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In Problems 1–6, determine the largest interval for
which Theorem 1 guarantees the existence of a unique
solution on to the given initial value problem.

1.

2.

3.

4.

5.

6.

In Problems 7–14, determine whether the given functions
are linearly dependent or linearly independent on the
specified interval. Justify your decisions.

7.
8.
9.

10.
11.
12.
13.
14.

Using the Wronskian in Problems 15–18, verify that the
given functions form a fundamental solution set for the
given differential equation and find a general solution.
15.

16.

17.

18.

In Problems 19–22, a particular solution and a funda-
mental solution set are given for a nonhomogeneous

yA4B ! y " 0  ;    Eex, e!x, cos x, sin xFEx, x2, x3Fx3y‡ ! 3x2y– # 6xy¿ ! 6y " 0  ,    x 7 0  ;

U ex, cos 2x, sin 2x Vy‡ ! y– # 4y¿ ! 4y " 0  ;    

U e3x, e!x, e!4x Vy‡ # 2y– ! 11y¿ ! 12y " 0  ;    

Ex, xex, 1F on A!q, q BEx, x2, x3, x4F on A!q, q BEcos 2x, cos2 x, sin2 xF on A!q, q BEx!1, x1/2, xF on A0, q BEsin x, cos x, tan xF on A!p/2, p/2BEsin2 x, cos2 x, 1F on A!q, q BEx2, x2 ! 1, 5F on A!q, q BEe3x, e5x, e!xF on A!q, q B

y A3/4B " 1  ,    y¿ A3/4B " y– A3/4B " 0

Ax2 ! 1By‡ # exy " ln x  ;

y A1/2B " y¿ A1/2B " !1  ,    y– A1/2B " 1
x1x # 1y‡ ! y¿ # xy " 0  ;

y A!1/2B " 1  ,    y¿ A!1/2B " y– A!1/2B " 0
x Ax # 1By‡ ! 3xy¿ # y " 0  ;

y A5B " y¿ A5B " y– A5B " 1
y‡ ! y– # 1x ! 1y " tan x  ;

y ApB " 0  ,    y¿ ApB " 11  ,      y– ApB " 3
y‡ ! 1xy " sin x  ;

y A!2B " 1  ,    y¿ A!2B " 0  ,    y– A!2B " 2
xy‡ ! 3y¿ # exy " x2 ! 1  ;

Aa, bB
Aa, bB equation and its corresponding homogeneous equation.

(a) Find a general solution to the nonhomogeneous
equation. (b) Find the solution that satisfies the specified
initial conditions.

19.

20.

21.

22.

23. Let , and
Verify that and

Then use the superposition prin-
ciple (linearity) to find a solution to the differential
equation:
(a)
(b)

24. Let , J ,
and . Verify that 
and Then use the superposition prin-
ciple (linearity) to find a solution to the differential
equation:
(a)
(b)

25. Prove that L defined in (7) is a linear operator by
verifying that properties (9) and (10) hold for any 
n-times differentiable functions y, y1, on .

26. Existence of Fundamental Solution Sets. By
Theorem 1, for each j " 1, 2, . . . , n there is a unique
solution to equation (17) satisfying the initial
conditions

(a) Show that is a fundamental
solution set for (17). [Hint: Write out the
Wronskian at x0.]

Ey1, y2, . . . , ynF
yj
AkB Ax0B " e 1  ,

0  ,
for k " j ! 1  ,
for k $ j ! 1,  0 % k % n ! 1  .

yj AxB
Aa, bBp , ym

L 3 y 4 " !6x cos 2x # 11x  .
L 3 y 4 " 7x cos 2x ! 3x  .

L 3 y2 4 AxB " x.
L 3 y1 4 AxB " x cos 2xy2 AxB J !1 /3

cos 2xy1 AxBL 3 y 4 J y‡ ! xy– # 4y¿ ! 3xy

L 3 y 4 " 4x2 # 4 ! 6x sin x  .
L 3 y 4 " 2x sin x ! x2 ! 1  .

L 3 y2 4 AxB " x2 # 1.
L 3 y1 4 AxB " x sin xy2 AxB J x.

y1 AxB J sin x,L 3 y 4 J y‡ # y¿ # xy

Eexcos x, exsin x, e!xcos x, e!xsin xFyp " cos x  ;    y‡ A0B " !2  ;    
y– A0B " !1  ,    y¿ A0B " 1  ,    y A0B " 2  ,    

y A4B # 4y " 5 cos x  ;

Ex, x ln x, x Aln xB2Fyp " ln x  ;    
y– A1B " 0  ;    y¿ A1B " 3  ,    y A1B " 3  ,    

x3y‡ # xy¿ ! y " 3 ! ln x  ,    x 7 0  ;

yp " x2  ;    E1, x, x3Fy– A1B " !4  ;    
y¿ A1B " !1  , y A1B " 2  ,  xy‡ ! y– " !2  ;  

yp " x2  ;    Eex, e!xcos 2x, e!xsin 2xFy A0B " !1  ,    y¿ A0B " 1  ,    y– A0B " !3  ;
y‡ # y– # 3y¿ ! 5y " 2 # 6x ! 5x2  ;
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(b) For given initial values 
express the solution to (17) satisfying

[as in equa-
tions (4)] in terms of this fundamental solution set.

