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Figure 4.5 Vibration amplitudes around resonance
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Figure 4.5 displays A and B as functions of the driving frequency (). A resonance clearly
occurs around ) = 5. &

In most of this chapter, we are going to restrict our attention to differential equations of the
form

(6) ay" + by +cy=f(1) ,

where y(t) [or y(x), or x(), etc.] is the unknown function that we seek; a, b, and ¢ are constants;
and £(¢) [or f(x)] is a known function. The proper nomenclature for (6) is the linear, second-
order ordinary differential equation with constant coefficients. In Sections 4.7 and 4.8, we will
generalize our focus to equations with nonconstant coefficients, as well as to nonlinear equa-
tions. However, (6) is an excellent starting point because we are able to obtain explicit solu-
tions and observe, in concrete form, the theoretical properties that are predicted for more gen-
eral equations. For motivation of the mathematical procedures and theory for solving (6), we
will consistently compare it with the mass—spring paradigm:

[inertia] X y” + [damping] X y' + [stiffness| X y = F, .

4.1 EXERCISES

1. Verify that for b = 0 and F,, (1) = 0, equation (3) (a) If y(7) is a solution, so is cy(f), for any constant c.
has a solution of the form (b) If y,(r) and y,(¢) are solutions, so is their sum

y(t) = coswt, where w = Vk/m . i) + y2(o).

3. Show that if Fext(t) =0,m=1,k=9,and b = 6,
then equation (3) has the “critically damped” solu-
tions y,(r) = e 3 and y,(r) = te”*. What is the limit
of these solutions as r — 00?

2. If F.,(f) = 0, equation (3) becomes
my” + by +ky =20 .
For this equation, verify the following:
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4. Verify that y = sin 37 + 2 cos 3¢ is a solution to the

initial value problem
2" +18y=0; y0)=2, y(0)=3.
Find the maximum of |y(¢)| for —co < t < oo.

5. Verify that the exponentially damped sinusoid
y(t) = e ¥sin (\/5 1) is a solution to equation (3) if
Foult) =0,m =1,b = 6, and k = 12. What is the
limit of this solution as t — co0?

6. An external force F(f) = 2 cos 2¢ is applied to a
mass—spring system withm = 1, b = 0, and k = 4,
which is initially at rest; i.e., y(0) = 0,y"(0) = 0.
Verify that y(r) = 5t sin 2¢ gives the motion of this
spring. What will eventually (as ¢ increases) happen
to the spring?

In Problems 7-9, find a synchronous solution of the form
A cos Q¢ + B sin Qr to the given forced oscillator equa-
tion using the method of Example 4 to solve for A and B.

7.y" +2y +4y=5sin3, Q=3
8. y" +2y +5y=-50sin5, Q=5
9. y" +2y +4y==6cos 2t + 8sin2t, Q=2

10. Undamped oscillators that are driven at resonance

have unusual (and nonphysical) solutions.

(a) To investigate this, find the synchronous solu-
tion A cos (It + B sin () to the generic forced
oscillator equation
(7) my" + by’ + ky = cos Qt .
[ (b) Sketch graphs of the coefficients A and B, as
: functions of Q, form = 1, b = 0.1, and k = 25.
L J(c) Nowseth =0in your formulas for A and B and
' resketch the graphs in part (b), with m = 1, and
k = 25. What happens at {) = 5? Notice that the
amplitudes of the synchronous solutions grow

without bound as () approaches 5.

(d) Show directly, by substituting the form A cos (0 +
B sin Q¢ into equation (7), that when b = 0 there
are no synchronous solutions if ) = \/k/m

(e) Verify that (2mQ) ™'t sin Q solves equation (7)
when b = 0 and Q = V'k/m. Notice that this
nonsynchronous solution grows in time, without
bound.

Clearly one cannot neglect damping in analyz-
ing an oscillator forced at resonance, because
otherwise the solutions, as shown in part (e), are
nonphysical. This behavior will be studied later
in this chapter.

THE GENERAL SOLUTION

4 2 HOMOGENEOUS LINEAR EQUATIONS:

We begin our study of the linear second-order constant-coefficient differential equation

1) ay” + by' + ¢y = f(r)

(a #0)

with the special case where the function f(¥) is zero:

2) ay” +by +cy=0.

This case arises when we consider mass—spring oscillators vibrating freely—that is, without
external forces applied. Equation (2) is called the homogeneous form of equation (1); f(z) is the
“nonhomogeneity” in (1). (This nomenclature is not related to the way we used the term for

first-order equations in Section 2.6.)

A look at equation (2) tells us that a solution of (2) must have the property that its second
derivative is expressible as a linear combination of its first and zeroth derivatives.” This sug-
gests that we try to find a solution of the form y = ¢’’, since derivatives of ¢ are just constants
times e'’. If we substitute y = ¢’’ into (2), we obtain

ar?e™ + bre" + ce™ =0

elar* +br+¢)=0 .

"The zeroth derivative of a function is the function itself.
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We observe that r = 1 is a root of the above equation, and dividing the polynomial on the
left-hand side of (15) by r — 1 leads to the factorization

(r=DF+4r+3)=0F-1DFr+1)r+3)=0.

Hence, the roots of the auxiliary equation are 1, — 1, and —3, and so three solutions of (14) are

e e’

, and ¢~ ¥. The linear independence of these three exponential functions is proved in

Problem 40. A general solution to (14) is then

(16) y(t) = e + cre”" + cye”

. ¢

So far we have seen only exponential solutions to the linear second-order constant coeffi-
cient equation. You may wonder where the vibratory solutions that govern mass—spring oscilla-
tors are. In the next section, it will be seen that they arise when the solutions to the auxiliary

equation are complex.

4.2 EXERCISES

In Problems 1-12, find a general solution to the given
differential equation.

1.y" +6y +9y =0 2. 2" + 7y —4y =0
y' =y =2y=0 4. y" +5y + 6y =0

Y =5 +6y=0 6. y' + 8 + 16y =0

L6y +y =2y =0 8 7'+72 —z=0

4y" — 4y +y=0 10. y" —y' — 11y =0

11. 4w” + 20w’ + 25w =0

12. 3y" + 11y =7y =0

© N mow

In Problems 13-20, solve the given initial value problem.
13.y" +2y' =8 =0; y0) =3,y(0)=—-12

4. " +y =0; y0)=2,y(0)=1

15.y" =4y =5y =0; y(-1)=3,y(-1)=9
16. y" —4y' +3y=0; y(0)=1,y(0)=1/3
17. 72" =27 —2z=0; z(0)=0, z(0)=3

18. y" — 6y +9y=0; y(0)=2,y'(0)=25/3
19. " +2y +y=0; y0)=1,y(0)=-3
20. y' — 4y +4y=0; y(1)=1,y(1)=1

21. First-Order Constant-Coefficient Equations.
(a) Substituting y = ¢, find the auxiliary equation
for the first-order linear equation
ay' + by =0,
where a and b are constants with a # 0.
(b) Use the result of part (a) to find the general
solution.

In Problems 22-25, use the method described in Problem
21 to find a general solution to the given equation.

