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Abstract Floquet theory and perturbation techniques are used to analyze a classi-
cal within-host virus model with periodic drug treatment. Both single and multidrug
treatment strategies are investigated. Specifically, the effects of both RT-inhibitors
and P-inhibitors on the stability of the infection-free steady state are studied. It is
found that when both classes of drugs have periodic drug efficacy functions, then
shifting the phase of these functions can critically affect the stability of the infection-
free steady state. A numerical study is conducted to illustrate the theoretical results
and provide additional insights.

Keywords Within-host virus model · Periodic drug treatment · Structured treatment
interruption · HIV · Optimization

1 Introduction

Mathematical modeling of within-host viral infections has played an important role
in the understanding of viruses over the past couple decades. These models usually
involve a system of nonlinear ODEs comprised of at least three state variables cor-
responding to concentrations of healthy cells, infected cells, and free virus particles.
Antiviral medications used to treat these infections can be incorporated into mathe-
matical models and insights may be gained into the overall effect that the drugs have
on the dynamics of the system. The administration of a drug is typically periodic on
a day to day time scale (for example, in HIV treatment the RT-inhibitor tenofovir DF
is usually taken once every 24 hours (Fung et al. 2002)). The drug efficacy function
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is periodic of the same period; within a cycle it is usually characterized by a quick
rise to a maximum soon after drug intake, followed by a slower decay (Dixit and
Perelson 2004; Rong et al. 2007). Inclusion of periodic treatment can be modeled by
a nonlinear time periodic ODE system, which in general is difficult to analyze.

In this paper, we consider a classical within-host virus model (Perelson et al. 1993;
Perelson and Nelson 1999; Nowak and May 2000) which encompasses several im-
portant infections such as HIV (Richman 2004), hepatitis B (Ganem and Prince 2004;
Locarnini and Lai 2003) and C (Gilchrist et al. 2004), influenza (Earn et al. 2002), and
even the malaria parasite P. falciparum (Molineaux and Dietz 2000). We will apply
perturbation techniques and the Floquet theory to explore the consequences of peri-
odic variations of the efficacy of antiviral treatment. Our results should be interpreted
with caution as many factors which may be important to the dynamics of viruses are
not included in the model. For example, drug resistance, immune response, and la-
tent reservoirs of virus all may have important consequences for the dynamics of the
HIV virus and are often included in some form in other models. See, for example,
Ball et al. (2007), De Leenheer and Pilyugin (2008) for inclusion of drug resistance,
Silliciano et al. (2003), Rong and Perelson (2009) for a discussion of latent reservoirs
and viral persistence, and Adams et al. (2004) for a model with immune response.
It also should be noted that current medications cannot completely eradicate HIV
virus. The fact that viral eradication is theoretically possible shows that all the rele-
vant dynamics of the HIV virus are not captured in the standard model or that cur-
rent drugs are not potent enough. Viral mutation to drug resistant strains (Bonhoeffer
and Nowak 1997), the presence of latent reservoirs of HIV (Silliciano et al. 2003;
Rong and Perelson 2009), and residual viral replication during treatment (Rong and
Perelson 2009) have all been proposed to explain the treatment failure.

The standard within-host virus model considered here is a system of three nonlin-
ear ODEs. In the case of HIV, its states include the concentrations of healthy CD4+
T cells (the targets of the virus), infected T cells, and free virus particles. Upon infec-
tion of a healthy T cell, the viral RNA is converted into DNA using the enzyme called
reverse transcriptase. This step, which is error-prone and leads to mutations, can be
blocked by reverse transcriptase (RT) inhibitors. Once the viral copy has been made,
the double stranded viral DNA is integrated into cell’s nucleus as a provirus. Subse-
quently, viral proteins are produced according to the genetic information encoded in
the provirus. These proteins are constructed, mature, and new viruses bud off from
the infected cell’s surface which go on to infect other healthy T cells. During the mat-
uration stage, the protease enzyme cleaves long protein chains, and the protease (P)
inhibitors are the drugs that target this step.

In the case of HIV, using a “drug cocktail” consisting of both RT-inhibitors and
P-inhibitors is common treatment protocol, which is often referred to as HAART
(highly active antiretroviral therapy). As stated above, these drugs work at different
stages in the viral replication process and their corresponding efficacy functions are
periodic in time. We will investigate the effect that phase shifts of these drug efficacy
functions have on the dynamics of the system. Shifting the phase of a drug efficacy
function corresponds to changing the daily drug administration time (assuming the
drug is taken once each day; the assumption of a periodic efficacy function, of course,
means that the patient takes the drug at the same time each day). If just one drug is
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used in a treatment, shifting the phase of the drug efficacy function does not change
the system dynamics. If, however, both an RT-inhibitor and P-inhibitor are used, then
these phase shifts can completely change the dynamics. With this in mind, we will
search for optimal phase shifts of the RT-inhibitor and P-inhibitor drug efficacy func-
tions (optimal in the sense of maximizing overall treatment effectiveness). Again,
results should be viewed with caution as we do not use the actual pharmacokinetic
models of the drug efficacies. Refer to Dixit and Perelson (2004) and Rong et al.
(2007) for detailed pharmacokinetic models.

Another avenue of research in HIV treatment is the use of Structured Treatment In-
terruptions (STIs). These regimens provide patients with relatively long breaks from
taking medications, sometimes called drug holidays. Antiviral drugs can have numer-
ous side effects, so STIs can reduce the treatment burden on patients in an organized
manner, which in turn increases patient adherence to drug regimens. Also, theoreti-
cally, STIs may help to combat drug resistance in patients. Finally, antiviral medica-
tions are often expensive or in limited supply, therefore, STIs can help to alleviate this
problem. There is much research on the optimal control of STIs (Adams et al. 2004;
Rosenberg et al. 2006). It will be seen that our results, as viewed in the context of
STIs, are significant but again need to be viewed with much caution as the deficien-
cies of the model also become more dramatic with the larger time period under which
treatments vary in STIs. There are a multitude of possible treatment regimens and
doctors create STI regimens with what can be described best as an “educated guess”
of what would be most effective (Rosenberg et al. 2006), so the search for optimal
STIs certainly calls for more research.

This paper is organized as follows. First, we introduce periodic perturbations of a
constant drug efficacy. We do this for general periodic functions and then look at the
specific case where the perturbation function is sinusoidal, where we discover that
the phase shifts mentioned earlier have a significant influence on the dynamics of the
system. To illustrate this result, we provide simulations using current estimates for
HIV parameters. Because of some shortcomings of the standard model with respect
to generating a persistent low level virus concentration, we simulate two modifica-
tions of the model and obtain the same conclusion that phase shifts of the drug effi-
cacy functions can significantly affect treatment outcome. We then shift back to the
original model and state a simple result about optimizing the phase shift of arbitrary
periodic drug efficacy functions in a combination therapy. Finally, we consider drug
efficacies that are piecewise constant periodic functions and numerically investigate
the effect that varying phase shifts has on the long term dynamics of the system.

2 The Model

As a starting point, we consider the classical within-host viral model (Perelson et al.
1993; Perelson and Nelson 1999; Nowak and May 2000)

Ṫ = f (T ) − kV T ,

Ṫ ∗ = kV T − βT ∗,

V̇ = NβT ∗ − γV,

(1)
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where T , T ∗, and V denote the concentrations of healthy and infected cells, and virus
particles, respectively. All parameters are assumed to be positive. The parameters β

and γ are the decay rates of infected cells and virus particles, respectively. The infec-
tion is represented by a mass action term kV T , and N is the average number of virus
particles budding off an infected cell during its lifetime. The homeostatically regu-
lated growth rate of the uninfected cell population is given by the smooth function
f (T ) : R+ → R, which is assumed to satisfy the following:

∃T0 > 0 : f (T )(T − T0) < 0 for all T �= T0 and f ′(T0) < 0.

