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Figure 4.5 Vibration amplitudes around resonance

We find

Figure 4.5 displays A and B as functions of the driving frequency !. A resonance clearly
occurs around . ◆

In most of this chapter, we are going to restrict our attention to differential equations of the
form

(6)

where [or , or , etc.] is the unknown function that we seek; a, b, and c are constants;
and [or ] is a known function. The proper nomenclature for (6) is the linear, second-
order ordinary differential equation with constant coefficients. In Sections 4.7 and 4.8, we will
generalize our focus to equations with nonconstant coefficients, as well as to nonlinear equa-
tions. However, (6) is an excellent starting point because we are able to obtain explicit solu-
tions and observe, in concrete form, the theoretical properties that are predicted for more gen-
eral equations. For motivation of the mathematical procedures and theory for solving (6), we
will consistently compare it with the mass–spring paradigm:3 inertia 4 " y– # 3damping 4 " y¿ # 3 stiffness 4 " y $ Fext .

f AxBf AtB x AtBy AxBy AtBay– # by¿ # cy $ f AtB ,

! ! 5

A $
%!

!2 # A!2 % 25B2 ,   B $
%!2 # 25

!2 # A!2 % 25B2 .

1. Verify that for and , equation (3)
has a solution of the form

where .

2. If , equation (3) becomes

For this equation, verify the following:
my– # by¿ # ky $ 0 .

Fext AtB $ 0

v $ 2k/my AtB $  cos vt,

Fext AtB $ 0b $ 0 (a) If y(t) is a solution, so is cy(t), for any constant c.
(b) If and are solutions, so is their sum

.

3. Show that if , and ,
then equation (3) has the “critically damped” solu-
tions and . What is the limit
of these solutions as ?t S q

y2 AtB $ te%3ty1 AtB $ e%3t

b $ 6Fext AtB $ 0, m $ 1, k $ 9

y1 AtB # y2 AtBy2 AtBy1 AtB
4.1 EXERCISES



We begin our study of the linear second-order constant-coefficient differential  equation  

(1)

with the special case where the function f (t) is zero:

(2)

This case arises when we consider mass–spring oscillators vibrating freely—that is, without
external forces applied. Equation (2) is called the homogeneous form of equation (1); is the
“nonhomogeneity” in (1). (This nomenclature is not related to the way we used the term for
first-order equations in Section 2.6.)

A look at equation (2) tells us that a solution of (2) must have the property that its second
derivative is expressible as a linear combination of its first and zeroth derivatives.† This sug-
gests that we try to find a solution of the form , since derivatives of are just constants
times . If we substitute into (2), we obtain

 ert Aar2 # br # cB $ 0 .

ar2
 ert # brert # cert $ 0 ,

y $ ertert
erty $ ert

f AtB
ay– # by¿ # cy $ 0 .

ay– # by¿ # cy $ f AtB   Aa & 0B

4. Verify that y $ sin 3t # 2 cos 3t is a solution to the
initial value problem

Find the maximum of for .
5. Verify that the exponentially damped sinusoid

is a solution to equation (3) if
, and . What is the

limit of this solution as ?
6. An external force F(t) $ 2 cos 2t is applied to a

mass–spring system with m $ 1, b $ 0, and k $ 4,
which is initially at rest; i.e., .
Verify that gives the motion of this
spring. What will eventually (as t increases) happen
to the spring?

In Problems 7–9, find a synchronous solution of the form
A cos !t # B sin !t to the given forced oscillator equa-
tion using the method of Example 4 to solve for A and B.

7.
8.
9.

10. Undamped oscillators that are driven at resonance

y– # 2y¿ # 4y $ 6 cos 2t # 8 sin 2t,  ! $ 2
y– # 2y¿ # 5y $ %50 sin 5t,  ! $ 5
y– # 2y¿ # 4y $ 5 sin 3t,  ! $ 3

y AtB $ 1
2 t sin 2t

y A0B $ 0, y¿ A0B $ 0

t S q
k $ 12Fext AtB $ 0, m $ 1, b $ 6

y AtB $ e%3t
 sin A23 tB

%q 6 t 6 qƒ y AtB ƒy A0B $ 2 ,   y¿ A0B $ 3 .2y– # 18y $ 0 ;

158 Chapter 4 Linear Second-Order Equations

have unusual (and nonphysical) solutions.

(a) To investigate this, find the synchronous solu-
tion A cos !t # B sin !t to the generic forced
oscillator equation

(7)

(b) Sketch graphs of the coefficients A and B, as
functions of !, for m $ 1, b $ 0.1, and k $ 25.

(c) Now set b $ 0 in your formulas for A and B and
resketch the graphs in part (b), with m $ 1, and
k $ 25. What happens at ! $ 5? Notice that the
amplitudes of the synchronous solutions grow
without bound as ! approaches 5.

(d) Show directly, by substituting the form A cos !t #
B sin !t into equation (7), that when b $ 0 there
are no synchronous solutions if .

(e) Verify that solves equation (7)
when b $ 0 and . Notice that this
nonsynchronous solution grows in time, without
bound.

Clearly one cannot neglect damping in analyz-
ing an oscillator forced at resonance, because
otherwise the solutions, as shown in part (e), are
nonphysical. This behavior will be studied later
in this chapter.

! $ 2k/m
A2m!B%1t sin !t

! $ 2k/m

my– # by¿ # ky $  cos !t .

HOMOGENEOUS LINEAR EQUATIONS:
THE GENERAL SOLUTION4.2

† The zeroth derivative of a function is the function itself.
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We observe that r ! 1 is a root of the above equation, and dividing the polynomial on the 
left-hand side of (15) by r " 1 leads to the factorization

Hence, the roots of the auxiliary equation are 1, "1, and "3, and so three solutions of (14) are
, and . The linear independence of these three exponential functions is proved in

Problem 40. A general solution to (14) is then

(16) . ◆

So far we have seen only exponential solutions to the linear second-order constant coeffi-
cient equation. You may wonder where the vibratory solutions that govern mass–spring oscilla-
tors are. In the next section, it will be seen that they arise when the solutions to the auxiliary
equation are complex.

y AtB ! c1e
t # c2e

"t # c3e
"3t

e"3tet, e"t

Ar " 1B Ar2 # 4r # 3B ! Ar " 1B Ar # 1B Ar # 3B ! 0 .

In Problems 1–12, find a general solution to the given
differential equation.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10.

11.

12.

In Problems 13–20, solve the given initial value problem.
13.

14.

15.

16.

17.

18.

19.

20.

21. First-Order Constant-Coefficient Equations.
(a) Substituting , find the auxiliary equation

for the first-order linear equation

where a and b are constants with .
(b) Use the result of part (a) to find the general

solution.

a $ 0
ay¿ # by ! 0 ,

y ! ert

y– " 4y¿ # 4y ! 0 ;  y A1B ! 1 , y¿ A1B ! 1

y– # 2y¿ # y ! 0 ;  y A0B ! 1 , y¿ A0B ! "3

y– " 6y¿ # 9 y ! 0 ;  y A0B ! 2 , y¿ A0B ! 25/3
z– " 2z¿ " 2z ! 0 ;  z A0B ! 0 , z¿ A0B ! 3

y– " 4y¿ # 3y ! 0 ;  y A0B ! 1 , y¿ A0B ! 1/3
y– " 4y¿ " 5y ! 0 ;  y A"1B ! 3 , y¿ A"1B ! 9

y– # y¿ ! 0 ;  y A0B ! 2 , y¿ A0B ! 1

y– # 2y¿ " 8y ! 0 ;  y(0) ! 3 , y¿ A0B ! "12

3y– # 11y¿ " 7y ! 0

4w– # 20w¿ # 25w ! 0

y– " y¿ " 11y ! 04y– " 4y¿ # y ! 0

z– # z¿ " z ! 06y– # y¿ " 2y ! 0

y– # 8y¿ # 16y ! 0y– " 5y¿ # 6y ! 0

y– # 5y¿ # 6y ! 0y– " y¿ " 2y ! 0

2y– # 7y¿ " 4y ! 0y– # 6y¿ # 9 y ! 0

In Problems 22–25, use the method described in Problem
21 to find a general solution to the given equation.
22. 23.
24. 25.

26. Boundary Value Problems. When the values of a
solution to a differential equation are specified at
two different points, these conditions are called
boundary conditions. (In contrast, initial conditions
specify the values of a function and its derivative at
the same point.) The purpose of this exercise is to
show that for boundary value problems there is no
existence–uniqueness theorem that is analogous to
Theorem 1. Given that every solution to
(17)
is of the form

where and are arbitrary constants, show that

(a) There is a unique solution to (17) that satisfies the
boundary conditions and .