22. 3y =7y =0 23. 59" +4y =0

24. 37/ + 11z =0 25. 6w’ — 13w =0

26. Boundary Value Problems. When the values of a
solution to a differential equation are specified at
two different points, these conditions are called
boundary conditions. (In contrast, initial conditions
specify the values of a function and its derivative at
the same point.) The purpose of this exercise is to
show that for boundary value problems there is no
existence—uniqueness theorem that is analogous to
Theorem 1. Given that every solution to
17) Yy +y=0
is of the form

y(t) = cjcost + cysint
where ¢; and ¢, are arbitrary constants, show that
(a) There is a unique solution to (17) that satisfies the
boundary conditions y(0) = 2 and y(7/2) = 0.
(b) There is no solution to (17) that satisfies y(0) = 2
and y(7) = 0.
(¢) There are infinitely many solutions to (17) that
satisfy y(0) = 2 and y(7) = —2.

In Problems 27-32, use Definition [ to determine
whether the functions y, and y, are linearly dependent
on the interval (0, 1).

27. y,(1) = cos tsint , y,(r) = sin 2t

28. yi(r) = &, yor) =
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29. y,

30.
31.

32. y;

33.

34.

35.
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(1) =1, yy(1) = &
y (1) = t2 cos (lnt) yy(t) = *sin(In¢)
yi (1) = tan? — sec’t , y,(1) =3
(=0, y(1)=¢

Explain why two functions are linearly dependent on
an interval 7 if and only if there exist constants ¢,
and c,, not both zero, such that

ey (1) + cyo(r) =0 forallrin [ .

Wronskian. For any two differentiable functions
y; and y,, the function

18) Wiy, y2](6) = y1(0)y3(t) — yi(t)ya(2)

is called the Wronskian' of y, and y,. This function

plays a crucial role in proof of Theorem 2.

(a) Show that W[ Vi yz] can be conveniently
expressed as the 2 X 2 determinant

Wiy ya](0) = 1) 2200

yile) yhlr)

(b) Let y(#), y,(¢) be a pair of solutions to the ho-
mogeneous equation ay” + by’ + cy = 0 (with
a # 0) on an open interval /. Prove that y,(¢) and
y,(1) are linearly independent on [ if and only if
their Wronskian is never zero on /. [Hint: This is
just a reformulation of Lemma 1.]

(c) Show that if y,(r) and y,(7) are any two differen-
tiable functions that are linearly dependent on I,
then their Wronskian is identically zero on I.

Linear Dependence of Three Functions. Three
functions y, (1), y,(¢), and y5(#) are said to be linearly
dependent on an interval / if, on /, at least one of
these functions is a linear combination of the
remaining two [e.g., if y,(r) = cpa(t) + cay5(0)).
Equivalently (compare Problem 33), y;, y,, and yj3
are linearly dependent on [ if there exist constants
C,, C,, and Cs, not all zero, such that
Ciy (1) + Cyyo(1) + Cyy5(t) = 0 forall ¢in 1.

Otherwise, we say that these functions are linearly
independent on /.

For each of the following, determine whether the
given three functions are linearly dependent or lin-
early independent on (— oo, co):

@y =1, nE)=1, yu)=r.

(b)

(© y(1) = yo(f) = 5sin’t , y3(¢) = cos’t .
() =¢", yz(f) =te' , y(t) = .

(d) y,(1) = y(t) =e™", y;(t) =cosht .

s,

36. Using the definition in Problem 35, prove that if
71, Iy, and r3 are distinct real numbers, then the func-

rzt’ and er3t

tions €', e are linearly independent on
(—o0, 00) . [Hint: Assume to the contrary that, say,
e = cie™ + cye™ for all t. Divide by e to get
1T = ¢ + ™7™ and then differentiate to
deduce that "1~ and ¢"3""" are linearly depen-

dent, which is a contradiction. (Why?)]

In Problems 3741, find three linearly independent solu-
tions (see Problem 35) of the given third-order differen-
tial equation and write a general solution as an arbitrary
linear combination of these.

37.y" +y" =6y +4y =0
38. y" —6y" —y' +6y=0
39. 7" + 27" — 4z —82=0
40. y" = 7y" +7y' + 15y =0
41. y" +3y" —4y' — 12y =0

42. (True or False): If f}, f5, f; are three functions defined
on (—oo0, 0o) that are pairwise linearly independent
on (—oo, o), then fi, f>, f; form a linearly indepen-
dent set on (—o0, c0). Justify your answer.

43. Solve the initial value problem:

y' =y =0; y0)=2,

y'(0)=3, »y(0)=-1.
44. Solve the initial value problem:
y//_2y//_y/+2y:0;
y(0)=2,y(0)=3,y"(0)=5.
By using Newton’s method or some other numerical

procedure to approximate the roots of the auxiliary
equation, find general solutions to the following

equations:
(@) 3y" + 18y" + 13y’ =19y =0 .
() yV = 5y" +5y=0.

(©) ¥y — 3yY —5y" + 15y" + 4y’ — 12y =0 .

46. One way to define hyperbolic functions is by means

of differential equations. Consider the equation

y" —y=0. The hyperbolic cosine, cosh t, is

defined as the solution of this equation subject to

the initial values: y(0) =1 and y'(0) = 0. The

hyperbolic sine, sinh t, is defined as the solution of

this equation subject to the initial values: y(0) = 0
and y'(0) = 1.

(a) Solve these initial value problems to derive

explicit formulas for cosh 7, and sinh t. Also

"Historical Footnote: The Wronskian was named after the Polish mathematician H. Wronski (1778—1863).
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show that 4 cosh t = sinh ¢ and 4 sinh t = two roots are expressed in the form a = /5 and

dt dt a + B, show that a general solution of the equation
cosh ¢. ay” + by +cy=0 is y = ce” cosh(Bt) +
(b) Prove that a general solution of the equation e sinh(B).
y" —y = 0isgivenbyy = ¢, cosh t + ¢, sinh 1. (d) Use the result of part (c) to solve the initial value
(¢) Suppose a, b, and ¢ are given constants for which problem: y” + y" — 6y = 0, y(0) = 2,y"(0) =
ar* + br + ¢ = 0 has two distinct real roots. If the —1772.

4_3 AUXILIARY EQUATIONS WITH COMPLEX ROOTS

The simple harmonic equation y" + y = 0, so called because of its relation to the fundamental
vibration of a musical tone, has as solutions y,(f) = cos  and y,(r) = sin ¢. Notice, however,
that the auxiliary equation associated with the harmonic equation is 7> + 1 = 0, which has
imaginary roots r = *i, where i denotes \/ —1." In the previous section, we expressed the
solutions to a linear second-order equation with constant coefficients in terms of exponential
functions. It would appear, then, that one might be able to attribute a meaning to the forms e
and e " and that these “functions” should be related to cos ¢ and sin . This matchup is accom-
plished by Euler’s formula, which is discussed in this section.
When b* — 4ac < 0, the roots of the auxiliary equation

€)) ar* +br+c¢=0
associated with the homogeneous equation
2) ay" + by +¢cy=0

are the complex conjugate numbers
rn=a+if and rn =a—if (i= \/—1) ,

where «, B are the real numbers

3 a=—-—— and (=
a

As in the previous section, we would like to assert that the functions ¢’ and ¢’ are solutions to

the equation (2). This is in fact the case, but before we can proceed, we need to address some

fundamental questions. For example, if r; = a + i3 is a complex number, what do we mean by

the expression ¢ “tiB) If we assume that the law of exponents applies to complex numbers, then

@) e(a+iﬁ)z = pUTiBl — Lt i

We now need only clarify the meaning of ¢,
For this purpose, let’s assume that the Maclaurin series for e* is the same for complex

numbers z as it is for real numbers. Observing that i> = —1, then for 0 real we have
; o (iB) (i0)"
e9=1+(z¢9)+2—!+ S s
2 .3 4 95
=1+i0—0f—i+0—+&+

21 31 41 5!