The class of admissible functions f (T ) is chosen to be quite large. It contains the two
most popular choices for f (T ), namely, a − bT for some positive a and b (Nowak
and May 2000), and s + rT (1 − T/Tmax) for some positive s, r , and Tmax (Perelson
and Nelson 1999).

Since continuity of f implies that f (T0) = 0, it follows that E0 = (T0,0,0) is an
equilibrium of (1), and will be referred to as the infection-free equilibrium. A second,
positive equilibrium (corresponding to an infection) exists if the following quantities
are positive:

T = γ

kN
, T

∗ = f (T )

β
, V = f (T )

kT
.

This is the case iff f (
γ

kN
) > 0, or equivalently T = γ

kN
< T0. In terms of the basic

reproductive number R0 := T0
γ

kN , the positive equilibrium exists whenever R0 > 1.

Theorem 1 (De Leenheer and Smith 2003) If R0 > 1, then E0 is unstable and the
infection persists (there exists δ > 0 such that T (t), T ∗(t),V (t) > δ for all sufficiently
large t). If R0 < 1, then E0 is globally asymptotically stable (GAS).

If, in addition, the function f (T ) satisfies the “sector condition”: (f (T ) −
f (T ))(T − T ) ≤ 0 for all T > 0, then the positive equilibrium is GAS when R0 > 1
(De Leenheer and Smith 2003; De Leenheer and Pilyugin 2008).

Suppose now that R0 > 1, so that a treatment is needed to clear the infection. To
study this scenario, we modify the model by including two types of drugs, i.e., the
RT-inhibitors and P-inhibitors:

Ṫ = f (T ) − k
(
1 − ηRT(t)

)
V T,

Ṫ ∗ = k
(
1 − ηRT(t)

)
V T − βT ∗,

V̇ = N
(
1 − ηP (t)

)
βT ∗ − γV,

(2)

where ηRT(t), ηP (t) : R → [0,1] are the drug efficacy functions of the RT-inhibitor
and P-inhibitor (respectively). Suppose also ηRT(t) and ηP (t) are periodic and share
a common period τ .

Since we consider the drug treatment as a periodic forcing, we will treat the
infection-free equilibrium E0 as a τ -periodic solution of (2). The stability of E0 can
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be deduced from the linearized system

ẋ = B(t)x, (3)

where

B(t) =
⎛

⎝
f ′(T0) 0 −k(1 − ηRT(t))T0

0 −β k(1 − ηRT(t))T0
0 N(1 − ηP (t))β −γ

⎞

⎠ .

We want to investigate the Floquet multipliers of B(t) since they determine the local
stability properties of E0 for system (2). Since B(t) is block triangular, its Floquet
multipliers are λ1 = ef ′(T0)τ and λ2 and λ3 that are also the Floquet multipliers of the
τ -periodic system

(
ẋ2
ẋ3

)
=

( −β k(1 − ηRT(t))T0
N(1 − ηP (t))β −γ

)(
x2
x3

)
. (4)

The Floquet multipliers λ2 and λ3 are the eigenvalues of X(τ) where X(t) is the
principal fundamental solution to system (4). λ1 = ef ′(T0)τ < 1 since f ′(T0) < 0, so
we focus our attention on λ2 and λ3.

Since the matrix in (4) is quasipositive, X(t) has nonnegative entries for all t ≥ 0.
Therefore, by the Perron–Frobenius theorem the spectral radius of X(τ) is an eigen-
value (i.e., the eigenvalue with maximal modulus is positive). We denote the spec-
tral radius by ρ(X(τ)) and let λ2 be the dominant Floquet multiplier of (4) (i.e.
λ2 = ρ(X(τ))).

The following theorem is due to d’Onofrio.

Theorem 2 (d’Onofrio 2005) Let the Floquet multipliers of system (4) be contained
inside the open unit disk in the complex plane. Then E0 is GAS for system (2), hence
the infection is cleared.

If ρ(X(τ)) > 1, then E0 is unstable. If ρ(X(τ)) < 1, then by Theorem 2, E0
is GAS. We note that the spectral radius ρ(X(τ)) is really a measure of treatment
effectiveness when ρ(X(τ)) < 1. The smaller it is, the faster the convergence to E0
will be.

3 Perturbation Technique

Because this system is difficult to analyze for general periodic functions, we will first
look at small periodic perturbations from constant drug efficacies.

Assuming the drug efficacies are constant over time (ηRT(t) = e1 ∈ [0,1] and
ηP (t) = e2 ∈ [0,1]), we can consider the total drug efficacy as an ordered pair
(e1, e2) ∈ [0,1] × [0,1]. The stability of E0 is determined by whether or not the
modified basic reproduction number R̃0(e1, e2) is less than 1, where

R̃0(e1, e2) = T0

γ
k(1 − e1)N(1 − e2) = R0(1 − e1)(1 − e2). (5)
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Fig. 1 The stability diagram for
constant efficacy treatments.
This curve represents the
threshold efficacies (i.e., where
(1 − eRT)(1 − eP ) = 1

R0
).

Outside the curve E0 is stable,
inside the curve E0 is unstable.
In this figure, 1 − 1

R0
≈ 0.681,

as in Rong et al. (2007)

The infection-free equilibrium E0 is GAS when

(1 − e1)(1 − e2) <
1

R0
,

and is unstable, (also the infection persists), when the reversed strict inequality holds.
The stability threshold curve (1 − e1)(1 − e2) = 1

R0
has intercepts (e∗,0) and (0, e∗)

where e∗ = 1 − 1
R0

and is shown in Fig. 1.
The goal now is to investigate how periodically perturbing constant drug efficacies

affects the system. Fix eRT ∈ [0,1] and eP ∈ [0,1]. Let

ηRT(t, ε) = eRT − ε · ϕRT(t), ηP (t, ε) = eP − ε · ϕP (t), (6)

where ε > 0 is small and ϕRT(t), ϕP (t) : R → R are τ -periodic analytic functions.
In Fig. 2, we depict a sinusoidal perturbation from a constant efficacy.

Proposition 3 (Noncritical case) Consider system (2) with ηRT(t, ε), ηP (t, ε) as
in (6). Suppose that (1 − eRT)(1 − eP ) �= 1

R0
.

(i) If (1 − eRT)(1 − eP ) > 1
R0

, then for all sufficiently small ε, E0 is unstable.

(ii) If (1 − eRT)(1 − eP ) < 1
R0

, then for all sufficiently small ε, E0 is GAS.

The proof of local stability is based on the continuity of Floquet multipliers with
respect to small perturbations. Then global stability of E0 in case (ii) follows from
d’Onofrio’s result. We consider this the noncritical case because small perturbations
do not alter the stability of E0.

The more interesting case is the critical one where (eRT, eP ) is on the threshold
curve, i.e.,

(1 − eRT)(1 − eP ) = 1

R0
.
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Fig. 2 This shows a small amplitude sinusoidal perturbation (here, we let ϕRT(t) = − sin t in (6))

For the rest of this section, we concentrate exclusively on the critical case. Now for
each ε > 0, we substitute (6) into (4) and obtain the τ -periodic system

(
ẋ2
ẋ3

)
=

( −β k(1 − (eRT − ε · ϕRT(t)))T0
N(1 − (eP − ε · ϕP (t)))β −γ

)(
x2
x3

)
.