(b) There is no solution to (17) that satisfies y(0) ! 2
and ! 0.

(c) There are infinitely many solutions to (17) that
satisfy and 

In Problems 27–32, use Definition 1 to determine
whether the functions and are linearly dependent
on the interval .
27.
28. y1 AtB ! e3t , y2(tB ! e"4t

y1 AtB ! cos t sin t , y2 AtB ! sin 2t

A0, 1B y2y1

y ApB ! "2.y A0B ! 2

y ApB
y Ap/2B ! 0y A0B ! 2

c2c1

y(t) ! c1 cos t # c2 sin t ,

y– # y ! 0

6w¿ " 13w ! 03z¿ # 11z ! 0
5y¿ # 4y ! 03y¿ " 7y ! 0

4.2 EXERCISES



29.
30.
31.
32.

33. Explain why two functions are linearly dependent on
an interval I if and only if there exist constants 
and , not both zero, such that

for all t in I .
34. Wronskian. For any two differentiable functions

and , the function

(18)

is called the Wronskian† of and . This function
plays a crucial role in proof of Theorem 2.
(a) Show that can be conveniently

expressed as the determinant

(b) Let be a pair of solutions to the ho-
mogeneous equation (with

) on an open interval I. Prove that and
are linearly independent on I if and only if

their Wronskian is never zero on I. [Hint: This is
just a reformulation of Lemma 1.]

(c) Show that if and are any two differen-
tiable functions that are linearly dependent on I,
then their Wronskian is identically zero on I.

35. Linear Dependence of Three Functions. Three
functions , and are said to be linearly
dependent on an interval I if, on I, at least one of
these functions is a linear combination of the
remaining two [e.g., if ].
Equivalently (compare Problem 33), and 
are linearly dependent on I if there exist constants

and , not all zero, such that
for all t in I.

Otherwise, we say that these functions are linearly
independent on I.

For each of the following, determine whether the
given three functions are linearly dependent or lin-
early independent on :
(a)

(b)
(c)

(d) y1 AtB ! et ,  y2 AtB ! e"t ,  y3 AtB ! cosh t .
y1 AtB ! et ,  y2 AtB ! tet ,  y3 AtB ! t2et .

y1 AtB ! 1 ,  y2 AtB ! t ,  y3 AtB ! t2 .

A"q, q B

C1y1 AtB # C2y2 AtB # C3y3 AtB ! 0
C3C1, C2,

y3y1, y2,
y1 AtB ! c1y2 AtB # c2y3 AtB
y3 AtBy1 AtB, y2 AtB
y2 AtBy1 AtB

y2 AtB y1 AtBa $ 0
ay– # by¿ # cy ! 0

y1(t), y2(t)

W 3 y1, y2 4 AtB ! ` y1 AtB y2 AtB
y¿1 AtB y¿2 AtB `  .

2 % 2
W 3 y1, y2 4 y2y1

W 3 y1, y2 4 AtB ! y1 AtBy¿2 AtB " y¿1 AtBy2 AtBy2y1

c1y1 AtB # c2y2 AtB ! 0
c2

c1

y1 AtB ! 0 , y2 AtB ! et

y1 AtB !  tan 
2t " sec2t , y2 AtB ! 3

y1 AtB ! t2 cos Aln tB , y2(tB ! t2 sin Aln tBy1 AtB ! te2t , y2 AtB ! e2t

166 Chapter 4 Linear Second-Order Equations

36. Using the definition in Problem 35, prove that if
, and are distinct real numbers, then the func-

tions , and are linearly independent on
. [Hint: Assume to the contrary that, say,

for all t. Divide by to get
and then differentiate to

deduce that and are linearly depen-
dent, which is a contradiction. (Why?)]

In Problems 37–41, find three linearly independent solu-
tions (see Problem 35) of the given third-order differen-
tial equation and write a general solution as an arbitrary
linear combination of these.
37.
38.
39.
40.
41.

42. (True or False): If f1, f2, f3 are three functions defined
on that are pairwise linearly independent
on , then f1, f2, f3 form a linearly indepen-
dent set on . Justify your answer.

43. Solve the initial value problem:

44. Solve the initial value problem:

45. By using Newton’s method or some other numerical
procedure to approximate the roots of the auxiliary
equation, find general solutions to the following
equations:
(a)
(b)
(c)

46. One way to define hyperbolic functions is by means
of differential equations. Consider the equation

The hyperbolic cosine, cosh t, is
defined as the solution of this equation subject to 
the initial values: and The
hyperbolic sine, sinh t, is defined as the solution of
this equation subject to the initial values:
and 

(a) Solve these initial value problems to derive
explicit formulas for cosh t, and sinh t. Also

y¿(0) ! 1.
y(0) ! 0

y¿(0) ! 0.y (0) ! 1

y– " y ! 0.

# 4y¿ " 12y ! 0 .yv " 3y iv " 5y‡ # 15y–
yiv " 5y– # 5y ! 0 .
3y‡ # 18y– # 13y¿ " 19 y ! 0 .

y A0B ! 2 , y¿ A0B ! 3 , y– A0B ! 5 .
y‡ " 2y– " y¿ # 2y ! 0 ;

y– A0B ! "1 .y¿ A0B ! 3 ,
y A0B ! 2 ,y‡ " y¿ ! 0 ;

A"q, q BA"q, q BA"q, q B
y‡ # 3y– " 4y¿ " 12y ! 0
y‡ " 7y– # 7y¿ # 15y ! 0
z‡ # 2z– " 4z¿ " 8z ! 0
y‡ " 6y– " y¿ # 6y ! 0
y‡ # y– " 6y¿ # 4y ! 0

e(r3"r2)te(r1"r2)t
e(r1"r2)t ! c1 # c2e

(r3"r2)t
er2ter1t ! c1e

r2t # c2e
r3t

A"q, q B er3ter1t, er2t
r3r1, r2

y1 AtB ! "3 ,  y2 AtB ! 5 sin2 t , y3 AtB !  cos2 t .

† Historical Footnote: The Wronskian was named after the Polish mathematician H. Wronski (1778–1863).



The simple harmonic equation , so called because of its relation to the fundamental
vibration of a musical tone, has as solutions and . Notice, however,
that the auxiliary equation associated with the harmonic equation is , which has
imaginary roots , where i denotes .† In the previous section, we expressed the
solutions to a linear second-order equation with constant coefficients in terms of exponential
functions. It would appear, then, that one might be able to attribute a meaning to the forms 
and and that these “functions” should be related to cos t and sin t. This matchup is accom-
plished by Euler’s formula, which is discussed in this section.

When , the roots of the auxiliary equation

(1)

associated with the homogeneous equation

(2)

are the complex conjugate numbers

where a, b are the real numbers

(3)

As in the previous section, we would like to assert that the functions and are solutions to
the equation (2). This is in fact the case, but before we can proceed, we need to address some
fundamental questions. For example, if is a complex number, what do we mean by
the expression ? If we assume that the law of exponents applies to complex numbers, then

(4)

We now need only clarify the meaning of 
For this purpose, let’s assume that the Maclaurin series for is the same for complex

numbers z as it is for real numbers. Observing that , then for real we have

 ! a1 "
u2

2!
#
u4

4!
# p b # i au "

u3

3!
#
u5

5!
# p b   .

 ! 1 # iu "
u2

2!
"

iu3

3!
#
u4

4!
#

iu5

5!
# p

 eiu ! 1 # AiuB #
AiuB2
2!

# p #
AiuBn
n!

# p

ui2 ! "1
ez

eibt.

e Aa#ibB t ! eat#ibt ! eateibt  .

eAa#ibB t r1 ! a # ib

er2ter1t

a ! " 

b
2a

  and  b !
24ac " b2

2a
 .

r1 ! a # ib  and  r2 ! a " ib  Ai ! 2"1 B  ,

ay– # by¿ # cy ! 0

ar2 # br # c ! 0

b2 " 4ac 6 0

e"it
eit

2"1r ! &i
r2 # 1 ! 0

y2 AtB !  sin ty1 AtB !  cos t
y– # y ! 0
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AUXILIARY EQUATIONS WITH COMPLEX ROOTS4.3

† Electrical engineers frequently use the symbol j to denote .2"1

show that cosh t ! sinh t and sinh t !

cosh t.
(b) Prove that a general solution of the equation

is given by .
(c) Suppose a, b, and c are given constants for which

has two distinct real roots. If thear 
2 # br # c ! 0

y ! c1 cosh t # c2 sinh ty– " y ! 0

d
dt

d
dt

two roots are expressed in the form and
, show that a general solution of the equation

is 
.