0> 6 . 0> 0
=<1—2!+4!+--~>+1<0—3!+5!+~-- :

"Electrical engineers frequently use the symbol j to denote \/—1.
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vy =-18 vy =~12

Figure 4.8 Solution graphs for Example 5

and the plots in Figure 4.8, confirm our prediction that all (nonequilibrium) solutions
diverge—except for the one with vy, = —6.

What is the physical significance of this isolated bounded solution? Evidently, if the mass
is given an initial inwardly directed velocity of —6, it has barely enough energy to overcome
the effect of the spring banishing it to +oo but not enough energy to cross the equilibrium
point (and get pushed to —oo). So it asymptotically approaches the (extremely delicate)
equilibrium positiony = 0.

In Section 4.8, we will see that taking further liberties with the mass—spring interpretation
enables us to predict qualitative features of more complicated equations.

Throughout this section we have assumed that the coefficients a, b, and ¢ in the differential
equation were real numbers. If we now allow them to be complex constants, then the roots ry,
r, of the auxiliary equation (1) are, in general, also complex but not necessarily conjugates of
each other. When r| # r,, a general solution to equation (2) still has the form

y(t) = cie"" + cre™

but ¢; and ¢, are now arbitrary complex-valued constants, and we have to resort to the clumsy
calculations of Example 1.

We also remark that a complex differential equation can be regarded as a system of two
real differential equations since we can always work separately with its real and imaginary
parts. Systems are discussed in Chapters 5 and 9.

4.3 EXERCISES

In Problems 1-8, the auxiliary equation for the given dif- In Problems 9-20, find a general solution.

ferential equation has complex roots. Find a general 9. y'+4y' +8y=0 10. y" — 8y’ + 7y =0

solution. 11. 27 + 107 +25z=0 12. u”" +7u=0
Ly"+y=0 2. 9"+ 9 =0 13. y" + 2y + 5y =10 14. y"—2y'+26y=0
3.9y" =10y +26y=0 4. 7" — 67 +10z=0 15. " + 10y’ +4ly =0 16, y"— 3y — 11y =0
5. y”_4y’+7y:0 6. w'+4dw' +6w=0 17. yrl_yr+7y:() 18. 2y71+13y1_7y:()
7. 4y" + 4y’ +6y=0 8. 4y"_ 4y’ + 26y =0 19. ym + y// + 3yl —5y=0 20. ym _ yn +2y=0
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In Problems 21-27, solve the given initial value problem.
21. y" + 2y + 2y =0 ; y(0) = y'(0) =
229" +2y +17y=0; y(0)

=
=)

23. w" — 4w’ +2w =0 ; W(O)=O , w(0)=1

24. y" +9y =0 ; y0) =1, y(0)=1

25. y" =2y +2y=0; y(m)=e™ , y'(m)=0

26. y' — 2y +y=0; y0)=1, y0)=-2

27. y"—4y"+ Ty —6y=0; »0)=1, y(0)=0,
y"(0) =0

28. To see the effect of changing the parameter b in the

initial value problem

y'+by +4y=0; y0)=1, y(0)=0,
solve the problem for b = 5, 4, and 2 and sketch the
solutions.

29. Find a general solution to the following higher-order
equations.

@ y" —y"+y +3y=0
(b) y" +2y" + 5y — 26y =0
(©) ¥y + 13y” + 36y =0

30. Using the representation for elatiBl i (6), verify the
differentiation formula (7).

31. Using the mass—spring analogy, predict the behavior
as t — + oo of the solution to the given initial value
problem. Then confirm your prediction by actually
solving the problem.

@y +16y=0; y0)=2, y(0)=0

(b) y"+ 100y +y =0 ; (0)*1, 0)=0
(€ y'—6y'+8=0: y(0)= y'(0)=0
(d) y"+2y'=3y=0; y(0)= 2 , ’(0) 0
(e y'—y —6y=0; y0) =1, y(0)=

32. Vibrating Spring without Damping. A vibrating
spring without damping can be modeled by the initial
value problem (11) in Example 3 by taking b = 0.
(@) If m = 10 kg, k = 250 kg/sec?, y(0) = 0.3 m,

and y'(0) = —0.1 m/sec, find the equation of
motion for this undamped vibrating spring.

(b) When the equation of motion is of the form
displayed in (9), the motion is said to be oscil-
latory with frequency B/27. Find the fre-
quency of oscillation for the spring system of
part ().

33. Vibrating Spring with Damping. Using the model
for a vibrating spring with damping discussed in
Example 3:

(a) Find the equation of motion for the vibrating spring
with damping if m = 10 kg, b = 60 kg/sec,

34.

35.

k = 250 kg/sec’, y(0) = 0.3 m, and y'(0) =
—0.1 m/sec.

(b) Find the frequency of oscillation for the spring
system of part (a). [Hint: See the definition of
frequency given in Problem 32(b).]

(¢) Compare the results of Problems 32 and 33 and
determine what effect the damping has on the
frequency of oscillation. What other effects does
it have on the solution?

RLC Series Circuit. In the study of an electrical
circuit consisting of a resistor, capacitor, inductor, and
an electromotive force (see Figure 4.9), we are led to
an initial value problem of the form

dl q

(20) Ldt+RI+E—L‘()
q(0) = qo ,
1(0>:10 ’

where L is the inductance in henrys, R is the resis-
tance in ohms, C is the capacitance in farads, E(z) is
the electromotive force in volts, ¢(¢) is the charge in
coulombs on the capacitor at time ¢, and I = dg/dt is
the current in amperes. Find the current at time ¢ if
the charge on the capacitor is initially zero, the initial
current is zero, L = 10 H, R = 20 Q, C = (6260) !
F, and E(t) = 100 V. [Hint: Differentiate both sides
of the differential equation in (20) to obtain a homo-
geneous linear second-order equation for /(). Then
use (20) to determine dI/dt at t = 0.]

R

MW

E() () a0 ==
10
\t Ny

L

Figure 4.9 RLC series circuit

Swinging Door. The motion of a swinging door
with an adjustment screw that controls the amount of
friction on the hinges is governed by the initial value
problem

10"+b0'+k0=0; 600)=6,, 60 =uvp,
where 6 is the angle that the door is open, I is the
moment of inertia of the door about its hinges, b > 0 is
a damping constant that varies with the amount of fric-
tion on the door, k > 0 is the spring constant associated
with the swinging door, 6 is the initial angle that the
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door is opened, and v is the initial angular velocity
imparted to the door (see Figure 4.10). If I and k are
fixed, determine for which values of b the door will not
continually swing back and forth when closing.

36.

44

Figure 4.10 Top view of swinging door

Although the real general solution form (9) is conve-
nient, it is also possible to use the form

21)  dyel P 4 gyelamiph

to solve initial value problems, as illustrated in

Example 1. The coefficients d; and d, are complex

constants.

(a) Use the form (21) to solve Problem 21. Verify
that your form is equivalent to the one derived
using (9).

37.

38.

175

(b) Show that, in general, d, and d, in (21) must be
complex conjugates in order that the solution be
real.