Observing that

k
(
1 − η(t, ε)

)
T0 = kT0

(
1 − eRT + ε · ϕ(t)

)

= kT0

R0(1 − eP )
+ kT0ε · ϕ(t)

= γ

N(1 − eP )
+ kT0ε · ϕRT(t),

the above system can be written as

(
ẋ2
ẋ3

)
=

( −β
γ

N(1−eP )

N(1 − eP )β −γ

)
+ ε ·

(
0 kT0ϕRT(t)

NβϕP (t) 0

)(
x2
x3

)

=
( −β

γ
N(1−eP )

N(1 − eP )β −γ

)

+ ε ·
(

kT0ϕRT(t)

(
0 1
0 0

)
+ NβϕP (t)

(
0 0
1 0

))(
x2
x3

)
. (7)

For each ε > 0, the Floquet multipliers of (7) determine the stability of E0 for system
(2) (with the functions of (6) as the efficacy functions in (2)). We let Y(t, ε) denote
the principal fundamental solution to (7). We also let

B0 =
( −β

γ
N(1−eP )

N(1 − eP )β −γ

)
, BRT =

(
0 kT0
0 0

)
, and BP =

(
0 0

Nβ 0

)
.
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Then Y(t, ε) is a principal fundamental solution to

ẋ = (
B0 + ε · (ϕRT(t)BRT + ϕP (t)BP

))
x,

and the Floquet multipliers of (7) are the eigenvalues of Y(τ, ε).
The eigenvalues of B0 are −(β + γ ) and 0. Hence, diagonalizing B0, we obtain

B0 = Q

(
0 0
0 −(β + γ )

)
Q−1,

where

Q =
(

1 1
N(1−eP )β

γ
−N(1 − eP )

)

and Q−1 = 1

1 + β/γ

(
1 1

N(1−eP )

β/γ −1
N(1−eP )

)

.

For computational convenience, we introduce the auxiliary quantities a := β/γ ,
b := (β + γ ) and M := N(1 − ep). We also define

A0 := Q−1B0Q =
(

0 0
0 −b

)
,

ART := Q−1BRTQ = kT0

1 + a

(
Ma −M

Ma2 −Ma

)
,

AP := Q−1BP Q = β

(1 + a)(1 − eP )

(
1 1

−1 −1

)
,

X(t, ε) := Q−1Y(t, ε)Q.

Upon introducing A1(t) := ϕRT(t)ART + ϕP (t)AP , X(t, ε) becomes the principal
fundamental solution to

ẋ = (
A0 + ε · A1(t)

)
x. (8)

The eigenvalues of X(τ, ε) coincide with those of Y(τ, ε) since the matrices are
similar. Thus, the spectral radius of X(τ, ε) determines the stability properties of E0.

The proofs of the following propositions rely upon expanding X(t, ε) as a Taylor
series and using the Implicit Function theorem to expand the dominant eigenvalue of
X(t, ε) as an analytic function of ε (for small ε), then calculating derivatives of this
function at ε = 0 in order to see where the perturbation takes the dominant eigenvalue.
The proofs are deferred to the Appendix.

Throughout the remainder of this paper, we will denote the time average of a τ -
periodic function ϕ as ϕ := 1

τ

∫ τ

0 ϕ(t) dt and define the following quantity Δ1 as

Δ1 := ϕRTkT0N(1 − eP )β

γ
+ ϕP β

(1 − eP )
. (9)

Proposition 4 Let ε > 0 be sufficiently small and ηRT(t, ε), ηP (t, ε) be defined as
in (6) (with (1 − eRT)(1 − eP ) = 1

R0
). If Δ1 < 0, then ρ(X(τ, ε)) < 1. Hence, the

infection-free equilibrium E0 for system (2) is GAS. If Δ1 > 0, then ρ(X(τ, ε)) > 1
and hence E0 is unstable.
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If ϕP = 0 and ϕRT �= 0, then stability is determined by sgn(ϕRT). This is certainly
expected since ϕRT < 0 implies ηRT > eRT, and ϕRT > 0 implies ηRT < eRT. An anal-
ogous statement can be made for when ϕRT = 0 and ϕP �= 0.

In what follows, we investigate a more subtle question, namely, what happens
when both ϕRT = 0 and ϕP = 0 (which implies Δ1 = 0).

We introduce

C :=
∫ τ

0
e−A0tA1(t)e

A0t dt,

E :=
∫ τ

0
e−A0tA1(t)e

A0t

(∫ t

0
e−A0sA1(s)e

A0s ds

)
dt,

(10)

and

Δ2 :=
(

E11 + e−bτ

1 − e−bτ
C12C21

)
. (11)

Proposition 5 Suppose that ε > 0 is sufficiently small and ηRT(t, ε), ηP (t, ε)

are as defined in (6). Also, suppose that ϕRT = 0 and ϕP = 0. If Δ2 < 0, then
ρ(X(τ, ε)) < 1. Hence, the infection-free equilibrium E0 for system (2) is GAS. If
Δ2 > 0, then ρ(X(τ, ε)) > 1, and hence E0 is unstable.

This proposition implies that when ϕRT = 0 and ϕP = 0, stability of E0 is deter-
mined exclusively by the sign of Δ2.

3.1 Perturbation by Sinusoidal Functions

In this section, we consider a specific example where ϕRT(t) and ϕP (t) are sinusoidal
functions.

Proposition 6 Let ε > 0 be sufficiently small and ϕRT(t) = α1 sin t , ϕP (t) = α2 sin t

in (6) where α1, α2 ∈ R. Let Λ := −R0(
α1
α2

(1 − eP )2 + α2
α1

(1 − eRT)2) + (
γ
β

+ β
γ
).

Then Δ2 = KΛ where K > 0. Hence, the infection-free equilibrium E0 for system
(2) is GAS when Λ < 0. E0 is unstable when Λ > 0.

Some remarks are in order after this proposition. First, if either α1 = 0 or α2 = 0
(but not both zero), then Λ < 0. Hence, if we periodically perturb the RT-inhibitor
about a critical efficacy while holding the P-inhibitor at a critical efficacy or vice-
versa, then E0 is GAS.

Second, suppose α1 and α2 have the same sign. This corresponds to the case where
ϕRT(t) and ϕP (t) are completely in phase with each other. In this case, for certain
choices of parameters, Λ is positive.

We now analyze when Λ > 0 in this case, denote the above expression for Λ as

Λ = β2α1α2

[
−g(eRT, eP ) +

(
γ

β
+ β

γ

)]
,
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where g(eRT, eP ) = −R0(
α1
α2

(1 − eP )2 + α2
α1

(1 − eRT)2) and (eRT, eP ) ∈ [0, e∗] ×
[0, e∗] (since (1−eRT)(1−eP ) = 1

R0
). Assume, without loss of generality, that |α2| ≥

|α1|. Then the maximum of g(eRT, eP ) occurs when eRT = 0, eP = e∗, where we have
g(0, e∗) = α1

α2R0
+ α2R0

α1
. Hence, if γ

β
>

α2R0
α1

or γ
β

< α1
α2R0

, then Λ > 0 for all possible

(eRT, eP ) ∈ [0, e∗] × [0, e∗]. Next, assume eRT = eP (= 1 −
√

1
R0

). Then Λ > 0, if
γ
β

> α2
α1

or γ
β

< α1
α2

. Therefore, if α1 = α2 and eRT = eP , then Λ ≥ 0 no matter what
virus/host parameters are chosen. Hence, when α1 and α2 have the same sign, E0 can
become unstable. In other words, small “in-phase perturbations” can destabilize the
infection-free equilibrium.

Finally, we consider the last case: α1 and α2 have opposite signs (i.e., ϕRT(t) and
ϕP (t) are completely out of phase sinusoidal functions). Then Λ is always negative,
and the infection-free equilibrium E0 is GAS. Therefore, these small “out-of-phase
perturbations” always stabilize the infection-free equilibrium.