(d) Use the result of part (c) to solve the initial value
problem:

. "17/2
y– # y¿ " 6y ! 0, y(0) ! 2, y¿(0) !

c2e
at sinh(bt)

y ! c1e
at cosh(bt) #ay– # by¿ # cy ! 0

a # b
a " b



and the plots in Figure 4.8, confirm our prediction that all (nonequilibrium) solutions
diverge—except for the one with .

What is the physical significance of this isolated bounded solution? Evidently, if the mass
is given an initial inwardly directed velocity of !6, it has barely enough energy to overcome
the effect of the spring banishing it to but not enough energy to cross the equilibrium
point (and get pushed to ). So it asymptotically approaches the (extremely delicate)
equilibrium position y " 0. ◆

In Section 4.8, we will see that taking further liberties with the mass–spring interpretation
enables us to predict qualitative features of more complicated equations.

Throughout this section we have assumed that the coefficients a, b, and c in the differential
equation were real numbers. If we now allow them to be complex constants, then the roots r1,
r2 of the auxiliary equation (1) are, in general, also complex but not necessarily conjugates of
each other. When a general solution to equation (2) still has the form

but c1 and c2 are now arbitrary complex-valued constants, and we have to resort to the clumsy
calculations of Example 1.

We also remark that a complex differential equation can be regarded as a system of two
real differential equations since we can always work separately with its real and imaginary
parts. Systems are discussed in Chapters 5 and 9.

y AtB " c1e
r1t # c2e

r2t  ,

r1 $ r2,

!q
#q

y0 " !6
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y

υ0 = 6 υ0 = 0

υ0 = −6

υ0 = −12

1

υ0 = −18

t

Figure 4.8 Solution graphs for Example 5

In Problems 1–8, the auxiliary equation for the given dif-
ferential equation has complex roots. Find a general
solution.

1. 2.
3. 4.
5. 6.
7. 8. 4y–! 4y¿ # 26y " 04y– # 4y¿ # 6y " 0

w– # 4w¿ # 6w " 0y– ! 4y¿ # 7y " 0
z– ! 6z¿ # 10z " 0y– ! 10y¿ # 26y " 0
y– # 9y " 0y– # y " 0

In Problems 9–20, find a general solution.
9. 10.

11. 12.
13. 14.
15. 16.
17. 18.
19. 20. y‡ ! y– # 2y " 0y‡ # y– # 3y¿ ! 5y " 0

2y–#13y¿! 7y " 0y– ! y¿ # 7y " 0
y–! 3y¿ ! 11y " 0y– # 10y¿ # 41y " 0
y–! 2y¿ # 26y " 0y– # 2y¿ # 5y " 0
u– # 7u " 0z– # 10z¿ # 25z " 0
y– ! 8y¿ # 7y " 0y– # 4y¿ # 8y " 0

4.3 EXERCISES
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) q ( t C E ( t ) 

R 

L 

I ( t ) 

Figure 4.9 RLC series circuit

In Problems 21–27, solve the given initial value problem.
21.
22.
23.
24.
25.
26.
27.

28. To see the effect of changing the parameter b in the
initial value problem

solve the problem for b " 5, 4, and 2 and sketch the
solutions.

29. Find a general solution to the following higher-order
equations.
(a)
(b)
(c)

30. Using the representation for in (6), verify the
differentiation formula (7).

31. Using the mass–spring analogy, predict the behavior
as of the solution to the given initial value
problem. Then confirm your prediction by actually
solving the problem.
(a)
(b)
(c)
(d)
(e)

32. Vibrating Spring without Damping. A vibrating
spring without damping can be modeled by the initial
value problem (11) in Example 3 by taking b " 0.
(a) If m " 10 kg, k " 250 kg/sec2, m,

and m/sec, find the equation of
motion for this undamped vibrating spring.

(b) When the equation of motion is of the form
displayed in (9), the motion is said to be oscil-
latory with frequency Find the fre-
quency of oscillation for the spring system of
part (a).

33. Vibrating Spring with Damping. Using the model
for a vibrating spring with damping discussed in
Example 3:
(a) Find the equation of motion for the vibrating spring

with damping if kg, kg/sec,b " 60m " 10

b/2p.

y¿ A0B " !0.1
y A0B " 0.3

y– ! y¿ ! 6y " 0  ;  y A0B " 1  ,  y¿A0B " 1
y– # 2y¿ ! 3y " 0  ;  y A0B " !2  ,  y¿A0B " 0
y–! 6y¿ # 8y " 0  ;  y A0B " 1  ,  y¿A0B " 0
y– # 100y¿ # y " 0  ;  y A0B " 1  ,  y¿A0B " 0
y– # 16y " 0  ;  y A0B " 2  ,  y¿ A0B " 0

t S #q

e Aa#ibBty iv # 13y– # 36y " 0
y‡ # 2y– # 5y¿ ! 26y " 0
y‡ ! y– # y¿ # 3y " 0

y– # by¿ # 4y " 0  ;    y A0B " 1  ,  y¿A0B " 0  ,

y– A0B " 0 
y¿A0B " 0 ,yA0B " 1  ,y‡! 4y–# 7y¿ ! 6y " 0  ;    
y¿A0B"!2yA0B"1  ,y– ! 2y¿ # y " 0  ;
y¿ApB"0yApB"ep  ,y– ! 2y¿ # 2y " 0  ;
y¿A0B " 1yA0B " 1  ,y– # 9y " 0  ;
w¿A0B"1wA0B"0  ,w– ! 4w¿ # 2w " 0  ;
y¿A0B"!1yA0B"1  ,y– # 2y¿ # 17y " 0  ;
y¿A0B " 1 y A0B " 2  ,y– # 2y¿ # 2y " 0  ;

k " 250 kg/sec2, m, and "
m/sec.

(b) Find the frequency of oscillation for the spring
system of part (a). [Hint: See the definition of
frequency given in Problem 32(b).]

(c) Compare the results of Problems 32 and 33 and
determine what effect the damping has on the
frequency of oscillation. What other effects does
it have on the solution?

34. RLC Series Circuit. In the study of an electrical
circuit consisting of a resistor, capacitor, inductor, and
an electromotive force (see Figure 4.9), we are led to
an initial value problem of the form

(20)

where L is the inductance in henrys, R is the resis-
tance in ohms, C is the capacitance in farads, is
the electromotive force in volts, is the charge in
coulombs on the capacitor at time t, and is
the current in amperes. Find the current at time t if
the charge on the capacitor is initially zero, the initial
current is zero, L " 10 H, R " 20 %,
F, and V. [Hint: Differentiate both sides
of the differential equation in (20) to obtain a homo-
geneous linear second-order equation for . Then
use (20) to determine at t " 0.]dI/dt

I AtB
E AtB " 100

C " A6260B!1

I " dq/dt
q AtB E AtB

I A0B ! I0  ,
q A0B ! q 0  ,

LdI
dt " RI "

q
C ! E AtB  ;

!0.1
y¿ A0By A0B " 0.3

35. Swinging Door. The motion of a swinging door
with an adjustment screw that controls the amount of
friction on the hinges is governed by the initial value
problem

where is the angle that the door is open, I is the
moment of inertia of the door about its hinges, b & 0 is
a damping constant that varies with the amount of fric-
tion on the door, k & 0 is the spring constant associated
with the swinging door, is the initial angle that theu0

u

Iu– # bu¿ # ku" 0  ;  u A0B " u0  ,  u¿A0B " y0  ,



door is opened, and is the initial angular velocity
imparted to the door (see Figure 4.10). If I and k are
fixed, determine for which values of b the door will not
continually swing back and forth when closing. 

y0
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(b) Show that, in general, d1 and d2 in (21) must be
complex conjugates in order that the solution be
real.

37. The auxiliary equations for the following differential
equations have repeated complex roots. Adapt the
“repeated root” procedure of Section 4.2 to find their
general solutions:
(a)
(b) [Hint:

The auxiliary equation is .]

38. Prove the sum of angle formula for the sine function
by following these steps. Fix x.
(a) Let f(t):" sin (x # t). Show that f '(t) # f(t) " 0,

f(0) " sin x, and f ((0) " cos x.
(b) Use the auxiliary equation technique to solve the

initial value problem y' # y " 0, y(0) " sin x,
and y((0) " cos x.