The auxiliary equations for the following differential

equations have repeated complex roots. Adapt the

“repeated root” procedure of Section 4.2 to find their

general solutions:

@ yW+2y"+y=0.

(b) ¥V + 4y” + 12y" + 16y’ + 16y = 0 . [Hint:
The auxiliary equation is (> + 2r + 4)? = 0.]

Prove the sum of angle formula for the sine function

by following these steps. Fix x.

(a) Letf():= sin (x + 7). Show that f"(¢) + f(¢) = 0,
f(0) = sin x, and f'(0) = cos x.

(b) Use the auxiliary equation technique to solve the
initial value problem y” + y = 0, y(0) = sin x,
and y'(0) = cos x.

(¢) By uniqueness, the solution in part (b) is the
same as f(#) from part (a). Write this equality;
this should be the standard sum of angle formula
for sin (x + 7).

NONHOMOGENEOUS EQUATIONS: THE
METHOD OF UNDETERMINED COEFFICIENTS

In this section we employ “judicious guessing” to derive a simple procedure for finding a solu-
tion to a nonhomogeneous linear equation with constant coefficients

(8} ay”" + by + cy = f(t) ,

when the nonhomogeneity f(#) is a single term of a special type. Our experience in Section 4.3
indicates that (1) will have an infinite number of solutions. For the moment we are content to
find one, particular, solution. To motivate the procedure, let’s first look at a few instructive

examples.
Example 1  Find a particular solution to
2) y" + 3y + 2y =3r.
Solution

We need to find a function y(¢) such that the combination y” + 3y’ + 2y is a linear function of

t—namely, 37. Now what kind of function y “ends up” as a linear function after having its
zeroth, first, and second derivatives combined? One immediate answer is: another linear func-
tion. So we might try y,(t) = At and attempt to match up y| + 3y} + 2y, with 3¢.

Perhaps you can see that this won’t work: y; = At, y| = A and y'] = 0 gives us

Vi 4+ 3y} + 2y, = 3A + 24t ,
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4.4 EXERCISES

In Problems 1-8, decide whether or not the method of
undetermined coefficients can be applied to find a partic-
ular solution of the given equation.

Ly +2y —y=1"le

5y" — 3y’ 4+ 2y = 13 cos 4t

- 2y"(x) = 6y'(x) + y(x) = (sinx)/e*
x5 = 3x =3

. 20" (x) — 3w(x) = 4x sin’x + 4x cos’x
. y"(0) + 3y’ (6) — y(0) = sec 6

ty” —y' + 2y = sin 3¢

. 82'(x) — 2z(x) = 3x'%%* cos 25x

In Problems 9-26, find a particular solution to the differ-
ential equation.

9. y" +2y —y=10 10. y" + 3y = -9

11, y"(x) + y(x) = 2° 12. 2x' + x = 32
13. y" —y' + 9y = 3sin3r 14. 27" + 7 = 9¢%

dzy dy X ”n .
IS-E—SE-F@—M 16. 6"(r) — 6(¢) = tsin ¢

17. y" — 2y’ + y = 8¢’ 18. y" + 4y = 8sin 2¢
19. 4y" + 11y’ — 3y = —2te ™

20. y” + 4y = 16¢sin 2¢

21. x"(¢) — 4x'(¢) + 4x(z) = re*

22. x" (1) — 2x'(¢) + x(r) = 241%"
23. y"(0) — 7y'(6) = 62

24. y"(x) + y(x) = 4xcos x

25. y" + 2y" + 4y = 111e* cos 3t
26. y" 4+ 2y' + 2y = 4te 'cos t

In Problems 27-32, determine the form of a particular
solution for the differential equation. (Do not evaluate
coefficients.)

27.y" + 9y =4%sin 3t 28. y" + 3y — Ty = t*e’
28. " + 3y — Ty = 1!

29. y" — 6y’ + 9y = 5%

30. y" — 2y +y="Te cost

31. y" + 2y + 2y = 8% 'sin ¢

32, y" —y' — 12y = 2%

In Problems 33-36, use the method of undetermined
coefficients to find a particular solution to the given
higher-order equation.

33. y" —y" +y=sint

34. 2" +3y" +y —dy=¢""'

35. y/Il + yll _ 2y — tet

36. y(4) —3y" — 8y =sint

UNDETERMINED COEFFICIENTS REVISITED

4 5 THE SUPERPOSITION PRINCIPLE AND

The next theorem describes the superposition principle, a very simple observation which
nonetheless endows the solution set for our equations with a powerful structure. It extends the
applicability of the method of undetermined coefficients and enables us to solve initial value
problems for nonhomogeneous differential equations.

Superposition Principle

Theorem 3. Let y; be a solution to the differential equation

ay” + by +cy=fi(1) .

and y, be a solution to

ay" + by + ¢y =f2(t) .

Then for any constants k; and k,, the function k;y; + k,y, is a solution to the differential

equation

ay" + by + ¢y = kifi(t) + ko fol1)
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Example 5 Write down the form of a particular solution to the equation

V' 4+ 2y + 2y =5¢"sint + 5% " cost .

Solution The roots of the associated homogeneous equation y” + 2y’ + 2y = 0 were identified in
Example 3 as —1 = i. Application of (14) dictates the form

yp(t) = [(A3[3 + A212 + A]I + Ao)eit cost + t(B3t3 + B2t2 + Blt + Bo)eit sint . &

The method of undetermined coefficients applies to higher-order linear differential
equations with constant coefficients. Details will be provided in Chapter 6, but the following

example should be clear.

Example 6 Write down the form of a particular solution to the equation
y" 4+ 2y" +y =5e'sint+ 3+ Tte”" .
Solution The auxiliary equation for the associated homogeneous is * + 2r> + r = r(r + 1)*> = 0, with
a double root » = —1 and a single root » = 0. Term by term, the nonhomogeneities call for the
forms

Ape "cost + Bye 'sint

tAy  (for3),
lz(Alf + A())(),if

(for Se 'sint) ,

(for 7te™") .

(If —1 were a triple root, we would need 1>(A,r + Ay)e”" for 7te ") Of course, we have to
rename the coefficients, so the general form is

yy(t) = Ae"'cost + Be 'sint + tC + t*(Dt + E)e”" . #

4.5 EXERCISES

1. Given that y,(r) = (1/4)sin2¢ is a solution to
y" 4+ 2y’ + 4y = cos 2t and that y,(r) = t/4 — 1/8
is a solution to y” + 2y’ + 4y = t, use the super-
position principle to find solutions to the following:
(@ y" +2y +4y =1+ cos2t .

(b) y" +2y" +4y =2t —3cos2t .
() y" +2y" +4y =11t — 12 cos 2¢ .
2. Given that y,(r) = cos ¢ is a solution to
y' =y +y=sint
and y,(1) = ¢*/3 is a solution to
Yoy Hy=et,
use the superposition principle to find solutions to
the following differential equations:
(@ y"—y +y=5sint .
(b) y" —y' +y=sinr — 3e¥ .
(€) y" —y' 4+ y=4dsinr + 18¢% .
In Problems 3-8, a nonhomogeneous equation and a

particular solution are given. Find a general solution for
the equation.

3.y +y' =1, y[,(t) =t

4.y —y=1, yl)=—1t
5. 9" + 5y 4+ 6y = 6x> + 10x + 2 + 12,
yp(x) =" + x?