In Fig. 3, there are some simulations illustrating this phenomenon using estimates
of HIV parameters from Rong and Perelson (2009). In the simulations, we see that the
in-phase perturbations do not clear the infection. Also, notice that there are two peri-
ods of oscillations that occur. There are high frequency oscillations (period = 1 day)
due to the periodic forcing from the sinusoidal drug efficacies. The low frequency
damped oscillations are due to the fact that the positive steady state of system (1) is
a locally asymptotically stable spiral point. In addition, we see that the out-of-phase
sinusoidal forcing clears the infection.

A criticism of system (2) (assuming constant drug efficacies) is that it cannot ro-
bustly generate a low level viral steady state often observed in patients undergoing
therapy (Rong and Perelson 2009). As the drug efficacies approach the threshold
level, the magnitude of the viral steady state is very sensitive to small changes in
efficacy. In addition, as the viral steady state decreases in magnitude, the viral load
will spend a rapidly increasing length of time very close to zero. These features of
the model still exist with periodic drug efficacies, although at least for small ampli-
tude periodic perturbations, the viral steady state becomes a periodic solution. The
standard model with treatment, system (2), does not seem to capture some relevant
dynamics which contribute to low level viral persistence. An excellent review of mod-
eling HIV persistence is provided by Rong and Perelson (2009). We briefly discuss
and display simulations for two slightly modified versions of (2) that partially attempt
to address the aforementioned criticism.

First, we consider a model which changes the per capita decay rate of T ∗ from
the constant, β , to a function, δ(T ∗) (Callaway and Perelson 2002). A simple form
for δ(T ∗), which was shown to robustly generate low level viremia, is δ(T ∗) = (T ∗)ω
where ω > 0. This model does not display such sensitivity of viral steady state with
respect to changes in drug efficacies when (eRT, eP ) are located close to the threshold
curve. Also, the model was shown to fit data fairly well (Holte et al. 2006). The ex-
istence and validity of a biological mechanism behind this particular form of density
dependent per capita decay rate for infected cells is questionable, however. In Fig. 4,
we show simulations of this density dependent model with both in-phase and out-of-
phase sinusoidal drug efficacy functions. It is seen that the out-of-phase treatments
control the virus to levels just below 50 copies/ml. The in-phase treatments initially
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Fig. 3 Viral Load vs. time for model (2) with ηRT(t) = (e − 0.03) − 0.2 sin(2πt) and

ηRT(t) = (e−0.03)−0.2 sin(2πt +ψ), where e = 1−
√

1
R0

= 0.7673. ηRT(t) is depicted in (b). Note that

the drug efficacies are perturbed about the value 0.7373 and have amplitude 0.2. The phase shift ψ = 0,
corresponding to the in-phase treatments, was used in (a), (b), and (d). ψ = 0.5, corresponding to the out-
-of-phase treatments, was used in (c) and (f). In (e), the drug efficacies used, ηRT(t) = ηP (t) = e − 0.03,
are constant. The values of the parameters used in these simulations are taken from Rong and Perelson
(2009). They are as follows: f (T ) = a − bT with a = 104 ml−1 day−1 and b = 0.01 day−1 (which im-
plies that T0 = 106 ml−1), k = 8 × 10−7 ml day−1, β = 0.7 day−1, N = 300, γ = 13 day−1. The initial
conditions are taken to be the positive steady state of (1). The in-phase treatment initially brings the viral
load close to zero, but then there is large amplitude viral oscillations, (a) before converging to a periodic
solution with fairly high viral load, (d). The out-of-phase treatments cause the viral load to decay to zero,
(c), (f). The viral load, under the assumption of a constant drug efficacy of magnitude 0.7373 (= e−0.03),
is shown in (e)
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drive the virus to low levels, but then the virus rebounds to levels in excess of 10,000
copies/ml. At these viral levels, the in-phase treatments would certainly be a failure,
where as the out-of-phase treatments would be successful in supressing the virus to
levels below detection by standard assays. The contrast in results when varying the
phase difference (while keeping the drug strengths constant) is certainly striking.

A rather naive way of keeping the virus level away from zero, is to simply perturb
model (2) by a constant. Explicitly, we just add a constant, A > 0, to the V̇ equation.
The motivation behind this can be a very slow replicating drug sanctuary which leaks
virus particles at a rate A day−1 and also produces virus at that same constant rate.
Hence, the drug sanctuary remains fixed in size. For sufficiently small values of A,
the qualitative behavior of the family of solutions will not change; however, V (t) will
always be strongly persistent no matter what the drug efficacy, i.e., ∃ ε > 0 (dependent
on A) such that V (t) > ε ∀t > 0. A simulation of this model with our periodic drug
efficacies is shown in Fig. 4.

These results illustrate the importance of understanding the pharmacokinetics of
the drugs in a combination therapy. Drugs and their dosing regimens are often de-
signed to limit the variability of drug efficacy over the course of treatment. Interest-
ingly, we have shown that when inserting periodic drug efficacies into a dynamical
model of the virus, the phase difference between the RT-inhibitor, and P-inhibitor ef-
ficacy functions can greatly influence the treatment outcome. This can be viewed as
an affirmation of the goal of minimizing variability in drug efficacy over time. Al-
ternatively, especially given toxicity of medications, time-varying efficacy functions
can be viewed as something to exploit if the phase difference between the RT- and
P-inhibitor can be controlled. There are many factors which affect how the drug ef-
ficacy functions; ηRT(t) and ηP (t), might look in reality and how much drug design
can effectively “shape” these drug efficacy functions. The complexities of this issue
constitute a significant portion of pharmaceutical research. In a way, our results add
an extra factor of complexity into the equation.

As we vary the phase difference of the drug efficacy functions in these models, a
wide range of viral rebound levels are realized. In clinical studies of viral rebound
during HAART, patients have displayed variable results. For example, in a study
of viral level in patients 1 year after the initiation of HAART, 71% achieved vi-
ral levels below 500 copies/ml, 10% had viral levels at 500–5000 copies/ml, and
19% had a viral rebound above 5000% copies/ml (Abgrall et al. 2003). The reason
for differing viral rebounds in patients is not always known. As patients certainly
might have different dosing schedules, levels of adherence, and different pharma-
cokinetic/pharmacodynamic parameters, our results offer a possible explanation for
some of the variance in results.

We conclude that shifting the phase of ηP (t, ε) in (6), which in this case amounts
to changing the phase difference between ηRT(t, ε) and ηP (t, ε), can affect the stabil-
ity of E0. How much this phase difference affects the treatment outcome depends on
the parameters. For certain choices of the parameters, phase difference has a dramatic
effect on the stability of E0. Our results indicate that the timing between periodic
dosages of RT-inhibitors and P-inhibitors can affect treatment effectiveness. There
might be an “optimal dosing schedule” for treatment involving both RT-inhibitors
and P-inhibitors. Thus, given the above observations, we further investigate varying
phase shifts of the two drug efficacy functions.
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Fig. 4 Simulations for the two modified models. (a), (b), (c), and (d) are based on the standard model,
system (2), with density dependent decay rate for infected cells, i.e., Ṫ ∗ = k(1 −ηRT(t))V T − δ(T ∗)ω+1.
The drug efficacy functions used are: ηRT(t) = 0.79 − 0.2 sin(2πt) and ηP (t) = 0.80 − 0.2 sin(2πt + ψ)

where ψ = 0 in (a), (b), and ψ = 0.5 in (c), (d). All the remaining parameters are the same as used in the
simulations in Fig. 3, except there are two new parameters, ω and δ. We choose ω = 0.4 and δ = 0.274
day−1, as was used in Rong and Perelson (2009). δ is chosen so that the pretreatment viral steady state is
the same as with the standard model. (e), (f) are based on the perturbed standard model, i.e., system (2)
with Ṫ ∗ = k(1−ηRT(t))V T −βT ∗ +A. Here, we choose A = 1 day−1 and ηRT(t) = 0.78−0.2 sin(2πt)

and ηP (t) = 0.80 − 0.2 sin(2πt + ψ) where ψ = 0 in (e) and ψ = 0.5 in (f)

4 Optimizing Phase Shifts for General Periodic Functions

Let ηRT(t) and ηP (t) be given τ -periodic drug efficacy functions on R. For ψ1,ψ2 ∈
R, we consider the (linearized) phase shifted system:

ẋ = B(t,ψ1,ψ2)x, (12)
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where

B(t,ψ1,ψ2) =
⎛

⎝
f ′(T0) 0 −k(1 − ηRT(t − ψ1))T0

0 −β k(1 − ηRT(t − ψ1))T0
0 N(1 − ηP (t − ψ2))β −γ

⎞

⎠ .