(c) By uniqueness, the solution in part (b) is the
same as f(t) from part (a). Write this equality;
this should be the standard sum of angle formula
for sin (x # t). 

Ar2 # 2r # 4B2 " 0
y iv # 4y‡ # 12y– # 16y¿ # 16y " 0 .
y iv # 2y– # y " 0  .

Figure 4.10 Top view of swinging door

36. Although the real general solution form (9) is conve-
nient, it is also possible to use the form

(21)
to solve initial value problems, as illustrated in
Example 1. The coefficients d1 and d2 are complex
constants.
(a) Use the form (21) to solve Problem 21. Verify

that your form is equivalent to the one derived
using (9).

d1e
Aa#ibB t # d2e

Aa!ibB t

In this section we employ “judicious guessing” to derive a simple procedure for finding a solu-
tion to a nonhomogeneous linear equation with constant coefficients

(1)

when the nonhomogeneity f(t) is a single term of a special type. Our experience in Section 4.3
indicates that (1) will have an infinite number of solutions. For the moment we are content to
find one, particular, solution. To motivate the procedure, let’s first look at a few instructive
examples.

Find a particular solution to

(2)

We need to find a function y(t) such that the combination is a linear function of
t—namely, 3t. Now what kind of function y “ends up” as a linear function after having its
zeroth, first, and second derivatives combined? One immediate answer is: another linear func-
tion. So we might try and attempt to match up with 3t.

Perhaps you can see that this won’t work: and gives us 

y–1 # 3y¿1 # 2y1 " 3A # 2At ,

y–1 " 0y1 " At, y¿1 " A
y–1 # 3y ¿1 # 2y1y1 AtB " At

y– # 3y¿ # 2y

y– # 3y¿ # 2y " 3t .

ay– # by¿ # cy " f(t) ,

NONHOMOGENEOUS EQUATIONS:  THE
METHOD OF UNDETERMINED COEFFICIENTS4.4

Example 1

Solution



The next theorem describes the superposition principle, a very simple observation which
nonetheless endows the solution set for our equations with a powerful structure. It extends the
applicability of the method of undetermined coefficients and enables us to solve initial value
problems for nonhomogeneous differential equations.
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THE SUPERPOSITION PRINCIPLE AND
UNDETERMINED COEFFICIENTS REVISITED4.5

Superposition Principle

Theorem 3. Let be a solution to the differential equation

,

and be a solution to

.

Then for any constants and , the function is a solution to the differential 
equation

.ay– ! by¿ ! cy " k1 f1 AtB ! k2 f2 AtB
k1y1 ! k2 y2k2k1

ay– ! by¿ ! cy " f2 AtBy2

ay– ! by¿ ! cy " f1 AtBy1

In Problems 1–8, decide whether or not the method of
undetermined coefficients can be applied to find a partic-
ular solution of the given equation.

1.
2.
3.
4.
5.
6.
7.
8.

In Problems 9–26, find a particular solution to the differ-
ential equation.

9. 10.
11. 12.
13. 14.

15. 16.

17. 18.
19.
20.
21. x– AtB # 4x¿ AtB ! 4x AtB " te2t

y– ! 4y " 16 t sin  2t
4y– ! 11y¿ # 3y " #2te#3t

y– ! 4y " 8 sin  2ty– # 2y¿ ! y " 8et

u– AtB # u AtB " t sin t
d 2y

dx2 # 5
dy
dx

! 6 y " xex

2z– ! z " 9 e2ty– # y¿ ! 9 y " 3 sin 3t
2x¿ ! x " 3t2y– AxB ! y AxB " 2x

y– ! 3y " #9y– ! 2y¿ # y " 10

8z¿ AxB # 2z AxB " 3x100e4x cos 25 x
ty– # y¿ ! 2y " sin 3t
y– AuB ! 3y¿ AuB # y AuB " sec u
2v– AxB # 3v AxB " 4x sin 2x ! 4x cos 2x
x– ! 5 x¿ # 3x " 3t

2y– AxB # 6 y¿ AxB ! y AxB " A sinxB /e4x

5 y– # 3y¿ ! 2y " t3 cos  4t
y– ! 2y¿ # y " t#1et

22.
23.
24.
25.
26.

In Problems 27–32, determine the form of a particular
solution for the differential equation. (Do not evaluate
coefficients.)
27. 28.
28.
29.
30.
31.
32.

In Problems 33–36, use the method of undetermined
coefficients to find a particular solution to the given
higher-order equation.
33.
34.
35.
36. y(4) # 3y– # 8y " sin t

y‡ ! y– # 2y " tet

2y‡ ! 3y– ! y¿ # 4y " e#t

y‡ # y– ! y " sin t

y– # y¿ # 12y " 2t 6 e#3t

y– ! 2y¿ ! 2y " 8t3e#t sin t
y– # 2y¿ ! y " 7 et cos t
y– # 6 y¿ ! 9 y " 5 t 6 e3t

y– ! 3y¿ # 7 y " t4et

y– ! 3y¿ # 7 y " t4ety– ! 9 y " 4t3 sin 3t

y– ! 2y¿ ! 2y " 4te#t cos t
y– ! 2y¿ ! 4y " 111e2t cos  3t
y– AxB ! y AxB " 4x cos x
y– AuB # 7 y¿ AuB " u2

x– AtB # 2x¿ AtB ! x AtB " 24t2et

4.4 EXERCISES



The roots of the associated homogeneous equation were identified in
Example 3 as !1 " i. Application of (14) dictates the form

◆

The method of undetermined coefficients applies to higher-order linear differential
equations with constant coefficients. Details will be provided in Chapter 6, but the following
example should be clear.

Write down the form of a particular solution to the equation

The auxiliary equation for the associated homogeneous is , with
a double root r # !1 and a single root r # 0. Term by term, the nonhomogeneities call for the
forms

(If !1 were a triple root, we would need for .) Of course, we have to
rename the coefficients, so the general form is

◆yp AtB # Ae!tcos t $ Be!tsin t $ tC $ t2 ADt $ EBe!t .

7te!tt3 AA1t $ A0Be!t

t2 AA1t $ A0Be!t  Afor 7te!tB .

t A0  Afor 3B ,

A0 e!t cos t $ B0 e!t sin t  Afor 5e!t sin tB ,

r3 $ 2r2 $ r # r Ar $ 1B2 # 0

y‡ $ 2y– $ y¿ # 5e!t sin t $ 3 $ 7te!t .

yp AtB # t AA3t
3 $ A2t

2 $ A1t $ A0Be!t cos t $ t AB3t
3 $ B2t

2 $ B1t $ B0Be!t sin t .

y– $ 2y¿ $ 2y # 0
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Write down the form of a particular solution to the equation

y– $ 2y¿ $ 2y # 5e!t sin t $ 5t3e!t cos t .

Solution

Example 5

Example 6

Solution

1. Given that is a solution to
and that 

is a solution to , use the super-
position principle to find solutions to the following:
(a) .
(b) .
(c) .

2. Given that is a solution to

and is a solution to

use the superposition principle to find solutions to
the following differential equations:
(a) .
(b) .
(c) .

In Problems 3–8, a nonhomogeneous equation and a
particular solution are given. Find a general solution for
the equation.

3. y– $ y¿ # 1 , yp AtB # t

y– ! y¿ $ y # 4 sin t $ 18e2t
y– ! y¿ $ y # sin t ! 3e2t
y– ! y¿ $ y # 5 sin t

y– ! y¿ $ y # e2t ,
y2 AtB # e2t /3
y– ! y¿ $ y # sin t

y1 AtB # cos t
y– $ 2y¿ $ 4y # 11t ! 12 cos 2t
y– $ 2y¿ $ 4y # 2t ! 3 cos 2t
y– $ 2y¿ $ 4y # t $ cos 2t

y– $ 2y¿ $ 4y # t
y2 AtB # t /4 ! 1/8y– $ 2y¿ $ 4y # cos 2t

y1 AtB # A1/4B sin 2t 4.
5.

6.
7.
8.

In Problems 9–16 decide whether the method of undeter-
mined coefficients together with superposition can be
applied to find a particular solution of the given equa-
tion. Do not solve the equation.