6.0" —60' —20=1-2, 6,(t)=1-1

7. y" =2y + 2tan’x , yp(x) = tanx

8. y' =2y —y+ 2", yp(x) = x%e*
In Problems 9—16 decide whether the method of undeter-
mined coefficients together with superposition can be

applied to find a particular solution of the given equa-
tion. Do not solve the equation.

9.y" —y +y= (e +1)

10. 3y” + 2y + 8y = 1> + 41 — t%e'sint

11. y" — 6y’ — 4y = 4sin3t — 3> + 1/t

12. y) +y +ty=¢e"+7

13. 2y" + 3y’ — 4y = 2t + sin’ + 3

14. y" — 2y’ + 3y = coshr + sin’¢

15. y" + e’y +y =7+ 3t

16. 2y" — y' + 6y = t%e " 'sint — 8t cos 3¢ + 10’
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In Problems 17-22, find a general solution to the differ-
ential equation.

17. y" —y = —1lt + 1
18. y" — 2y’ =3y =3>—5
19. y"(x) — 3y"(x) + 2y(x) = e*sinx
20. y"(#) + 4y(h) = sin@ — cos 6
21. y"(6) +2y'(6) + 2y(6) = ¢”*
22. y"(x) + 6y'(x) + 10y(x)
= 10x* + 24x° + 2x* — 12x + 18

cos 0

In Problems 23-30, find the solution to the initial value
problem.

23y —y=1, y0)=0

24. y" =6r; y(0)=3, y'(0)= -1
25. 2"(x) + z(x) =2¢7*; z(0)=0, Z(0)=0
26.y" +9y=27; y(0)=4, y(0)=6

27. y"(x) — y'(x) — 2y(x) = cosx — sin 2x ;
y(0) = =7/20 , y'(0)=1/5

28. 7" +y — 12y =e¢' + ¥ —1;
y0)=1, y'(0)=3

29. y"(0) — y(6) = sin — ? ;

y(0) =1, y(0)=-1
30. v + 2y +y=12+1—¢";
y(0) =0, y'(0)=2

In Problems 31-36, determine the form of a particular
solution for the differential equation. Do not solve.

31. y" +y=sint + tcost + 10

32. y" —y =¥+ e + 1%*

33. x" —x' —2x=e'cost — >+ cos’t
34. y" + 5y" + 6y = sint — cos 2t

35. y" — 4y’ + 5y = &> + rsin 3t — cos 3¢
36. y" — 4y’ + 4y = 2% — ¥

In Problems 37-40, find a particular solution to the
given higher-order equation.

37. 9" — 2" =y + 2y =224+ 4t —9
38. y¥ — 59" + 4y = 10 cos ¢ — 20 sin ¢
39. y" +y" =2y =te' + 1

40. YW — 3y + 3y" — 3 =61 — 20

41. Discontinuous Forcing Term. In certain physical
models, the nonhomogeneous term, or forcing
term, g(¢) in the equation

ay” + by + cy = g(t)
may not be continuous but may have a jump

42,

43.

44.

discontinuity. If this occurs, we can still obtain a rea-
sonable solution using the following procedure. Con-
sider the initial value problem

Y+ 2y +5y=g(t); y0)=0.,y(0)=0,
where

0 ifr>3w2

(a) Find a solution to the initial value problem for
0=1t=37w/2
(b) Find a general solution for t > 37 /2.

(c) Now choose the constants in the general solution
from part (b) so that the solution from part (a) and
the solution from part (b) agree, together with their
first derivatives, at t = 377/ 2. This gives us a con-
tinuously differentiable function that satisfies the
differential equation except at t = 377 /2.

Forced Vibrations. As discussed in Section 4.1, a
vibrating spring with damping that is under external
force can be modeled by

(15  my” + by +ky =glt),

where m > 0 is the mass of the spring system, b > 0

is the damping constant, k > 0 is the spring constant,

g(1) is the force on the system at time ¢, and y(?) is

the displacement from the equilibrium of the spring

system at time #. Assume b> < 4mk.

(a) Determine the form of the equation of motion for
the spring system when g(¢) = sin Bt by finding
a general solution to equation (15).

(b) Discuss the long-term behavior of this system.
[Hint: Consider what happens to the general
solution obtained in part (a) as t — +00.]

A mass—spring system is driven by a sinusoidal exter-
nal force g(f) = 5 sin ¢. The mass equals 1, the spring
constant equals 3, and the damping coefficient equals
4. If the mass is initially located at y(0) = 1/2 and at
rest, i.e., y'(0) = 0, find its equation of motion.

A mass—spring system is driven by the external force
g(1) = 2sin 3¢ + 10 cos 3t. The mass equals 1, the
spring constant equals 5, and the damping coeffi-
cient equals 2. If the mass is initially located at
y(0) = —1, with initial velocity y'(0) = 5, find its
equation of motion.
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X [__J (b) Plot the amplitude |A| of the solution y(z) found
""" ' in part (a) versus the car’s speed V. From the
k ﬂ graph, estimate the speed that produces the most
violent shaking of the vehicle.
cos(mx/L)

xX= —IL/2 X : L2
Figure 4.11 Speed bump
Often bumps like the one depicted
in Figure 4.11 are built into roads to discourage
speeding. The figure suggests that a crude model of

the vertical motion y(f) of a car encountering the
speed bump with the speed V' is given by

y(1) =0

my” + ky = {

fort = —L/(2V) ,
Fycos(mVt/L) for |t| < L/(2V)}
0 fort = L/(2V).

(The absence of a damping term indicates that the

46.

47.

48.

Show that the boundary value problem

y' + Ay =sintr; y0)=0, ylm)=1,
has a solution if and only if A # =1, =2, =3, ...
Find the solution(s) to

y" + 9y = 27cos6¢
(if it exists) satisfying the boundary conditions
@@ y(0)=-1, y(=/6)=3.
() y(0) = -1, y(#/3)=5.
© y0)=—-1, y(@3)=-1.
All that is known concerning a mysterious sec-
ond-order constant-coefficient differential equation
Y+ py + gy = g is that > + 1 + € cos ¢,
2+ 1+¢ésint,and >+ 1+ ¢ cost+ ¢ sin tare
solutions.

car’s shock absorbers are not functioning.) (a) Determine two linearly independent solutions to

the corresponding homogeneous equation.
(b) Find a suitable choice of p, ¢, and g(¢) that
enables these solutions.

(a) Takingm = k = 1,L = ar, and F; = 1 in appro-
priate units, solve this initial value problem.
Thereby show that the formula for the oscillatory
motion after the car has traversed the speed bump
is y(t) = Asint, where the constant A depends on
the speed V.

4.6 VARIATION OF PARAMETERS

We have seen that the method of undetermined coefficients is a simple procedure for determin-
ing a particular solution when the equation has constant coefficients and the nonhomogene-
ous term is of a special type. Here we present a more general method, called variation of
parameters, for finding a particular solution.

Consider the nonhomogeneous linear second-order equation

1) ay” + by’ + cy = f(1)

and let {yl(t), yz(t)} be two linearly independent solutions for the corresponding homogeneous
equation

ay" + by +cy=0.
Then we know that a general solution to this homogeneous equation is given by

(2 yult) = ei(t) + canl) |

where ¢; and ¢, are constants. To find a particular solution to the nonhomogeneous equation,

"Historical Footnote: The method of variation of parameters was invented by Joseph Lagrange in 1774
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4.6 EXERCISES

In Problems 1-8, find a general solution to the differential 16. y" + 5y' + 6y = 1812

equation using the method of variation of parameters.