Proposition 7 Let λ2(ψ1,ψ2) be the dominant Floquet multiplier of (12). Then,
λ2(ψ1,ψ2) = λ2(0, (ψ2 − ψ1)modulo τ).

Denote λ2(0,ψ) as λ2(ψ). Observe the following:

1. The map ψ �−→ λ2(ψ) is a τ -periodic function on R.
2. When optimizing phase shifts of ηRT(t) and ηP (t), we only need to consider phase

shifts, ψ , where ψ ∈ [0, τ ) and ψ shifts ηP (t) to ηP (t − ψ) (ηRT is not shifted).
Hence, the timing between administered dosages of RT-inhibitors and P-inhibitors
is the variable which affects the system dynamics.

We define the optimal phase shift ψ∗ ∈ [0, τ ) as the minimizer of λ2(ψ). For
ψ ∈ [0, τ ) let X(t,ψ) be a principal fundamental solution to system (4) with ηRT(t)

and ηP (t − ψ) as the drug efficacy functions in the system. The following theorem
may be useful when numerically optimizing phase shifts.

Theorem 8 The optimal phase shift ψ∗ is the minimizer of trX(τ,ψ).

The proofs of these results can be found in the Appendix.

5 A Numerical Study with Bang-Bang Efficacies

We now numerically explore the effect that phase shifts have on the dyanamics of sys-
tem (2), when the drug efficacies are of the bang-bang type. Throughout this section,
the dominant Floquet multiplier (of the system: ẋ = B(t,0,ψ)x) is denoted as λ2.
We consider drug efficacy functions of the bang-bang type and sums of these func-
tions which are just piecewise constant functions. In the following examples, ηRT(t)

and ηP (t) are assumed to be of the same type of periodic functions. Hence, we refer
to the phase shift, ψ ∈ [0, τ ), as the phase difference between ηRT(t) and ηP (t − ψ).
First, we define ηRT(t), ηP (t) : R → [0,1] as periodic functions with period τ = 1
such that

ηRT(t) =
{

eRT if t ∈ [0, 1
2 ),

0 if t ∈ [ 1
2 ,1)

and ηP (t) =
{

eP if t ∈ [0, 1
2 ),

0 if t ∈ [ 1
2 ,1).

Hence, if the phase difference ψ ∈ [0, 1
2 ], then on [0,1):

ηP (t − ψ) =
{

eP if t ∈ [ψ, 1
2 + ψ),

0 if t ∈ [0,ψ) ∪ [ 1
2 + ψ,1].
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Fig. 5 (Color online) An example of the bang-bang functions with a phase difference ψ . Here, ηRT(t) is
the red curve and ηP (t − ψ) is the dashed blue lines

If ψ ∈ ( 1
2 ,1), then on [0,1):

ηP (t − ψ) =
{

eP if t ∈ [ψ,1) ∪ [0,ψ − 1
2 ),

0 if t ∈ [ψ − 1
2 ,ψ).

Here, eRT and eP are fixed in [0,1]. Hence, the efficacy of the RT-inhibitor and
P-inhibitor are eRT and eP (respectively) for 12 hours in a day and 0 for the other
12 hours. The graph of this function is shown in Fig. 5. This bang-bang control is
certainly not perfect for modeling the real drug efficacy functions, but it allows us
to explicitly calculate Floquet multipliers and thus gives us an idea of how vary-
ing the phase difference can affect treatment effectiveness. De Leenheer (2009) has
shown that the Floquet multipliers of this system are ef ′(T0) and the eigenvalues
of:

Λ(eRT, eP ,ψ) = exp
[
(0.5 − ψ)E(0,0)

]
exp

[
ψE(0, eP )

]

× exp
[
(0.5 − ψ)E(eRT, eP )

]
exp

[
ψE(eRT,0)

]

when ψ ∈ [0, 1
2 ], and

Λ(eRT, eP ,ψ) = exp
[
(ψ − 0.5)E(0, eP )

]
exp

[
ψE(0,0)

]

× exp
[
(ψ − 0.5)E(eRT,0)

]
exp

[
ψE(eRT, eP )

]

when ψ ∈ ( 1
2 ,1); where

E(eRT, eP ) =
( −β k(1 − e1)T0

N(1 − e2)β −γ

)
.
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Fig. 6 (Color online) In (a), we assume the drug efficacy functions to be of the type depicted in Fig. 5
with eRT = eP = e ∈ [0.3,1]. The blue line graphs λ2 as a function of efficacy e when ψ = 0. The red line
depicts λ2 as a function of efficacy e when ψ = 0.5. The dashed gray line is λ2 = 1. We see the in-phase
treatments do not clear the infection while the out of phase treatments do clear the infection. In (b), λ2 is
plotted as a function of the phase difference, ψ , when the drug efficacy functions, ηRT(t) and ηP (t − ψ),
are assumed to be of the type displayed in Fig. 5. The red curve (the curve which is closer to 0) represents
the case when eRT = eP = 0.85 and the blue curve represents the case when eRT = 0.9, eP = 0.5 or
eRT = 0.5, eP = 0.9 (both give the same graph)

We show some numerical calculations of these eigenvalues. We use the parame-
ters given by Rong et al. (2007), and they are as follows: f (T ) = a − bT with
a = 104 ml−1 day−1 and b = 0.01 day−1 (which implies that T0 = 106 ml−1),
k = 2.4 × 10−8 ml day−1, β = 1 day−1, N = 3000, γ = 23 day−1. The differ-
ence in parameter choice from the prior simulations does not change qualitative re-
sults.

We first assume that eRT = eP = e where e ∈ [0,1].
We evaluate the dominant Floquet multiplier, λ2, as a function of drug efficacy, e,

for the cases ψ = 0 (completely in-phase) and ψ = 1
2 (completely out-of-phase). The

results are shown in Fig. 6.
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Fig. 7 (Color online) In (a), the drug efficacy functions ηRT(t) and ηP (t − ψ) are assumed to have a
the shape above, which is a closer approximation to real drug efficacies. In (b), the dominant Floquet
multiplier, λ2, is shown as a function of phase difference, ψ , (the red curve) when ηRT(t) and ηP (t − ψ)

are as in (a). The dashed line is just the function λ2 = 1. It is seen that phase difference still can affect
whether or not the infection-free equilibrium E0 is stable

Remember E0 is GAS if λ2 < 1 and unstable if λ2 > 1. Now we fix eRT and eP

and calculate λ2 as a function of the phase difference ψ as shown in Fig. 5.
Notice, in Fig. 6, λ2 is a periodic function of ψ , which has a minimum and a max-

imum. The minimum, which occurs just before ψ = 1
2 , corresponds to the optimal

phase difference. The phase difference is the determining factor in whether or not the
infection is cleared in these examples.