9.
10.
11.
12.
13.
14.
15.
16. 2y– ! y¿ $ 6y # t2e!t sin t ! 8t cos 3t $ 10t

y– $ ety¿ $ y # 7 $ 3t

y– ! 2y¿ $ 3y # cosh t $ sin3 t

2y– $ 3y¿ ! 4y # 2t $ sin2t $ 3

y– $ y¿ $ ty # et $ 7

y– ! 6y¿ ! 4y # 4 sin 3t ! e3tt2 $ 1/ t
3y– $ 2y¿ $ 8y # t2 $ 4t ! t2et sin t

y– ! y¿ $ y # Aet $ tB2

y– # 2y¿ ! y $ 2ex , yp AxB # x2ex

y– # 2y $ 2 tan3x , yp AxB # tan x

u– ! u¿ ! 2u # 1 ! 2t , up AtB # t ! 1

yp AxB # ex $ x2
y– $ 5y¿ $ 6y # 6x2 $ 10x $ 2 $ 12ex ,

y– ! y # t , yp AtB # !t

4.5 EXERCISES



In Problems 17–22, find a general solution to the differ-
ential equation.
17.
18.
19.
20.
21.
22.

In Problems 23–30, find the solution to the initial value
problem.
23.
24.
25.
26.
27.

28.

29.

30.

In Problems 31–36, determine the form of a particular
solution for the differential equation. Do not solve.
31.
32.
33.
34.
35.
36.

In Problems 37–40, find a particular solution to the
given higher-order equation.
37.
38.
39.
40.

41. Discontinuous Forcing Term. In certain physical
models, the nonhomogeneous term, or forcing
term, g(t) in the equation

may not be continuous but may have a jump 
ay– $ by¿ $ cy # g AtB

y A4B ! 3y‡ $ 3y– ! y¿ # 6t ! 20
y‡ $ y– ! 2y # tet $ 1
y A4B ! 5y– $ 4y # 10  cos t ! 20 sin t
y‡ ! 2y– ! y¿ $ 2y # 2t2 $ 4t ! 9

y– ! 4y¿ $ 4y # t2e2t ! e2t

y– ! 4y¿ $ 5y # e5t $ t sin 3t !  cos 3t
y– $ 5y¿ $ 6y #  sin t !  cos 2t
x– ! x¿ ! 2x # et cos t ! t2 $ cos3 t
y– ! y # e2t $ te2t $ t2e2t

y– $ y #  sin t $ t cos t $ 10t

y A0B # 0 ,  y¿ A0B # 2
y– $ 2y¿ $ y # t2 $ 1 ! et ;
y A0B # 1 ,  y¿ A0B # !1
y– AuB ! y AuB #  sin u ! e2u ;
y A0B # 1 ,  y¿ A0B # 3
y– $ y¿ ! 12y # et $ e2t ! 1 ;
y A0B # !7/20 ,  y¿ A0B # 1/5
y– AxB ! y¿ AxB ! 2y AxB #  cos x !  sin 2x ;
y– $ 9y # 27 ;  y A0B # 4 ,   y¿ A0B # 6 
z– AxB $ z AxB # 2e!x ;  z A0B # 0 ,   z¿ A0B # 0
y– # 6t ;  y A0B # 3 ,  y¿ A0B # !1
y¿ ! y # 1 ,    y A0B # 0

# 10x4 $ 24x3 $ 2x2 ! 12x $ 18
y– AxB $ 6y¿ AxB $ 10y AxBy– AuB $ 2y¿ AuB $ 2y AuB # e!u cos u
y– AuB $ 4y AuB #  sin u !  cos u
y– AxB ! 3y¿ AxB $ 2y AxB # ex sin x
y– ! 2y¿ ! 3y # 3t2 ! 5
y– ! y # !11t $ 1
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discontinuity. If this occurs, we can still obtain a rea-
sonable solution using the following procedure. Con-
sider the initial value problem

where

(a) Find a solution to the initial value problem for
.

(b) Find a general solution for .
(c) Now choose the constants in the general solution

from part (b) so that the solution from part (a) and
the solution from part (b) agree, together with their
first derivatives, at . This gives us a con-
tinuously differentiable function that satisfies the
differential equation except at .

42. Forced Vibrations. As discussed in Section 4.1, a
vibrating spring with damping that is under external
force can be modeled by

(15) ,

where m % 0 is the mass of the spring system, b % 0
is the damping constant, k % 0 is the spring constant,
g(t) is the force on the system at time t, and y(t) is
the displacement from the equilibrium of the spring
system at time t. Assume .
(a) Determine the form of the equation of motion for

the spring system when by finding
a general solution to equation (15).

(b) Discuss the long-term behavior of this system.
[Hint: Consider what happens to the general
solution obtained in part (a) as ]

43. A mass–spring system is driven by a sinusoidal exter-
nal force . The mass equals 1, the spring
constant equals 3, and the damping coefficient equals
4. If the mass is initially located at and at
rest, i.e., , find its equation of motion.

44. A mass–spring system is driven by the external force
. The mass equals 1, the

spring constant equals 5, and the damping coeffi-
cient equals 2. If the mass is initially located at

, with initial velocity , find its
equation of motion.

y¿ A0B # 5y A0B # !1

g AtB # 2 sin 3t $ 10 cos 3t

y¿ A0B # 0
y A0B # 1/2

g AtB # 5 sin t

t S $q.

g AtB #  sin bt

b2 6 4mk

my– $ by¿ $ ky # g AtB

t # 3p/2

t # 3p/2

t 7 3p/2
0 & t & 3p/2

g AtB # b10 if 0 & t & 3p /2
0  if t 7 3p /2   .

y– $ 2y¿ $ 5y # g AtB ;   y A0B # 0 , y¿ A0B # 0 ,



45. Speed Bumps. Often bumps like the one depicted
in Figure 4.11 are built into roads to discourage
speeding. The figure suggests that a crude model of
the vertical motion y(t) of a car encountering the
speed bump with the speed V is given by

,

(The absence of a damping term indicates that the
car’s shock absorbers are not functioning.)
(a) Taking , and in appro-

priate units, solve this initial value problem.
Thereby show that the formula for the oscillatory
motion after the car has traversed the speed bump
is where the constant A depends on
the speed V.

y AtB # A sin t,

F0 # 1m # k # 1,  L # p

# e  F0 cos ApVt/LB  for 0 t 0 6 L/ A2VB
     

0                  for t ' L/ A2VB. fmy– $ ky

y AtB # 0      for t & !L/ A2VB
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k

y(t)
m

Speed

x = L/2x = −L/2

V

cos(  x/L)

Figure 4.11 Speed bump

(b) Plot the amplitude of the solution found
in part (a) versus the car’s speed V. From the
graph, estimate the speed that produces the most
violent shaking of the vehicle.

46. Show that the boundary value problem 
,

has a solution if and only if .
47. Find the solution(s) to

(if it exists) satisfying the boundary conditions
(a)
(b)
(c)

48. All that is known concerning a mysterious sec-
ond-order constant-coefficient differential equation
y( $ py) $ qy = g(t) is that t2 $ 1 $ et cos t,
t2 $ 1 $ et sin t, and t2 $ 1 $ et cos t $ et sin t are
solutions.
(a) Determine two linearly independent solutions to

the corresponding homogeneous equation.
(b) Find a suitable choice of p, q, and g(t) that

enables these solutions.

y A0B # !1 ,  y Ap/3B # !1 .
y A0B # !1 ,  y Ap/3B # 5 .
y A0B # !1 ,  y Ap/6B # 3 .

y– $ 9y # 27 cos 6t

l * "1, "2, "3, p
y– $ l2y #  sin t ;  y A0B # 0 ,  y ApB # 1

y AtBƒ A ƒ

VARIATION OF PARAMETERS4.6  
We have seen that the method of undetermined coefficients is a simple procedure for determin-
ing a particular solution when the equation has constant coefficients and the nonhomogene-
ous term is of a special type. Here we present a more general method, called variation of
parameters,† for finding a particular solution. 

Consider the nonhomogeneous linear second-order equation

(1)

and let be two linearly independent solutions for the corresponding homogeneous
equation

Then we know that a general solution to this homogeneous equation is given by

(2)

where and are constants. To find a particular solution to the nonhomogeneous equation,c2c1

yh AtB # c1y1 AtB $ c2y2 AtB ,

ay– $ by¿ $ cy # 0 .

Ey1 AtB, y2 AtB Fay– $ by¿ $ cy # ƒ AtB

† Historical Footnote: The method of variation of parameters was invented by Joseph Lagrange in 1774



7.
8.

In Problems 9 and 10, find a particular solution first by
undetermined coefficients, and then by variation of para-
meters. Which method was quicker?
9.

10.

