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For the initial value problem

(11)

does Theorem 1 imply the existence of a unique solution?

Dividing by 3 to conform to the statement of the theorem, we identify as 
and as . Both of these functions are continuous in any rectangle containing the
point (1, 6), so the hypotheses of Theorem 1 are satisfied. It then follows from the theorem
that the initial value problem (11) has a unique solution in an interval about of the form

, where is some positive number. ◆

For the initial value problem

(12)

does Theorem 1 imply the existence of a unique solution?

Here and Unfortunately is not continuous or even defined
when y ! 0. Consequently, there is no rectangle containing in which both f and are
continuous. Because the hypotheses of Theorem 1 do not hold, we cannot use Theorem 1 to
determine whether the initial value problem does or does not have a unique solution. It turns out
that this initial value problem has more than one solution. We refer you to Problem 29 and
Group Project G of Chapter 2 for the details. ◆

In Example 9 suppose the initial condition is changed to . Then, since f and
are continuous in any rectangle that contains the point but does not intersect the x-axis—
say, —it follows from Theorem 1 that this new initial
value problem has a unique solution in some interval about x ! 2.

R ! E Ax, yB: 0 6 x 6 10, 0 6 y 6 5F A2, 1B 0f/ 0yy A2B ! 1

0f/ 0yA2, 0B0f/ 0y0f/ 0y ! 2y"1/3.f Ax, yB ! 3y2/3

dy
dx

! 3y2/3  ,    y A2B ! 0  ,

dA1 " d,1 # dB x ! 1

"xy20f/ 0y
Ax2 " xy3B/3f Ax, yB

3
dy
dx

! x2 " xy3  ,  y(1) ! 6  ,

Example 8

Solution

Example 9

Solution

1. (a) Show that is an implicit solution
to on the interval 

(b) Show that sin x = 1 is an implicit solu-
tion to

on the interval .
2. (a) Show that is an explicit solution to

on the interval 
(b) Show that is an explicit solution to

on the interval A"q, q B.
dy
dx

# y2 ! e2x # A1 " 2xBex # x2 " 1

f AxB ! ex " x
A"q, q B.x

dy
dx

! 2y

f AxB ! x2

A0, p/2B
dy

dx
!
Ax cos x # sin x " 1By

3 Ax " x sin xB
xy3 " xy3

A"q, 3B.dy/dx ! "1/ A2yBy2 # x " 3 ! 0 (c) Show that is an explicit solu-
tion to on the interval 

In Problems 3–8, determine whether the given function is
a solution to the given differential equation.

3. x ! 2 cos t " 3 sin t , x # x ! 0

4. y ! sin x # ,

5. x ! cos 2t ,

6.

7. y ! 3 sin 

8.
d2y

dx2 "
dy

dx
" 2y ! 0y ! e2x " 3e"x  ,

y– # 4y ! 5e"x2x # e"x  ,

d2u

dt2 " u 
du
dt

# 3u ! "2e2tu ! 2e3t " e2t  ,

dx
dt

# tx ! sin 2t

d2y

dx2 # y ! x2 # 2x2

–

A0, q B.x2d2y/dx2 ! 2y
f AxB ! x2 " x"1
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In Problems 9–13, determine whether the given relation
is an implicit solution to the given differential equation.
Assume that the relationship does define y implicitly as a
function of x and use implicit differentiation.

9. y " ln y ! # 1 ,

10. # ! 4 ,

11. # y ! x " 1 ,

12. " sin ! 1 , ! 2x sec " 1

13. sin y # xy " ! 2 ,

14. Show that sin x # c2 cos x is a solution to
# y ! 0 for any choice of the constants c1

and c2. Thus, c1 sin x # c2 cos x is a two-parameter
family of solutions to the differential equation.

15. Verify that where c is an arbi-
trary constant, is a one-parameter family of solutions to

Graph the solution curves corresponding to c ! 0,
$1, $2 using the same coordinate axes.

16. Verify that # ! 1, where c is an arbitrary
nonzero constant, is a one-parameter family of
implicit solutions to

and graph several of the solution curves using the
same coordinate axes.

17. Show that is a solution to 
" 3y ! "3 for any choice of the constant C.

Thus, Ce3x # 1 is a one-parameter family of solu-
tions to the differential equation. Graph several 
of the solution curves using the same coordinate
axes.

18. Let Show that the function !
is a solution to the initial value prob-

lem , , on the interval
Note that this solution becomes

unbounded as approaches Thus, the solution
exists on the interval with , but not for
larger d. This illustrates that in Theorem 1 the existence

d ! c("d, d)
$c.x

"c 6 x 6 c.
y(0) ! 1/c2dy/dx ! 2xy2

(c2 " x2)"1
f AxBc 7 0.

dy/dx
f AxB ! Ce3x # 1

dy

dx
!

xy

x2 " 1

cy2x2

dy
dx

!
y A y " 2B

2
  .

f AxB ! 2/ A1 " cexB,
d2y/dx2

f AxB ! c1

y– !
6xy¿ # Ay¿ B3sin y " 2 Ay¿ B2

3x2 " y

x3

Ax # yBdy
dx

Ax # yBx2

dy
dx

!
e"xy " y
e"xy # x

exy

dy
dx

!
x
y

y2x2

dy
dx

!
2xy

y " 1
x2

interval can be quite small (if c is small)  or quite
large (if c is large). Notice also that there is no clue
from the equation itself, or from the
initial value, that the solution will “blow up” at 
x ! $c.