We now better approximate an actual drug efficacy function with a piecewise con-
stant function, whose graph is shown in Fig. 7, and evaluate the dominant Floquet
multiplier as a function of the phase difference ψ as shown in Fig. 7. In this case,
the phase difference still determines whether or not λ2 < 1 (i.e., whether or not the
infection clears).
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5.1 Structured Treatment Interruptions

It is interesting to consider the consequences of increasing the period τ . During a
STI regimen, a patient will take a drug for a certain period of time (the “on-days”)
and then take a “break” from that medication for another period of time (the “off-
days”). This cycle may repeat. The bang-bang drug efficacy functions used here can
be fairly close to the real drug efficacy functions for STIs. Thus, one can consider
the drug efficiency function as being nearly constant, eRT (or eP ), for the on-days
and roughly 0 for the off-days. The period and duration of the drug efficacy function
for an STI depends on the nature of the program. Duration here is meant as an open
interval I ∈ R such that the drug efficacy function η(t) supported in I , is periodic
with period τ . In general, an STI might have a drug efficacy function η1(t) with
period τ1 on an interval of time (t1, t2), then change the drug efficacy function to
η2(t) with period τ2 on (t2, t3) and so on. A dynamic STI would choose η2(t) based
on information reflecting the infection status at t2 (Rosenberg et al. 2006).

We consider the bang-bang functions described above with the period τ increased
to 60 days. Explicitly ηRT(t), ηP (t) : R → [0,1] are periodic functions with period
τ = 60 such that

ηRT(t) =
{

eRT if t ∈ [0,30),

0 if t ∈ [30,60)
and ηP (t) =

{
eP if t ∈ [0,30),

0 if t ∈ [30,60).

If the phase difference ψ ∈ [0,30], then

ηP (t − ψ) =
{

eP if t ∈ [ψ,30 + ψ),

0 if t ∈ [0,ψ) ∪ [30 + ψ,60].
If ψ ∈ (30,60), then

ηP (t − ψ) =
{

eP if t ∈ [ψ,60) ∪ [0,ψ − 30),

0 if t ∈ [ψ − 30,ψ).

Then the Floquet multipliers are the eigenvalues of

Λ(eRT, eP ,ψ) = exp
[
(30 − ψ)E(0,0)

]
exp

[
ψE(0, eP )

]

× exp
[
(30 − ψ)E(eRT, eP )

]
exp

[
ψE(eRT,0)

]
,

when ψ ∈ [0,30], and

Λ(eRT, eP ,ψ) = exp
[
(ψ − 30)E(0, eP )

]
exp

[
ψE(0,0)

]

× exp
[
(ψ − 30)E(eRT,0)

]
exp

[
ψE(eRT, eP )

]
,

when ψ ∈ (30,60); where

E(eRT, eP ) =
( −β k(1 − e1)T0

N(1 − e2)β −γ

)
.
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Fig. 8 (Color online) In (a), an example showing the STI drug efficacy functions. ηRT(t) is the red curve
and ηP (t − ψ) is the blue dashed lines. In (b), the natural logarithm of the dominant Floquet multiplier,
logλ2, is shown as a function of phase difference, ψ , when ηRT(t) and ηP (t − ψ) are of the type de-
picted in (a). In these calculations, eRT = eP = 0.85. Notice the large range of values we obtain for λ2
(minλ2 ≈ e−30 and maxλ2 ≈ e30). The dashed line, logλ2 = 0, represents the threshold for clearing the
infection

These are examples of static STIs where the drug efficacy functions, ηRT(t) and
ηP (t − ψ), have the on-days in a consecutive block of days. The period is τ = 60
days and the on-days for the RT-inhibitor are 30 consecutive days (the off-days are
similarly a 30 day block), likewise for the P-inhibitor. The functions are depicted in
Fig. 8.

The graph of logλ2 as a function of ψ for eRT = eP = 0.85 is shown in Fig. 8.
These numerical calculations show there is an enormous variability in the results one
obtains when varying the phase difference between bang-bang RT- and P-inhibitor
functions on the larger time scale setting of STIs. Certainly, there is a much larger set
of possible regimens which include treatment schedules that have multiple blocks of
on-days and off-days within a period. Numerical optimal control methods have been
used to address optimization over a larger set of possible STIs (Adams et al. 2004).
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If we do choose a regimen where, within a period, the on-days are in a consecutive
block and off-days are in a consecutive block, our results show that the on-days of
the RT-inhibitor should for the most part coincide with the off-days of the P-inhibitor
and vice-versa (the optimal phase difference ψ∗ ≈ 30 days in the example shown in
Fig. 8b). As mentioned in the Introduction, one should view these results on STIs
with a healthy dose of caution as the increase in the period of the drug treatment will
also act to increase the already existing error inherent in the model.

6 Conclusions and Discussion

The effect which the periodic variations of drug efficacy functions have upon the
dynamics of within-host virus models is difficult to analyze in general. In this paper,
we analyzed, with considerable rigor and detail, how periodic forcing of threshold
drug efficacies affected the infection-free equilibrium. This shed some light on the
dynamical interplay between periodically administered RT-inhibitor and P-inhibitor
treatment in a within-host virus model. Combination therapy has become a standard
procedure in the treatment of HIV. Hence, the notion that the timing between periodic
dosages of the two classes of drugs may affect the treatment outcome could be of
value to researchers.

In our numerical study, we considered two different time scales for the treatment
of a viral infection. We briefly considered the larger time scale of STI regimens. In
most cases of HIV, for one reason or another, lifelong use of antivirals is not feasible
(Rosenberg et al. 2006). This is why STIs have garnered much attention and research
efforts. For the model used in this paper, we showed the timing of RT-inhibitor on-
days relative to P-inhibitor on-days can have a strong effect on the treatment outcome.
Even though the amount of drug used in each regimen was the same, simply varying
this phase difference could give wildly different results. Our results, while dramatic,
have their limitations. First, the model is too simplistic and probably does not capture
all relevant dynamics, especially on a larger time scale. Second, we only numerically
analyzed a small subset of possible regimens. Nevertheless, using the Floquet theory
to explore STIs is novel and furthers the ideas presented in De Leenheer (2009). To
analyze a larger number of regimens, optimal control might be the preferred method.
However these methods also can have drawbacks, for example, the optimization of
the STI regimen depends upon the choice of a cost functional.

The other treatment time scale considered was the day to day time scale. Varying
the phase shift ψ in ηP (t − ψ) on this time scale can be interpreted as changing
the timing between daily dosages of RT-inhibitors and P-inhibitors. For example, if
a patient takes both an RT-inhibitor and P-inhibitor every 24 hours, then the time in
between dosages of the two drugs each day would be the phase shift ψ . Now to opti-
mize treatment on this scale, with no consideration of negative effects of medication,
phase shift is clearly the only variable to consider (assuming the patient has to follow
a periodic schedule), since drug efficacies can be chosen to be as large as currently
feasible. When side effects or costs of medication are considered, optimization of
phase shift may be even more important. The toxicity of HIV medications is a seri-
ous obstacle in treating some patients. Potentially, drugs can be designed so that their
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corresponding efficacy functions reduce the toxicity induced in patients by shorten-
ing drug exposure time, but through optimizing the phase difference between the RT-
and P-inhibitors, treatment effectiveness can still be achieved. Phase shift contrasts
from other treatment parameters in that it does not depend on the efficacies of the
medications. So, an optimal phase shift for a given set of drugs, if found, possibly
can give better treatment results for “free.” Certainly, it is not known whether this
phase shift affects viral dynamics in an actual setting and we do not claim it will.
More realistic models and drug efficacy functions would have to be used in order
to accurately gauge how much phase shifts actually affect the dynamics of a within-
host virus. However, this paper does illustrate how the inherent periodicity of drug
efficacies can be an important factor in the dynamics of our model and suggests that
future research may need to incorporate time varying drug efficacies into models of
within-host viruses with treatment.
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Appendix

Proof of Proposition 4 The right-hand side of (8) is analytic, therefore, the principal
fundamental solution X(t, ε) is analytic in ε. So, we can expand X(t, ε) as a Taylor
series with respect to ε

X(t, ε) =
∞∑

n=0

εnXn(t) = X0(t) + εX1(t) + ε2X2(t) + · · · .