In Problems 11–18, find a general solution to the differ-
ential equation.
11.
12.
13.
14.
15. y– ! y " 3 sec t # t2 ! 1

y– AuB ! y AuB " sec3 u
y– ! 4y " sec4 A2tBy– ! y "  tan t ! e3t # 1
y– ! y "  tan 

2 t

2x– AtB # 2x¿ AtB # 4x AtB " 2e2t
y– # y " 2t ! 4

y– ! 4y " csc2 A2tBy– ! 4y¿ ! 4y " e#2t ln t
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In Problems 1–8, find a general solution to the differential
equation using the method of variation of parameters.

1.
2. y– ! 4y "  tan  2t

y– ! y " sec t

3.
4.
5.
6. y– AuB ! 16y AuB " sec 4u

y– ! 9y " sec2 A3tBy– # 2y¿ ! y " t#1et

y– ! 2y¿ ! y " e#t

16.

17.

18.

19. Express the solution to the initial value problem

using definite integrals. Using numerical integration
(Appendix C) to approximate the integrals, find an
approximation for y(2) to two decimal places.

20. Use the method of variation of parameters to show that

is a general solution to the differential equation

,
where is a continuous function on .
[Hint: Use the trigonometric identity 

]
21. Suppose y satisfies the equation y$ ! 10y% ! 25y "

et3

subject to y(0) " 1 and y%(0) " #5. Estimate
y(0.2) to within &0.0001 by numerically approxi-
mating the integrals in the variation of parameters
formula.

sin t  cos s #  sin s  cos t .
 sin At # sB "
A#q,  q Bf AtBy– ! y " f AtB

y AtB " c1 cos t ! c2 sin t ! !
t

0
f AsB sin At # sB ds

y– # y "
1
t
 ,    y A1B " 0 , y¿ A1B " #2 ,

y– # 6y¿ ! 9y " t#3e3t

1
2

 y– ! 2y "  tan 2t #
1
2

 et

y– ! 5y¿ ! 6y " 18t2

VARIABLE-COEFFICIENT EQUATIONS4.7
The techniques of Sections 4.2 and 4.3 have explicitly demonstrated that solutions to a linear
homogeneous constant-coefficient differential equation,

(1) ay$ ! by% ! cy " 0 ,

are defined and satisfy the equation over the whole interval . After all, such solu-
tions are combinations of exponentials, sinusoids, and polynomials.  

The variation of parameters formula of Section 4.6 extended this to nonhomogeneous 
constant-coefficient problems,

(2) ay$ ! by% ! cy " ƒ(t) ,

yielding solutions valid over all intervals where ƒ(t) is continuous (ensuring that the integrals in
(10) of Section 4.6 containing ƒ(t) exist and are differentiable). We could hardly hope for more;
indeed, it is debatable what meaning the differential equation (2) would have at a point where
f(t) is undefined, or discontinuous.

(#q, !q)

4.6 EXERCISES



Taking integration constants to be zero yields or , and
. Therefore, a second solution to (19) is .

We conclude that a general solution is ◆

In this section we have seen that the theory for variable-coefficient equations differs only
slightly from the constant-coefficient case (in that solution domains are restricted to intervals),
but explicit solutions can be hard to come by. In the next section, we will supplement our expo-
sition by describing some nonrigorous procedures that sometimes can be used to predict quali-
tative features of the solutions.

c1cos t ! c2 Asin t " t cos tB.y2 # Atan t " tB cos t # sin t " tcos tv # tan t " t
v¿ # tan2 tln v¿ # 2 lnˇ

A tan tB
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In Problems 1 through 4, use Theorem 5 to discuss the
existence and uniqueness of a solution to the differential
equation that satisfies the initial conditions ,

, where Y0 and Y1 are real constants.
1.
2.
3.

4.

In Problems 5 through 8, determine whether Theorem 5
applies. If it does, then discuss what conclusions can be
drawn. If it does not, explain why.

5.
6.

7.
8.

In Problems 9 through 14, find a general solution to the
given Cauchy–Euler equation for 

9.

10.

11.

12.

13.

14. t 2y– AtB " 3ty¿ AtB ! 4y AtB # 0

9t 2y– AtB ! 15ty¿ AtB ! y AtB # 0

t 2 d 2z

dt 2
! 5t

dz
dt

! 4z # 0

d 2w

dt 2
!

6
t

dw
dt

!
4

t 2
w # 0

t2y– AtB ! 7ty¿ AtB " 7y AtB # 0

t 2 d 2y

dt 2
! 2t

dy
dt

" 6y # 0

t 7 0.

y¿ A0B # 1y A0B # 1  ,
A1 " tBy– ! ty¿ " 2y # sin t  ;
y– ! ty¿ " t 2y # 0  ;    y A0B # 0  ,    y A1B # 0

y– ! yy¿ # t 2 " 1  ;   y A0B # 1  ,   y¿ A0B # "1
t 2z– ! tz¿ ! z # cos t  ;  z A0B # 1  ,  z¿ A0B # 0

ety– "
y¿

t " 3
! y # ln t

t 2y– ! y # cos t

A1 ! t2By– ! ty¿ " y # tan t
t At " 3By– ! 2ty¿ " y # t2

y¿ A1B # Y1

y A1B # Y0

In Problems 15 through 18, find a general solution 
for

15.

16.

17.

18.

In Problems 19 and 20, solve the given initial value prob-
lem for the Cauchy–Euler equation.

19.

20.

In Problems 21 and 22, devise a modification of the
method for Cauchy–Euler equations to find a general
solution to the given equation.

21.

22.

23. To justify the solution formulas (8) and (9), perform
the following analysis.
(a) Show that if the substitution is made in

the function and x is regarded as the new
independent variable in , the chain
rule implies the following relationships:

t
dy
dt

#
dY
dx

  ,    t 2 d 2y

dt 2
#

d 2Y

dx 2
"

dY
dx

  .

Y AxB J y AexBy AtB t # ex

t 7 "1
At ! 1B2y– AtB ! 10 At ! 1By¿ AtB ! 14y AtB # 0 ,

t 7 2
At " 2B2y– AtB " 7 At " 2By¿ AtB ! 7y AtB # 0 ,

y A1B # "1  ,    y¿ A1B # 13
t 2y– AtB ! 7ty¿ AtB ! 5y AtB # 0 ;

y A1B # "2  ,    y¿ A1B # "11
t 2y– AtB " 4ty¿ AtB ! 4y AtB # 0 ;

t 2y– AtB ! 3ty¿ AtB ! 5y AtB # 0

t 2y– AtB ! 9ty¿ AtB ! 17y AtB # 0

t 2y– AtB " 3ty¿ AtB ! 6y AtB # 0

y– AtB "
1
t

y¿ AtB !
5

t2
y(t) # 0

t 6 0.
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(b) Using part (a), show that if the substitution 
is made in the Cauchy–Euler differential equation
(6), the result is a constant-coefficient equation
for , namely,

(20)

(c) Observe that the auxiliary equation (recall
Section 4.2) for the homogeneous form of (20) is
the same as (7) in this section. If the roots of the
former are complex, linearly independent solu-
tions of (20) have the form eax cos bx and eax sin
bx; if they are equal, linearly independent solu-
tions of (20) have the form erx and xerx. Express x
in terms of t to derive the corresponding solution
forms (8) and (9).

24. Solve the following Cauchy–Euler equations by
using the substitution described in Problem 23 to
change them to constant coefficient equations, find-
ing their general solutions by the methods of the pre-
ceding sections, and restoring the original indepen-
dent variable t.
(a)
(b)
(c)
(d)

25. Let y1 and y2 be two functions defined on .
(a) True or False: If y1 and y2 are linearly depen-

dent on the interval , then y1 and y2

are linearly dependent on the smaller interval
.

(b) True or False: If y1 and y2 are linearly dependent
on the interval , then y1 and y2 are linearly
dependent on the larger interval .

26. Let and . Are y1 and y2 lin-
early independent on the following intervals?
(a) (b) (c)
(d) Compute the Wronskian on the

interval .

27. Consider the linear equation

(21)

(a) Verify that and are two solu-
tions to (21) on . Furthermore, show
that for .t0 # 1y1 At0By¿2 At0B " y¿1 At0By2 At0B $ 0

A"q, q By2 AtB J t3y1 AtB J t

t 
2y– " 3ty¿ ! 3y # 0 ,

for "q 6 t 6 q .

