) and letP̂ = k(ρ+d+r )
ρ−d−r . Introduce two regions:A = {(P, X)|P > P̂,0 < X

< X1(P)} where bothX and P are increasing, and the neighboring regionB =
{(P, X)|P > P̂, X > X1(P)} where X is increasing andP is decreasing. By
construction,A and B have a common boundary along the graph ofX = X1(P)
which is transversal to the flow of (4.4) and (4.5). In A, the following inequalities
hold,

P′ ≤ r P, X′ ≥ (r + ε)X,

and therefore any trajectory starting at(P0, X0) ∈ A satisfies

X(P) ≥ X0

(
P

P0

)1+ εr
,

and thus every solution leavesA in finite time and entersB. For any solution
starting inB, P′(t) ≤ P′(0) < 0 [sinceP decreases and the distance fromX =
X1(P) increases along solutions inB] and thusP(t) reaches the lineP = P̂ in
finite time, so the solution leavesB in finite time. The direction field of (4.4)
and (4.5) has a counterclockwise rotation, and it is geometrically obvious that all
positive solutions remain bounded.

If a > 0 andρ − d < r , we chooseε > 0 so thats− d + ε < r , and introduce
the regionC =

{
(P, X)|X > 2a

ε
, P > 2hX

ε

}
. Any solution inC satisfies

X′ <

(
r −

ε

2

)
X, P′ > r P − hX.

Introducing8 = X
P , we find that8′ < − ε

28 + h82 < 0 in C. Therefore,C
is a positively invariant region with no steady states. By the Poincaré–Bendixson
theorem, any solution inC becomes unbounded.

If a = 0, both coordinate axes are invariant with the flow towards the origin on
the X-axis, and towards infinity on theP-axis. E1 exists and its unstable manifold
is two dimensional. If a nonconstant solution were to be bounded, itsω-limit set
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would be a limit cycle. Let0 be such a limit cycle corresponding to anω-periodic
solution of periodω > 0. The trace of the variational matrixJ along0 is given by

Tr(J) =

(
r − h

k

(k+ P)2
X

)
+

(
ρ

P

(k+ P)
− d

)
,

where the periodicity in this case implies∫ ω

0

(
ρ

P

(k+ P)
− d

)
= 0,

and ∫ ω

0

(
r − h

1

(k+ P)
X
)
= 0.

Since k
k+P < 1, the latter implies that∫ ω

0

(
r − h

k

(k+ P)2
X

)
> 0.

Therefore,
∫ ω

0 Tr(J) > 0, and0 is unstable. This contradiction shows that all
positive solutions must be unbounded. 2

REMARK .

(1) Although mathematically in the casea = 0 all solutions become eventually
unbounded, they come arbitrarily close to theX-axis. Biologically, that im-
plies that after a certain number of oscillations the infection will be cleared.

(2) Whena is small, the system (13) and (14) always possesses a limit cycle.
As a increases, the behavior changes from unbounded (a = 0) to bounded
oscillations (0< a < a∗) and finally to convergence to a steady state (a∗ <
a). Thus, increasing the input has a stabilizing effect on the dynamics of
specific immune responses.

To separate regions of bounded and unbounded solutions, we introduce the follow-
ing approximating system,

P′ = r P − hX, X′ = a+ (ρ − d)X = a+ λX,

which is obtained from (4.4) and (4.5) by replacing both the killing term and pro-
liferation term by their maximal values and neglecting the input of T-cells. This
approximation is expected to work well whenP is large. DividingP′ by X′, we
obtain a single equation,

d P

d X
=

r P

a+ λX
−

hX

a+ λX
. (B5)
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Equation (B5) allows an explicit solution

P(X) =

(
a+ λX

a

)µ−1(
P(0)− aµ−1h

∫ X

0

z dz

(a+ λz)µ

)
, (B6)

whereµ = 1+ r
ρ−d . If ρ − d < r , that is, ifµ < 2, then all solutions of (B5) with

P(0) > 0 cross theP-isocline, and thus are bounded. Ifµ > 2, then the integral
in (B6) converges to ha2

r (r−(ρ−d)) , and solutions withP(0) > P∗ = ha2

r (r−(ρ−d)) become
unbounded. Therefore, all solutions starting on the right of the curve

P∗(X) =
h(a+ (ρ − d)X)[(r − (ρ − d))X + a]

r (r − (ρ − d))
(B7)

are unbounded, and the ones starting on the left of this curve are bounded.
Finally, we describe the behavior of positive solutions in the caseρ− d > r . We

choosea as a bifurcation parameter. Ifa ≥ a∗, thenE0 is globally stable because
E1 does not exist. Whena is decreased belowa∗, E0 becomes unstable andE1

is born which is globally stable now. Asa passes througha = a∗, its stability
character changes and the Hopf bifurcation produces a stable limit cycle in the
positive quadrant. The Hopf bifurcation is supercritical (we omit this calculation),
so the limit cycle generated here is indeed unique and stable. Asa decreases further
to 0, subsequent bifurcations are possible (multiplication of limit cycles), but we
have not observed such behavior numerically. The casea = 0 is studied in detail
in the proof of TheoremB1.
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