Then we have

(
Ẋ0(t) + εẊ1(t) + ε2Ẋ2(t) + · · · )

= Ẋ(t, ε)

= (A0 + ε · A1(t)X(t, ε)

= A0X0(t) + ε
(
A0X1(t) + A1(t)X0(t)

) + ε2(A0X2(t) + A1(t)X1(t)
) + · · · .

Since X(t, ε) is a principal fundamental solution, X(0, ε) = I for all ε.
Letting ε → 0, we see that X0(0) = I , so that Xi(0) = 0 for all i ≥ 1.
Hence, we obtain the following system of differential equations:

Ẋ0(t) = A0X0(t), X0(0) = I, (13)

Ẋ1(t) = A0X1(t) + A1(t)X0(t), X1(0) = 0, (14)

Ẋ2(t) = A0X2(t) + A1(t)X1(t), X2(0) = 0. (15)
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We note that

eA0t =
(

1 0
0 e−bt

)
, e−A0t =

(
1 0
0 ebt

)
.

The solutions to (13), (14), and (15) at t = τ (respectively) are:

X0(τ ) = eA0τ ,

X1(τ ) = eA0τ

∫ τ

0
e−A0tA1(t)e

A0t dt,

X2(τ ) = eA0τ

∫ τ

0
e−A0tA1(t)e

A0t

(∫ t

0
e−A0sA1(s)e

A0s ds

)
dt.

To investigate the eigenvalues of X(τ, ε), we consider the characteristic polynomial
of X(τ, ε)

F (λ, ε) = λ2 − trX(τ, ε)λ + detX(τ, ε). (16)

We let λ2(ε) and λ3(ε) be the eigenvalues of X(τ, ε). In agreement with previous
notation, λ2(ε) is the largest eigenvalue, which we know is ρ(X(τ, ε)). At ε = 0
the eigenvalues are λ2 = 1 and λ3 = e−bτ since X(τ,0) = eA0τ . The eigenvalues of
X(τ, ε), λ2(ε), and λ3(ε), are analytic functions of ε in some neighborhood of ε = 0
since all of the hypotheses in the Implicit Function theorem are met:

∂F

∂λ
(1,0) �= 0, and

∂F

∂λ

(
e−bτ ,0

) �= 0,

∂F

∂λ
(1,0) = 2 − trX(τ,0) = 2 − tr

(
eA0τ

) = 2 − (
1 + e−bτ

) = 1 − e−bτ > 0,

and

∂F

∂λ

(
e−bτ ,0

) = e−bτ − trX(τ,0) = e−bτ − 1 < 0.

So, there exists ε0 > 0 such that λ2(ε) and λ3(ε) are analytic functions in B(0, ε0),
where B(0, ε0) is the ball centered around 0 with radius ε0. Therefore,

λ2(ε) = 1 + λ′
2(0)ε + 1

2
λ′′

2(0)ε2 + O
(
ε3),

λ3(ε) = e−(β+γ )τ + O(ε),

where

λ′
2(0) := dλ

dε
(1,0) and λ′′

2(0) := d2λ

dε2
(1,0).

For small enough ε, λ3(ε) stays inside the unit disk. But it is not clear whether λ2(ε)

goes inside or outside the unit disk for small ε. The sign of λ′
2(0) determines whether

λ2(ε) < 1 or λ2(ε) > 1 for sufficiently small ε > 0. If λ′
2(0) < 0, then λ2(ε) < 1,
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and hence ρ(X(τ, ε)) < 1. If λ′
2(0) > 0, then λ2(ε) > 1, and hence ρ(X(τ, ε)) < 1.

If λ′
2(0) = 0, then we need to look at higher order derivatives. Hence, we begin by

computing λ′
2(0).

λ′
2(0) = −∂F/∂ε

∂F/∂λ

∣
∣∣∣
(1,0)

, λ′
2(0) = −[ d

dε
(detX(τ, ε) − trX(τ, ε))]ε=0

1 − e−bτ
.

Now
[

d

dε

(
detX(τ, ε) − trX(τ, ε)

)
]

ε=0

= det
(
eA0τ

) d

dε
det

(
I + εC + ε2E + O

(
ε3))

∣∣∣∣
ε=0

− trX1(τ ),

where

C =
∫ τ

0
e−A0tA1(t)e

A0t dt,

E =
∫ τ

0
e−A0tA1(t)e

A0t

(∫ t

0
e−A0sA1(s)e

A0s ds

)
dt,

trX1(τ ) = tr
(
eA0τC

) = tr

((
1 0
0 e−bτ

)
C

)
= C11 + e−bτC22,

det
(
eA0τ

) d

dε
det

(
I + εC + ε2E + O

(
ε3))

∣∣∣∣
ε=0

= e−bτ d

dε
det

((
1 + εC11 + O(ε2) εC12 + O(ε2)

εC21 + O(ε2) 1 + εC22 + O(ε2)

))∣
∣∣∣
ε=0

= e−bτ (C11 + C22).

Combining the above results, we obtain

λ′
2(0) = C11 + e−bτC22 − e−bτ (C11 + C22)

1 − e−bτ
= C11(1 − e−bτ )

1 − e−bτ
= C11. (17)

In what follows, we will need the following quantity:

e−A0tA1(t)e
A0t = ϕRT(t)e−A0tARTeA0t + ϕP (t)e−A0tAP eA0t

= ϕRT(t)

(
1 0
0 ebt

)
ART

(
1 0
0 e−bt

)

+ ϕP (t)

(
1 0
0 ebt

)
AP

(
1 0
0 e−bt

)

= ϕRT(t)
MkT0

1 + a

(
a −e−bt

a2ebt −a

)
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+ ϕP (t)
β

(1 + a)(1 − eP )

(
1 e−bt

−ebt −1

)
. (18)

Hence, the matrix C is given by

C = 1

1 + a

∫ τ

0
ϕRT(t)N(1 − eP )kT0

(
a −e−bt

a2ebt −a

)

+ ϕP (t)
β

1 − eP

(
1 e−bt

−ebt −1

)
dt.

From which it follows that

λ′
2(0) = 1

1 + a

(
ϕRTkT0N(1 − eP )a + ϕP β

1 − eP

)
,

which proves Proposition 4. �

Proof of Proposition 5 Let ϕRT = 0 and ϕP = 0. We evaluate the second derivative
of λ2(ε) with respect to ε:

λ′′
2(0) := d2λ

dε2
(1,0) =

[
d2

dε2 (trX(τ, ε) − detX(τ, ε))
]
ε=0

1 − e−bτ
,

where
[

d2

dε2

(
trX(τ, ε) − detX(τ, ε)

)]

ε=0

= 2 trX2(τ ) − det
(
eA0τ

) d

dε
det

(
I + εC + ε2E + O

(
ε3))

∣∣
∣∣
ε=0

= 2 tr
(
eA0τE

) − det
(
eA0τ

) d2

dε2
det

(
I + εC + ε2E + O

(
ε3))

∣∣∣∣
ε=0

= 2
(
E11 + e−bτE22

) − e−bτ (2E11 + 2E22 − 2C12C21)

= 2
(
E11

(
1 − e−bτ

) + e−bτC12C21
)
.