A"q, q B W 3 y1, y2 4 AtBA"q, q BA"q, 0 430, q B
y2 AtB # 0 t 

3 0y1 AtB # t 
3

3C, D 4 ) 3a, b 43a, b 43 c, d 4 ( 3a, b 4 3a, b 4 A"q, q Bt 
2y– ! ty¿ ! 9y # "tan A3 ln tBt 
2y– ! 3ty¿ ! y # t ! t"1

t 
2y– ! 3ty¿ ! 10y # 0

t 
2y– ! ty¿ " 9y # 0

a 
d 

2Y
dx 

2 ! Ab " aB dY
dx

! cY # ƒ Ae 
xB .

Y AxB # y Ae 
xB

t # e 
x (b) Prove that and are linearly indepen-

dent on .
(c) Verify that the function is also a

solution to (21) on .
(d) Prove that there is no choice of constants c1,

c2 such that for all t
in . [Hint: Argue that the contrary
assumption leads to a contradiction.]

(e) From parts (c) and (d), we see that there is at
least one solution to (21) on that is
not expressible as a linear combination of the
solutions . Does this provide a
counterexample to the theory in this section?
Explain.

28. Let and . Are y1 and y2 lin-
early independent on the interval:
(a) ? (b) ? (c) ?
(d) Compute the Wronskian on the

interval .
29. Prove that if y1 and y2 are linearly independent solu-

tions of on , then they can-
not both be zero at the same point t0 in .

30. Superposition Principle. Let y1 be a solution to

on the interval I and let y2 be a solution to

on the same interval. Show that for any constants k1

and k2, the function is a solution on I to

31. Determine whether the following functions can be
Wronskians on for a pair of solutions
to some equation (with p and q
continuous).
(a) (b)
(c) (d)

32. By completing the following steps, prove that the
Wronskian of any two solutions y1, y2 to the equa-
tion on is given by Abel’s
formula†

where the constant C depends on y1 and y2.
(a) Show that the Wronskian W satisfies the equa-

tion .W¿ ! pW # 0

t0 and t in (a, b) ,

W 3 y1, y2 4 AtB ! C exp E" ! t

t 0

 pATB dTF ,

Aa, bBy– ! py¿ ! qy # 0

w AtB " 0w AtB # At ! 1)"1
w AtB # t 

3w AtB # 6e4t

y– ! py¿ ! qy # 0
"1 6 t 6 1

y– AtB ! p AtBy¿ AtB ! q AtBy AtB # k1g1 AtB ! k2g2 AtB .
k1y1 ! k2y2

y– AtB ! p AtBy¿ AtB ! q AtBy AtB # g2 AtB
y– AtB ! p AtBy¿ AtB ! q AtBy AtB # g1 AtB

Aa, bBAa, bBy– ! py¿ ! qy # 0

A"q, q B W 3 y1, y2 4 AtBA"q, q BA"q, 0 430, q B
y2 AtB # 2t 0 t 0y1 AtB # t 

2

y1 AtB, y2 AtB
A"q, q B

A"q, q B y3 AtB # c1y1 AtB ! c2y2 AtB
A"q, q By3 AtB J 0 t 0 3A"q, q B y2 AtBy1 AtB

† Historical footnote: Niels Abel derived this identity in 1827.
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(b) Solve the separable equation in part (a).
(c) How does Abel’s formula clarify the fact that the

Wronskian is either identically zero or never zero
on ?

33. Use Abel’s formula (Problem 32) to determine (up to
a constant multiple) the Wronskian of two solutions
on to

34. All that is known concerning a mysterious differen-
tial equation is that the
functions , and are solutions.
(a) Determine two linearly independent solutions

to the corresponding homogeneous differential
equation.

(b) Find the solution to the original equation satisfy-
ing the initial conditions 

(c) What is ? [Hint: Use Abel’s formula for the
Wronskian, Problem 32.]

35. Given that and are solutions to
the differential equation 
find the solution to this equation that satisfies

36. Verify that the given functions y1 and y2 are linearly
independent solutions of the following differential
equation and find the solution that satisfies the given
initial conditions.

In Problems 37 through 40, use variation of parameters
to find a general solution to the differential equation
given that the functions y1 and y2 are linearly independent
solutions to the corresponding homogeneous equation for

Remember to put the equation in standard form.

37.

38.

39.

40.

In Problems 41 through 43, find general solutions to the
nonhomogeneous Cauchy–Euler equations using varia-
tion of parameters.

41. t 
2z– ! tz¿ ! 9z # "tan(3 ln t)

y1 # et ,    y2 # et  ln t
ty– ! (1 " 2t)y¿ ! (t " 1)y # tet ;

y1 # 5t " 1 ,    y2 # e"5t
ty– ! (5t " 1)y¿ " 5y # t 

2e"5t ;

y1 # t 
2 ,    y2 # t 

3
t 

2y– " 4ty¿ ! 6y # t 
3 ! 1 ;

y1 # et ,    y2 # t ! 1
ty– " (t ! 1)y ¿ ! y # t 

2 ;

t 7 0.

ty– " At ! 2By¿ ! 2y # 0 ;
y1 AtB # et ,  y2 AtB # t2 ! 2t ! 2 ;
y A1B # 0 ,  y¿ A1B # 1

y¿ A1B # 0.y A1B # 2,

y– ! p AtBy¿ ! q AtBy # g AtB,1 ! 3t21 ! t, 1 ! 2t,

p AtB y A2B # 2, y¿ A2B # 5.

t 
3t, t 

2
y– ! p AtBy¿ ! q AtBy # g AtB

ty– ! At " 1)y¿ ! 3y # 0 .

A0, q B
Aa, bB

42.

43.

44. The Bessel equation of order one-half

has two linearly independent solutions,

Find a general solution to the nonhomogeneous
equation

In Problems 45 through 48, a differential equation and a
non-trivial solution f are given. Find a second linearly
independent solution using reduction of order.

45.

46.

47.

48.

49. In quantum mechanics, the study of the Schrödinger
equation for the case of a harmonic oscillator leads
to a consideration of Hermite’s equation,

,

where % is a parameter. Use the reduction of order
formula to obtain an integral representation of a
second linearly independent solution to Hermite’s
equation for the given value of % and corresponding
solution .
(a)
(b)

50. Complete the proof of Theorem 8 by solving equa-
tion (16).

51. The reduction of order procedure can be used more
generally to reduce a homogeneous linear nth-order
equation to a homogeneous linear th-order
equation. For the equation

which has as a solution, use the substitu-
tion to reduce this third-order equa-
tion to a homogeneous linear second-order equation
in the variable w # v¿.

y (t) # v (t) f (t)
f  (t) # et

ty–¿ " ty– ! y¿ " y # 0  ,

(n " 1)

l # 6  ,    f (t) # 3t " 2t 
3

l # 4  ,    f (t) # 1 " 2t 
2

f (t)

y– " 2 ty¿ # Ly ! 0

f (t) # et

ty– ! (1 " 2t)y¿ ! (t " 1)y # 0  ,    t 7 0  ;

tx– " (t ! 1)x¿ ! x # 0  ,   t 7 0  ;   f (t) # et

t 2y– ! 6ty¿ ! 6y # 0  ,   t 7 0  ;   f (t) # t"2

t 2y– " 2ty¿ " 4y # 0  ,   t 7 0  ;   f (t) # t"1

t 
2y– ! ty¿ ! ¢t 

2 "
1
4
≤ y # t 

5/2 ,    t 7 0 .

y1(t) # t"1/2cos t ,  y2(t) # t"1/2sin t .

t 
2y– ! ty¿ ! at 

2 "
1
4b y # 0 ,    t 7 0

t 
2z– " tz¿ ! z # t ¢1 !

3
ln t
≤t 

2y– ! 3ty¿ ! y # t"1



Section 4.8 Qualitative Considerations for Variable-Coefficient and Nonlinear Equations 203

52. The equation

has as a solution. Use the substitution 
to reduce this third-order equation to a

homogeneous linear second-order equation in the
variable .