19. Show that the equation has
no (real-valued) solution.

20. Determine for which values of m the function
is a solution to the given equation.

(a)

(b)

21. Determine for which values of m the function
is a solution to the given equation.

(a)

(b)

22. Verify that the function is a
solution to the linear equation

for any choice of the constants c1 and c2. Determine
c1 and c2 so that each of the following initial condi-
tions is satisfied.
(a)
(b)

In Problems 23–28, determine whether Theorem 1 implies
that the given initial value problem has a unique solution.

23. ! 7

24.

25.

26. # cos x ! sin t ,

27.

28. y A2B ! 1
dy
dx

! 3x " 23 y " 1  ,

y A1B ! 0y 

dy
dx

! x  ,

x ApB ! 0
dx
dt

x A2B ! "p3x
dx
dt

# 4t ! 0  ,

y ApB ! 5
dy
dt

" ty ! sin2t  ,

y A0Bdy
dx

! y4 " x4  ,

y A1B ! 1  ,  y¿ A1B ! 0
y A0B ! 2  ,  y¿ A0B ! 1

d2y

dx2 #
dy

dx
" 2y ! 0

f AxB ! c1e
x # c2e

"2x

x2
 

d2y

dx2 " x 

dy

dx
" 5y ! 0

3x2
 

d2y

dx2 # 11x 

dy

dx
" 3y ! 0

f AxB ! xm

d3y

dx3 # 3 

d2y

dx2 # 2 

dy

dx
! 0

d2y

dx2 # 6 

dy

dx
# 5y ! 0

f AxB ! emx

Ady/dxB2 # y2 # 4 ! 0

dy/dx ! 2xy2
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29. (a) For the initial value problem (12) of Example 9,
show that are
solutions. Hence, this initial value problem has
multiple solutions. (See also Group Project G in
Chapter 2.)

(b) Does the initial value problem 
have a unique solution in a neigh-

borhood of ?
30. Implicit Function Theorem. Let G have

continuous first partial derivatives in the rectangle
containing

the point . If G ! 0 and the partial
derivative Gy 0, then there exists a differ-
entiable function , defined in some interval
I ! , that satisfies
for all x ! I.

G Ax, f AxBB ! 0Ax0 " d, x0 # dBy ! f AxB%Ax0, y0B Ax0, y0BAx0, y0BR ! E Ax, yB: a 6 x 6 b, c 6 y 6 dF Ax, yBx ! 0
y(0) ! 10"7,

y¿ ! 3y2/ 3,

f1 AxB ! 0 and f2 AxB ! Ax " 2B3 The implicit function theorem gives conditions
under which the relationship G ! 0 defines y
implicitly as a function of x. Use the implicit
function theorem to show that the relationship 
x # y # ! 0, given in Example 4, defines y
implicitly as a function of x near the point .

31. Consider the equation of Example 5,

(13)

(a) Does Theorem 1 imply the existence of a unique
solution to (13) that satisfies ! 0?

(b) Show that when equation (13) can’t
possibly have a solution in a neighborhood of 
x ! x0 that satisfies ! 0.

(c) Show that there are two distinct solutions to (13)
satisfying ! 0 (see Figure 1.4 on page 9).y A0B

y Ax0B
x0 % 0,

y Ax0B
y 

dy
dx

" 4x ! 0  .

A0, "1Bexy

Ax, yB

The existence and uniqueness theorem discussed in Section 1.2 certainly has great value, but it
stops short of telling us anything about the nature of the solution to a differential equation. For
practical reasons we may need to know the value of the solution at a certain point, or the inter-
vals where the solution is increasing, or the points where the solution attains a maximum value.
Certainly, knowing an explicit representation (a formula) for the solution would be a consider-
able help in answering these questions. However, for many of the differential equations that we
are likely to encounter in real-world applications, it will be impossible to find such a formula.
Moreover, even if we are lucky enough to obtain an implicit solution, using this relationship to
determine an explicit form may be difficult. Thus, we must rely on other methods to analyze or
approximate the solution.

One technique that is useful in visualizing (graphing) the solutions to a first-order differen-
tial equation is to sketch the direction field for the equation. To describe this method, we need
to make a general observation. Namely, a first-order equation

specifies a slope at each point in the xy-plane where f is defined. In other words, it gives the direc-
tion that a graph of a solution to the equation must have at each point. Consider, for example, the
equation

(1)

The graph of a solution to (1) that passes through the point must have slope 2 " 1 ! 3
at that point, and a solution through has zero slope at that point.

A plot of short line segments drawn at various points in the xy-plane showing the slope of
the solution curve there is called a direction field for the differential equation. Because the

A"1, 1B A"2BA"2, 1B
dy
dx

! x2 " y  .

dy
dx

! f Ax, yB
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