17. %y” + 2y = tan 2t — le’

1. y" + y =sect 2

2. y" + 4y = tan 2¢ 18. y" — 6y’ + 9y =t 3™

3.y +2y +y=e"

4.y =2y +y=1"le [ 19. Express the solution to the initial value problem
5. 5" + 9y = sec’(31) ' Y =y =% .oy =0, y(1)=-2,

. y'(6) + 1 = 4 . . . Lo .
6.y , (6) , 6(6) Sf; 0 using definite integrals. Using numerical integration
T.y" 4y +dy=e " Int (Appendix C) to approximate the integrals, find an
8. y" + 4y = csc?(21) approximation for y(2) to two decimal places.

In Problems 9 and 10, find a particular solution first by

20. Use the method of variation of parameters to show that
t

undetermined coefficients, and then by variation of para- y(t) = ¢y cost + cysint + Jf(s) sin (¢t — s) ds

meters. Which method was quicker?
9.y —y=2t+4

0
is a general solution to the differential equation

10. 2x" () — 2x' (1) — 4x(¢) = 2¢* Y +y =),

In Problems 11-18, find a general solution to the differ-

ential equation.

11.
12.
13.
14.
15.

y" 4+ y = tan’¢

where f(¢) is a continuous function on (—oo, ©0).
[Hint: Use the trigonometric identity sin(t — s) =
sinf coss — sins cost .|

[ 21. Suppose y satisfies the equation y” + 10y’ + 25y =

Yty =tant+e¥ -1 e subject to y(0) = 1 and y'(0) = —5. Estimate
v" + dv = sec*(2t) ¥(0.2) to within =0.0001 by numerically approxi-
y"(0) + y(6) = sec 6 mating the integrals in the variation of parameters
y' +y=3sect— 1>+ 1 formula.

47 VARIABLE-COEFFICIENT EQUATIONS

The techniques of Sections 4.2 and 4.3 have explicitly demonstrated that solutions to a linear
homogeneous constant-coefficient differential equation,

1) ay" + by +¢cy=0,

are defined and satisfy the equation over the whole interval (—oo, +00). After all, such solu-
tions are combinations of exponentials, sinusoids, and polynomials.

The variation of parameters formula of Section 4.6 extended this to nonhomogeneous
constant-coefficient problems,

#)) ay’ + by +cy=f(1),

yielding solutions valid over all intervals where f(t) is continuous (ensuring that the integrals in
(10) of Section 4.6 containing f(#) exist and are differentiable). We could hardly hope for more;
indeed, it is debatable what meaning the differential equation (2) would have at a point where
f(¢) is undefined, or discontinuous.
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Taking integration constants to be zero yields In v/ = 2In(tan¢) or v' = tan’z, and
v = tant — t. Therefore, a second solution to (19) is y, = (tan# — f)cos t = sin ¢ — tcos t.
We conclude that a general solution is c;cos ¢ + ¢, (sint — tcost). #

In this section we have seen that the theory for variable-coefficient equations differs only
slightly from the constant-coefficient case (in that solution domains are restricted to intervals),
but explicit solutions can be hard to come by. In the next section, we will supplement our expo-
sition by describing some nonrigorous procedures that sometimes can be used to predict quali-

tative features of the solutions.

4.7 EXERCISES

In Problems 1 through 4, use Theorem 5 to discuss the
existence and uniqueness of a solution to the differential
equation that satisfies the initial conditions y(1) = Y,
y'(1) = Y,, where Yy and Y, are real constants.

Lt —3)y" +2ty —y=1¢

2. (1+2)y"+1ty —y=tant

3.t +y=cost

!

-3

4. ely" — +y=Int

In Problems 5 through 8, determine whether Theorem 5
applies. If it does, then discuss what conclusions can be
drawn. If it does not, explain why.

5. 1% + 17 +z—c0st; 2000=1, z(0)=0

6.y +yy'=r'=1: »0) =1, y(0)=-1

7.y"+1ny —try=0; y0)=0, y(1)=0

8. (1 —t)y" + 1y — 2y =sint ;
y(0)=1,y'(0)=1

In Problems 9 through 14, find a general solution to the
given Cauchy—Euler equation fort > 0.
d2 d
9. 252 4212 — 6y = 0
10. 2y" (1) + 7y' (1) — Ty(r) = 0
2
1w bdw 4

2dz+51@+4z—0
dr?

13. 9t%y" (1) + 15ty' (1) + y(r) = 0
14. 12y"(t) — 31y'(r) + 4y(r) = 0

12.

In Problems 15 through 18, find a general solution
fort < 0.

15. y"(1) — *y (1 jy(t) =0

) +

257(6) ~ 307(1) + 65(1) = 0
H"(1) + 9y’ (1) + 17y(r) = 0
18. t3y"(1) + 31y'(¢) + 5y(r) = 0

16. ¢
17. ¢t

In Problems 19 and 20, solve the given initial value prob-
lem for the Cauchy—Euler equation.

19. t2y"(1) — 41y’ (1) + 4y(r) = 0 ;

y)y=-2, »y(1)=-11
20. 12" (¢) + 7ty' (1) + 5y(r) = 0 ;
y()=-1, y(1)=13

In Problems 21 and 22, devise a modification of the
method for Cauchy—Euler equations to find a general
solution to the given equation.
21, (t = 2)%y"(1) = 7(t = 2)y'(t) + Ty(1) = 0 ,
t>12
22. (r+ 1%"(r) + 10(z + 1)y'(¢r) + 14y(r) = 0,
t> -1
23. To justify the solution formulas (8) and (9), perform
the following analysis.

(a) Show that if the substitution ¢ = ¢* is made in
the function y(¢) and x is regarded as the new
independent variable in Y(x) = y(e*), the chain
rule implies the following relationships:

Ay ay tzdzy d%y dy
dl‘ dx ’ dr? dx> dx -’



24.

25.

26.

27.

(b) Using part (a), show that if the substitution r = e*
is made in the Cauchy—Euler differential equation
(6), the result is a constant-coefficient equation
for Y(x) = y(e*), namely,

2

(20) a% + (b - a)% + cY = f(e) .

(c) Observe that the auxiliary equation (recall
Section 4.2) for the homogeneous form of (20) is
the same as (7) in this section. If the roots of the
former are complex, linearly independent solu-
tions of (20) have the form e** cos Bx and ¢** sin
Bx; if they are equal, linearly independent solu-
tions of (20) have the form ™ and xe’™. Express x
in terms of ¢ to derive the corresponding solution
forms (8) and (9).

Solve the following Cauchy-Euler equations by

using the substitution described in Problem 23 to

change them to constant coefficient equations, find-

ing their general solutions by the methods of the pre-

ceding sections, and restoring the original indepen-

dent variable .

@ " +1y =9 =0

(b) t3y" + 31y’ + 10y =0

(© 3" +3y +y=r+1"!

(d) " + 1ty + 9y = —tan(3In¢)

Let y, and y, be two functions defined on (—oo, co).

(a) True or False: If y; and y, are linearly depen-
dent on the interval [a, b], then y; and y,
are linearly dependent on the smaller interval
[c, d} C [a,b].