53. Isolated Zeros. Let be a solution to 
on (a, b), where p, q are continuous

on (a, b). By completing the following steps, prove
that if f is not identically zero, then its zeros in (a, b)
are isolated, i.e., if then there exists a

such that for 
(a) Suppose and assume to the contrary

that for each the function f has a
zero at where Show
that this implies [Hint: Consider the
difference quotient for at ]t0.f

f¿(t0) # 0.
0 6 ƒ t0 " tn ƒ 6 1/n.tn,

n # 1, 2, p ,
f(t 0) # 0

0 6 ƒ t " t0 ƒ 6 d.f(t) $ 0d 7 0
f (t 0) # 0,

py¿ ! qy # 0
y– !f(t)

w # v¿

v (t) f (t)
y (t) #f (t) # t

ty–¿ ! (1 " t)y– ! ty¿ " y # 0
(b) With the assumptions of part (a), we have

Conclude from this that f
must be identically zero, which is a contradic-
tion. Hence, there is some integer such that

is not zero for 

54. The reduction of order formula (13) can also be
derived from Abels’ identity (Problem 32). Let 
be a nontrivial solution to (10) and a second lin-
early independent solution. Show that

and then use Abel’s identity for the Wronskian
to obtain the reduction of order formula.W[  f, y]

¢y
f
≤¿ #

W[ f, y]

f 2

y(t)
f (t)

0 6 ƒ t " t0 ƒ 6 1/n0.f(t)
n0

f(t0) # f¿(t0) # 0.

4.8
QUALITATIVE CONSIDERATIONS FOR 
VARIABLE-COEFFICIENT AND NONLINEAR 
EQUATIONS

There are no techniques for obtaining explicit, closed-form solutions to second-order linear
differential equations with variable coefficients (with certain exceptions) or for nonlinear equa-
tions. In general, we will have to settle for numerical solutions or power series expansions. So
it would be helpful to be able to derive, with simple calculations, some nonrigorous, qualitative
conclusions about the behavior of the solutions before we launch the heavy computational
machinery. In this section we first display a few examples that illustrate the profound differ-
ences that can occur when the equations have variable coefficients or are nonlinear. Then we
show how the mass–spring analogy, discussed in Section 4.1, can be exploited to predict some
of the attributes of solutions of these more complicated equations.

To begin our discussion we display a linear constant-coefficient, a linear variable-coefficient,
and two nonlinear equations.

(a) The equation

(1)

is linear, homogeneous with constant coefficients. We know everything about such
equations; the solutions are, at worst, polynomials times exponentials times sinusoids
in t, and unique solutions can be found to match any prescribed data at
any instant t # a. It has the superposition property: If and are solutions, so
is .y AtB # c1y1 AtB ! c2y2 AtB y2 AtBy1 AtB y AaB, y¿ AaB

3y– ! 2y¿ ! 4y # 0



where and are determined by the equations

.

Superposition Principle. If and are solutions to the equations

and

respectively, then ! is a solution to the equation

The superposition principle facilitates finding a particular solution when the nonhomogeneous
term is the sum of nonhomogeneities for which particular solutions can be determined.

Cauchy–Euler (Equidimensional) Equations

Substituting yields the associated characteristic equation

for the corresponding homogeneous Cauchy–Euler equation. A general solution to the homo-
geneous equation for t > 0 is given by

(i) , if r1 and r2 are distinct real roots;
(ii) ln t, if r is a repeated root;

(iii) if is a complex root.

A general solution to the nonhomogeneous equation is where is a particu-
lar solution and is a general solution to the corresponding homogeneous equation. The
method of variation of parameters (but not the method of undetermined coefficients) can be
used to find a particular solution.

yh

ypy " yp ! yh,

# ! i$c1t
#cos($ ln t) ! c2t

#sin($ ln t),
c1t

r ! c2t
r

c1t
r1 ! c2t

r2

ar 
2 ! (b % a)r ! c " 0

y " t r

at2y– ! bty¿ ! cy " f(t)

ay– ! by¿ ! cy " k1  f1 ! k2  
f2  .

k2y2k1y1

  ay– ! by¿ ! cy " f2  ,ay– ! by¿ ! cy " f1  

y2y1

y¿1y¿1 ! y¿2 y¿2 " f AtB /ay¿1 y1 ! y¿2 y2 " 0

y¿2y¿1
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REVIEW PROBLEMS

In Problems 1–28, find a general solution to the given
differential equation.

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.

11.
12. 2y‡ % 3y– % 12y¿ ! 20y " 0 

t2x– AtB ! 5x AtB " 0  ,    t 7 0 
u– ! 11u " 0 16z–% 56z¿! 49z " 0 
25y–!20y¿! 4y " 0 36y– ! 24y¿ ! 5y " 0 
y– ! 8y¿ % 14y " 0 6y– % 11y¿ ! 3y " 0 
9y–% 30y¿! 25y " 0 4y– % 4y¿ ! 10y " 0 
49y– ! 14y¿ ! y " 0 y– ! 8y¿ % 9y " 0 

13.
14.
15.
16.
17.
18.
19.
20.

21. y– % 3y¿ ! 7y " 7t2 % et

2y– % y " t sin t 
4y‡ ! 8y– % 11y¿ ! 3y " 0 
yA4B " 120t 
y‡ ! 10y¿ % 11y " 0 
y‡ ! 3y– ! 5y¿ ! 3y " 0 
3y‡ ! 10y– ! 9y¿ ! 2y " 0 
y– % 4y¿ ! 7y " 0 
y– ! 16y " tet 
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TECHNICAL WRITING EXERCISES

1. Compare the two methods— undetermined coeffi-
cients and variation of parameters—for determining
a particular solution to a nonhomogeneous equation.
What are the advantages and disadvantages of each?

2. Consider the differential equation

where b is a constant. Describe how the behavior of
solutions to this equation changes as b varies.

3. Consider the differential equation
d2y

dx2 ! cy " 0  ,

d2y

dx2 ! 2b 
dy

dx
! y " 0  ,

where c is a constant. Describe how the behavior of
solutions to this equation changes as c varies.

4. For students with a background in linear algebra:
Compare the theory for linear second-order equa-
tions with that for systems of n linear equations in n
unknowns whose coefficient matrix has rank n % 2.
Use the terminology from linear algebra; for exam-
ple, subspace, basis, dimension, linear transforma-
tion, and kernel. Discuss both homogeneous and
nonhomogeneous equations.

22.

23.

24.

25.

26.

27.

28.

In Problems 29–36, find the solution to the given initial
value problem.

29. ;

30. ;

31. ;

32. ;

33. ;

34. ;

35.
36. ;

y A0B " % 3  ,    y¿ A0B " 3
9y– ! 12y¿ ! 4y " 0 

y A0B " 1  ,  y¿ A0B " 2y–(u) ! y(u) " sec u  ;
y A0B " 5  ,    y¿ A0B " 1 
y– ! 5y¿ % 14y " 0 

y– A0B " % 12 y A0B " % 3  ,    y¿ A0B " % 6  ,    
y‡ % 12y– ! 27y¿ ! 40y " 0 
y A0B " 1  ,    y¿ A0B " % 11 /2 
4y– % 4y¿ ! 5y " 0 
y A0B " 2  ,    y¿ A0B " % 8
y– % 2y¿ ! 10y " 6 cos 3t % sin 3t 
y A0B " 3  ,    y¿ A0B " 0 
y–(u) ! 2y¿(u) ! y(u) " 2 cos u 

y¿ A0B " % 2y A0B " 1  ,    
y– ! 4y¿ ! 7y " 0 

y– " 5x% 1y¿ % 13x% 2y  ,    x 7 0 

x2y– ! 2xy¿ % 2y " 6x% 2 ! 3x  ,    x 7 0 

y– ! 6y¿ ! 15y " e2t ! 75

4y– % 12y¿ ! 9y " e5t ! e3t

10y– ! y¿ % 3y " t % et/2 

y– AuB ! 16y AuB " tan 4u

y– % 8y¿ % 33y " 546 sin t 37. Use the mass–spring oscillator analogy to decide
whether all solutions to each of the following differ-
ential equations are bounded as 
(a)
(b)
(c)
(d)
(e)
(f)
(g)

38. A 3-kg mass is attached to a spring with stiffness k "
75 N/m, as in Figure 4.1, page 153. The mass is 
displaced m to the left and given a velocity of 
1 m/sec to the right. The damping force is negligible.
Find the equation of motion of the mass along with
the amplitude, period, and frequency. How long after
release does the mass pass through the equilibrium
position?

39. A 32-lb weight is attached to a vertical spring, caus-
ing it to stretch 6 in. upon coming to rest at equilib-
rium. The damping constant for the system is 2 lb-
sec/ft. An external force " 4 cos 8t lb is applied
to the weight. Find the steady-state solution for the
system. What is its resonant frequency?

F AtB

1 /4

y– % t2y¿ % y " 0 
y– ! t2y¿ ! y " 0 
y– ! A3 ! sin tBy " 0 
y– ! y8 " 0 
y– ! y7 " 0 
y– % t4y " 0 
y– ! t4y " 0 

t S !q.