Therefore,

λ′′
2(0) = 2

(
E11 + e−bτ

1 − e−bτ
C12C21

)
, (19)

which concludes the proof. �

Proof of Proposition 6 We prove this theorem in 3 steps. First, let us assume that
ϕRT(t) = sin t and ϕP = 0 in (6). Then

E =
∫ 2π

0

kT0 sin t

1 + a

(
Ma −Me−bt

∗ ∗
)∫ t

0

kT0 sin s

1 + a

(
Ma ∗

Ma2ebs ∗
)

ds dt



Periodic Multidrug Therapy in a Within-Host Virus Model

= (kT0)
2

(1 + a)2

∫ 2π

0
sin t

(
Ma −Me−bt

∗ ∗
)(

Ma(1 − cos t) ∗
Ma2

∫ t

0 ebs sin s ds ∗
)

dt,

where asterisks denote nonessential entries. We find that

E11 = −(kT0Ma)2

(1 + a)2

∫ 2π

0

(
sin t (cos t − 1)

+ (sin t)e−bt

(
bebt sin t − ebt cos t + 1

b2 + 1

))
dt

= −(kT0Ma)2

(1 + a)2(b2 + 1)

∫ 2π

0
b sin2 t + e−bt sin t dt

= −(kT0Ma)2

(1 + a)2(b2 + 1)2

(
πb

(
b2 + 1

) + 1 − e−2πb
)
,

C12C21 = −(kT0Ma)2

(1 + a2)

(∫ 2π

0
e−bt sin t dt

)(∫ 2π

0
ebt sin t dt

)

= −(kT0Ma)2

(1 + a)2(b2 + 1)2

(
1 − e−2πb

)(
1 − e2πb

)
.

So,

e−bτ

1 − e−bτ
C12C21 = −(kT0Ma)2

(1 + a)2(b2 + 1)2

(
e−2πb − 1

)
.

Therefore, by Proposition 5,

λ′′
2(0) = −(kT0Ma)2

(1 + a)2(b2 + 1)2

(
πb

(
b2 + 1

))
. (20)

Next, suppose that ϕRT = 0 and ϕP (t) = sin t in (6). It follows that

e−b2π

1 − e−b2π
C12C21

=
(

e−b2π

1 − e−b2π

) −β

(1 − eP )2(1 + a2)

(∫ 2π

0
e−bt sin t dt

)(∫ 2π

0
ebt sin t dt

)

=
(

e−b2π

1 − e−b2π

) −β

(1 − eP )2(1 + a)2(b2 + 1)2

(
1 − e−2πb

)(
1 − e2πb

)

= −β

((1 − eP )(1 + a))2(b2 + 1)2

(
e−2πb − 1

)
,

E =
∫ 2π

0
β

sin t

(1 + a)(1 − eP )

(
1 e−bt

∗ ∗
)∫ t

0

β sin s

(1 + a)(1 − eP )

(
Na ∗
−ebs ∗

)
ds dt.
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From the computation involved in evaluating (20), it can be seen that

E11 = −β2

((1 − eP )(1 + a))2(b2 + 1)2

(
πb

(
b2 + 1

) + 1 − e−2πb
)
,

and by Proposition 5 we obtain

λ′′
2(0) = −β2

(1 − eP )2(1 + a)2(b2 + 1)2

(
πb

(
b2 + 1

))
. (21)

Finally, we let ϕRT = α1 sin t , ϕP = α2 sin t in (6) where α1, α2 ∈ R. Then

C =
∫ 2π

0

(
(α1 sin t)e−A0tARTeA0t + (α2 sin t)e−A0tAP eA0t

)
dt

= 1

1 + a

∫ 2π

0

(
α1kT0

( ∗ −Me−bt sin t

Ma2ebt sin t ∗
)

+ α2β

1 − eP

( ∗ e−bt sin t

−ebt sin t ∗
))

dt,

E = 1

(1 + a)2

∫ 2π

0

{[
kT0α1 sin t

(
Ma −Me−bt

∗ ∗
)

+ βα2 sin t

1 − eP

(
1 e−bt

∗ ∗
)]

×
[
kT0α1

(
Ma(1 − cos t) ∗

Ma2
∫ t

0 ebs sin s ds ∗
)

+ βα2

1 − eP

(
(1 − cos t) ∗∫ t

0 ebs sin s ds ∗
)]}

dt.

Using (20), (21), and Proposition 5, it can be seen that

λ′′
2(0) = πb

(1 + a)2(b2 + 1)

[
−(α1kT0Ma)2 − (α2β)2

(1 − eP )2
+ α1α2kT0Nβ

(
1 + a2)

]

= πb

(1 + a)2(b2 + 1)
β2α1α2

[
−R0

(
α1

α2
(1 − eP )2 + α2

α1
(1 − eRT)2

)

+
(

γ

β
+ β

γ

)]
,

which concludes the proof. �

Proof of Proposition 7 Let Γ (t) be a PFS (principal fundamental solution) to (12).
Let Φ(t) be a PFS to: ẋ = B(t + ψ1,ψ1,ψ2)x = B(t,0, (ψ2 − ψ1)modulo τ)x.
Then Φ̃(t) := Φ(t − ψ1) is a FS to (12) with Φ̃(ψ1) = I . Using Floquet’s the-
orem, we obtain: Φ(τ) = Φ̃(τ + ψ1) = Γ (τ + ψ1)Φ̃(0) = Γ (ψ1)Γ (τ)Φ̃(0) =
Φ̃(ψ1)Φ̃

−1(0)Γ (τ)Φ̃(0) = Φ̃−1(0)Γ (τ)Φ̃(0). Hence, λ2(ψ1,ψ2) = λ2(0, (ψ2 −
ψ1)modulo τ). �
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Proof of Theorem 8 Let X(t,ψ) be the principal fundamental solution of

ẋ =
( −β k(1 − ηRT(t))T0

N(1 − ηP (t − ψ))β −γ

)
x.

The optimal phase difference ψ∗ where 0 ≤ ψ < τ is the ψ for which the spectral
radius of X(τ,ψ), λ2, is minimized. The characteristic equation of this matrix is

F(λ,ψ) = λ2 − trX(τ,ψ)λ + detX(τ,ψ) = 0.

We note that

∂F

∂λ
(λ2,ψ) = 2λ2 − trX(τ,ψ) > 0, (22)

since λ2 is the spectral radius of X(τ,ψ). Therefore, we can implicitly differentiate
with respect to ψ at ψ∗:

λ2λ
′
2 −

(
λ2

d

dψ
trX(τ,ψ) + trX(τ,ψ)λ′

2

)
+ d

dψ
detX(τ,ψ) = 0.

By applying Liouville’s theorem, we find that d
dψ

detX(τ,ψ) = 0. Also, we are dif-
ferentiating at ψ∗, so λ′

2 = 0.

Hence, d
dψ

trX(τ,ψ) = 0. Now we show that d2

dψ2 trX(τ,ψ) > 0. Taking the sec-

ond implicit derivative of λ2 with respect to ψ at ψ∗ and substituting λ′
2 = 0 and

d
dψ

detX(τ,ψ) = 0, we obtain

λ′′
2

(
2λ2 − trX(τ,ψ)

) − d2

dψ2
trX(τ,ψ)λ2 = 0.

Since λ′′
2 > 0 and by (22), we see d2

dψ2 trX(τ,ψ) > 0.

So, ψ∗ is where trX(τ,ψ) is minimized. �
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