(b) True or False: If y; and y, are linearly dependent
on the interval [a, b], then y; and y, are linearly
dependent on the larger interval [C, D] D [a, b].

Let y,(¢) = t> and y,(t) = |¢}|. Are y, and y, lin-

early independent on the following intervals?

@ [0.00)  (b) (-00.0] () (~00,00)

(d) Compute the Wronskian W[y, y,](t) on the
interval (— oo, 00).

Consider the linear equation

ty" =3ty +3y =0,

for —co <t < o0 .

(a) Verify that y,(r) = rand y,(r) = ¢ are two solu-
tions to (21) on (—oo, oo). Furthermore, show
that y, (#)y3(t0) — ¥i(t0)y2(10) # 0 forzp = 1.

21

"Historical footnote: Niels Abel derived this identity in 1827.
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28.

29.

30.

31.

32.
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(b) Prove that y,(¢) and y,(z) are linearly indepen-
dent on (—o0, 00).

(¢) Verify that the function ys(z) == |¢|* is also a
solution to (21) on (—oo, o).

(d) Prove that there is no choice of constants cy,
¢, such that ys(r) = ¢y, (t) + coy(f) for all ¢
in (—o0, 00). [Hint: Argue that the contrary
assumption leads to a contradiction.]

(e) From parts (c) and (d), we see that there is at
least one solution to (21) on (—oo, 00) that is
not expressible as a linear combination of the
solutions y,(¢), y,(f). Does this provide a
counterexample to the theory in this section?
Explain.

Let y,(z) = t* and y,(t) = 2t]t|. Are y, and y, lin-

early independent on the interval:

(@ [0,00)?2  (b) (—00,0]?  (¢) (—o00,00)?

(d) Compute the Wronskian W[yl,yz](t) on the
interval (—oo, o).

Prove that if y; and y, are linearly independent solu-

tions of y" + py’ + gy = Oon (g, b), then they can-

not both be zero at the same point £, in (a, b).

Superposition Principle. Let y; be a solution to

y" (1) + ple)y' (1) + q(e)y(1) = &,(1)
on the interval I and let y, be a solution to

y" (1) + ple)y' (1) + q(e)y(1) = &,(1)
on the same interval. Show that for any constants k;
and k,, the function k;y; + k,y, is a solution on / to

' (1) + pley' (1) + q()y(1) = kigi (1) + kaga(r)
Determine whether the following functions can be
Wronskians on —1 < ¢ < 1 for a pair of solutions
to some equation y” + py’ + gy = 0 (with p and ¢
continuous).

(@) w(r) = 6e¥ (b) w(r) =13
© wt) = (r+ D7 @ w()=0
By completing the following steps, prove that the
Wronskian of any two solutions y;, y, to the equa-
tion y” + py' + gy = 0 on (a, b) is given by Abel’s
formula’
[t
Wy1,y2](#) = Cexp{—
tpand tin (a, b) ,
where the constant C depends on y; and y,.
(a) Show that the Wronskian W satisfies the equa-
tion W + pW = 0.
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(b) Solve the separable equation in part (a).

(¢) How does Abel’s formula clarify the fact that the
Wronskian is either identically zero or never zero
on (a, b)?

33. Use Abel’s formula (Problem 32) to determine (up to
a constant multiple) the Wronskian of two solutions
on (0, c0) to

'+ (= 1y +3y=0.

34. All that is known concerning a mysterious differen-
tial equation y” + p(t)y’ + q(t)y = g(¢) is that the
functions 7, 72, and 7> are solutions.

(a) Determine two linearly independent solutions
to the corresponding homogeneous differential
equation.

(b) Find the solution to the original equation satisfy-
ing the initial conditions y(2) = 2, y'(2) = 5.

(¢) What is p(r)? [Hint: Use Abel’s formula for the
Wronskian, Problem 32.]

35. Giventhat 1 + £, 1 + 2¢ and 1 + 37 are solutions to
the differential equation y” + p(t)y’ + q(t)y = g(¢),
find the solution to this equation that satisfies
y(1) =2,y'(1) = 0.

36. Verify that the given functions y; and y, are linearly
independent solutions of the following differential
equation and find the solution that satisfies the given
initial conditions.

ty”—(t+2)y +2y=0;
yi(t)=e, )= P2+,
1

=0, ()1

In Problems 37 through 40, use variation of parameters
to find a general solution to the differential equation
given that the functions y, and y, are linearly independent
solutions to the corresponding homogeneous equation for
t > 0. Remember to put the equation in standard form.

3.y —(t+ Dy +y=12

v, =é", yv=t+1

38. 2"—4ty +6y—t +1;
yi=1° y =1’

39. 1y" + (5t — 1)y — 5y = 1%
yy=5t—1, y, = e

40. " + (1 =20y + (t— Dy =te';
vy =é", v, =¢e Int

In Problems 41 through 43, find general solutions to the
nonhomogeneous Cauchy—Euler equations using varia-
tion of parameters.

41. 1’7" + 17/ + 9z = —tan(3 In 1)

2. %" + 3y +y=1"

43. 1’7" tz’+z:t<l+3>
In¢

44. The Bessel equation of order one-half

ty" + 1y + <t2i>y—0, t>0
has two linearly independent solutions,

yi@®) = t"cost, y,(t) =t Ysint .
Find a general solution to the nonhomogeneous
equation

2y + 1y + <t i)y =2, +>0.

In Problems 45 through 48, a differential equation and a
non-trivial solution f are given. Find a second linearly
independent solution using reduction of order.

45. 5" =2ty —4y=0, t>0; f(n=1"
46. t5y" + 61y +6y=0, t>0; f(=1"?
47. x" — (¢t + 1x ' +x=0, r>0; f=¢
8.1y + (1 -2y +t—y=0, t>0;

f(n=e¢

49. In quantum mechanics, the study of the Schrodinger
equation for the case of a harmonic oscillator leads
to a consideration of Hermite’s equation,

y' =2ty +Ay=0,
where A\ is a parameter. Use the reduction of order
formula to obtain an integral representation of a

second linearly independent solution to Hermite’s
equation for the given value of N\ and corresponding

solution f(?).
@Air=4, fio=1-2
b A=6, f©)=3t—2

50. Complete the proof of Theorem 8 by solving equa-
tion (16).

51. The reduction of order procedure can be used more
generally to reduce a homogeneous linear nth-order
equation to a homogeneous linear (n — 1)th-order
equation. For the equation

ty
which has f(f) = €' as a solution, use the substitu-
tion y(#) = v(¢) f(¢) to reduce this third-order equa-

tion to a homogeneous linear second-order equation
in the variable w = v'.

"

-ty —y=0,



52.

53.
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The equation
B A=y =y =0
has f(f) = t as a solution. Use the substitution y() =
v(t) f(t) to reduce this third-order equation to a
homogeneous linear second-order equation in the
variable w = v'.
Isolated Zeros. Let ¢(r) be a solution to y” +
py' + gy = 0 on (a, b), where p, g are continuous
on (a, b). By completing the following steps, prove
that if ¢ is not identically zero, then its zeros in (a, b)
are isolated, i.e., if ¢(ty) = 0, then there exists a
8 > 0such that (1) # 0for 0 < |1 — 15| < 8.
(a) Suppose ¢(ty) = 0 and assume to the contrary
that for each n = 1, 2, ..., the function ¢ has a
zero at t,, where 0 < |ty — t,| < 1/n. Show
that this implies ¢'(fy) = 0. [Hint: Consider the
difference quotient for ¢ at #,.]

(b) With the assumptions of part (a), we have
d(ty) = ¢'(ty) = 0. Conclude from this that ¢
must be identically zero, which is a contradic-
tion. Hence, there is some integer n, such that
(1) is not zero for 0 < |t — 15| < 1/ny,.

54. The reduction of order formula (13) can also be

derived from Abels’ identity (Problem 32). Let f(r)
be a nontrivial solution to (10) and y(#) a second lin-
early independent solution. Show that

<y>' _ WIfy]
f f?

and then use Abel’s identity for the Wronskian
WIf, y] to obtain the reduction of order formula.

QUALITATIVE CONSIDERATIONS FOR
VARIABLE-COEFFICIENT AND NONLINEAR
4.8 EQUATIONS

There are no techniques for obtaining explicit, closed-form solutions to second-order linear
differential equations with variable coefficients (with certain exceptions) or for nonlinear equa-
tions. In general, we will have to settle for numerical solutions or power series expansions. So
it would be helpful to be able to derive, with simple calculations, some nonrigorous, qualitative
conclusions about the behavior of the solutions before we launch the heavy computational
machinery. In this section we first display a few examples that illustrate the profound differ-
ences that can occur when the equations have variable coefficients or are nonlinear. Then we
show how the mass—spring analogy, discussed in Section 4.1, can be exploited to predict some
of the attributes of solutions of these more complicated equations.

To begin our discussion we display a linear constant-coefficient, a linear variable-coefficient,

and two nonlinear equations.

(a) The equation

1) 3y + 2y +4y=0

is linear, homogeneous with constant coefficients. We know everything about such
equations; the solutions are, at worst, polynomials times exponentials times sinusoids
in ¢, and unique solutions can be found to match any prescribed data y(a), y'(a) at
any instant ¢ = . It has the superposition property: If y,(¢) and y,(z) are solutions, so

is y(1) = ey (1) + caya(t).



Review Problems

where v} and v/, are determined by the equations

viyi F vy, =0

viyi +vhys = fl1)/a .

Superposition Principle. If y; and y, are solutions to the equations

ay" +by' + ey =hi

and ay” + by +cy=4f,

respectively, then k;y; + kY, is a solution to the equation

ay" + by +ey=kfitkp.
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The superposition principle facilitates finding a particular solution when the nonhomogeneous

term is the sum of nonhomogeneities for which particular solutions can be determined.

Cauchy-Euler (Equidimensional) Equations

atzy” + bty’ + cy = f(¢)

Substituting y = ¢ yields the associated characteristic equation

ar2+(b—a)r+c=0

for the corresponding homogeneous Cauchy—Euler equation. A general solution to the homo-

geneous equation for # > 0 is given by

(1) ¢t + cpt™, if r| and r, are distinct real roots;
(i) c¢t" + cot"In ¢, if ris a repeated root;
(iil) c¢yt%cos(BInt) + cot*sin(B1n 1), if & + iB is a complex root.

A general solution to the nonhomogeneous equation is y =y, + y;, where y, is a particu-
lar solution and y, is a general solution to the corresponding homogeneous equation. The
method of variation of parameters (but not the method of undetermined coefficients) can be

used to find a particular solution.

REVIEW PROBLEMS

In Problems 1-28, find a general solution to the given

differential equation.

1. y" +8' =9 =0 2. 49" +14y'+y=0
3.4y" —4y" + 10y =0 4. 99"—30y'+25y=0
5.6y" — 11y +3y=0 6. y"+8 —14y=0
7. 36y" + 24y’ +5y=0 8. 25y"+20y'+4y =0
9. 167" —567'+49z=0 10. u”" + 1lu =0
1. A" (1) + 5x() =0, >0
12. 2y" — 3y" — 12y + 20y =0

13

14.
15.
16.
17.
18.
19.
20.
21.

.y + 16y = te'

v —4v +Tv=0

3y” + 10y" + 9y + 2y =0
y" +3y" + 5y +3y=0
Y 4+ 10y — 11y = 0

4 = 1201

4y" + 8" — 11y’ + 3y =10
2y" —y =tsint

Yy =3y 1y =77~ ¢
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22, y" — 8y" — 33y = 546 sin ¢t

23. y"(0) + 16y(8) = tan 46

24. 10y" +y' =3y =1t — el?

25. 4y" — 12y" + 9y = &7 + &

26. y" + 6y + 15y = ¥ + 75

27. x%y" + 2xy’ — 2y = 6x"2 + 3x , x>0
28. y" =5x"y —13x7%y, x>0

w

In Problems 29-36, find the solution to the given initial
value problem.
29. y' +4y' + 7y =0 ;
y0)=1, »y(0)=-2
30. y"(0) + 2y'(8) + y(0) = 2cos 0 ;
y0)=3, y(0)=0
31. y" — 2y" + 10y = 6 cos 3t — sin 3¢ ;
y0)=2, y(0)=-8
32. 4y" —4y" + 5y =0 ;
y0)=1, y(0)=-11/2
33, y" — 12y" + 27y" + 40y = 0 ;
y0)==-3, y(0)=-6, y"(0)=-12
4. y" +5) — 14y =0 ;
y0)=5. y(0)=1
35.y"(0) + y(0) =secd ; y(0)=1, y'(0)=2
36. 9y" + 12y +4y =0 ;
y(0) = -3, y'(0) =3

TECHNICAL WRITING EXERCISES

1. Compare the two methods— undetermined coeffi-
cients and variation of parameters—for determining
a particular solution to a nonhomogeneous equation.
What are the advantages and disadvantages of each?

2. Consider the differential equation

d? d

i iy=o,

dx dx
where b is a constant. Describe how the behavior of
solutions to this equation changes as b varies.

3. Consider the differential equation
=0
cy =0,
dx? Y

37.

38.

39.

Use the mass—spring oscillator analogy to decide
whether all solutions to each of the following differ-
ential equations are bounded as t — +co.

@ y" + 1y =0

() y" =y =0

© ' +y' =0

@y +y" =0

(e) y"+(3+sinr)y=0

) y"+72y +y=0

@y -7 —y=0

A 3-kg mass is attached to a spring with stiffness k =
75 N/m, as in Figure 4.1, page 153. The mass is
displaced 1/4 m to the left and given a velocity of
1 m/sec to the right. The damping force is negligible.
Find the equation of motion of the mass along with
the amplitude, period, and frequency. How long after
release does the mass pass through the equilibrium
position?

A 32-1b weight is attached to a vertical spring, caus-
ing it to stretch 6 in. upon coming to rest at equilib-
rium. The damping constant for the system is 2 lb-
sec/ft. An external force F (r) = 4 cos 8¢1b is applied
to the weight. Find the steady-state solution for the
system. What is its resonant frequency?

where c is a constant. Describe how the behavior of
solutions to this equation changes as c¢ varies.

. For students with a background in linear algebra:

Compare the theory for linear second-order equa-
tions with that for systems of #n linear equations in n
unknowns whose coefficient matrix has rank n — 2.
Use the terminology from linear algebra; for exam-
ple, subspace, basis, dimension, linear transforma-
tion, and kernel. Discuss both homogeneous and
nonhomogeneous equations.