27. Show that the set of functions 
where n is a positive integer, is linearly independent
on every open interval . [Hint: Use the fact that
a polynomial of degree at most n has no more than n
zeros unless it is identically zero.]

28. The set of functions

1, cos x, sin x, . . . , cos nx, sin nx ,

where n is a positive integer, is linearly independent
on every interval . Prove this in the special case
n " 2 and 

29. (a) Show that if f1, . . . , fm are linearly independent
on then they are linearly independent
on

(b) Give an example to show that if f1, . . . , fm are
linearly independent on then they
need not be linearly independent on 

30. To prove Abel’s identity (26) for n " 3, proceed as fol-
lows:
(a) Let Use the product

rule for differentiation to show

(b) Show that the above expression reduces to

(32)

(c) Since each yi satisfies (17), show that

(33)

(d) Substituting the expressions in (33) into (32),
show that

(34) W! Ax B " # p 1 Ax BW Ax B  .
Ai " 1, 2, 3B  .yi

A3B Ax B " # a
3

k "1
p k Ax Byi

A3# k B Ax B

W! Ax B " † y1 y2 y3
y!1 y!2 y!3
y$1 y$2 y$3

†   .
# † y1 y2 y3

y¿1 y¿2 y¿3
y‡1 y‡2 y‡3

†   .
W ¿ AxB " † y¿1 y¿2 y¿3

y¿1 y¿2 y¿3
y–1 y–2 y–3

† # † y1 y2 y3
y–1 y–2 y–3
y–1 y–2 y–3

†
W AxB J W 3 y1, y2, y3 4 AxB.

A!1, 1B.A!q, q B,
A!q, q B.A!1, 1B,
Aa, bB " A!q, q B.Aa, bB

FE
Aa, bB

E1, x, x2, . . . , xnF ,k " 0, . . . , n ! 1,y AkB Ax0B " gk,
y AxB g0, g1, . . . , gn!1,
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(e) Deduce Abel’s identity by solving the first-order
differential equation (34).

31. Reduction of Order. If a nontrivial solution 
is known for the homogeneous equation

the substitution can be used to
reduce the order of the equation, as was shown in
Section 4.7 for second-order equations. By complet-
ing the following steps, demonstrate the method for
the third-order equation

(35)

given that is a solution.

(a) Set and compute , , and 
(b) Substitute your expressions from (a) into (35) to

obtain a second-order equation in 
(c) Solve the second-order equation in part (b) for w

and integrate to find y. Determine two linearly
independent choices for y, say, y1 and y2.

(d) By part (c), the functions and
are two solutions to (35). Verify

that the three solutions , and are
linearly independent on 

32. Given that the function is a solution to
! show that the substitution

reduces this equation to
where

33. Use the reduction of order method described in Prob-
lem 31 to find three linearly independent solutions to

given that is
a solution.

34. Constructing Differential Equations. Given three
functions , , that are each three times
differentiable and whose Wronskian is never zero on

, show that the equation

is a third-order linear differential equation for which
is a fundamental solution set. What is the

coefficient of in this equation?
35. Use the result of Problem 34 to construct a third-

order differential equation for which 
is a fundamental solution set.

Ex, sin x, cos xFy‡
E f1, f2, f3F

∞ f1 AxB f2 AxB f3 AxB y
f ¿1 AxB f ¿2 AxB f ¿3 AxB y¿
f –1 AxB f –2 AxB f –3 AxB y–
f ‡1 AxB f ‡2 AxB f ‡3 AxB y‡

∞ " 0

Aa, bB
f3 AxBf2 AxBf1 AxB

f AxB " e2xy‡ ! 2y– # y¿ ! 2y " 0,

w " y¿.xw– # 3w¿ ! x3w " 0,
y AxB " y AxB f AxB " y AxBxx2y¿ # xy " 0,y‡

f AxB " x

A!q, q B. y2 AxBex, y1 AxBy2 AxB " y2 AxBex
y1 AxB " y1 AxBex

w J y¿.

y‡.y–y¿y AxB " y AxBex

f AxB " ex

y‡ ! 2y– ! 5y¿ # 6y " 0  ,

y AxB " y AxB f AxBy AnB # p1 AxBy An!1B # p # pn AxBy " 0  ,

f AxB



Find a general solution to

(29)

The auxiliary equation is

which has roots Because the root at 1 has multiplicity 3, a
general solution is

(30) ◆

Find a general solution to

(31)

whose auxiliary equation can be factored as

(32)

The auxiliary equation (32) has repeated complex roots: ,
and Hence a general solution is

◆y AxB ! C1e
2x cos x " C2xe2x cos x " C3e

2x sin x " C4xe2x sin x  .

r4 ! 2 # i.
r1 ! 2 " i, r2 ! 2 " i, r3 ! 2 # i

r 4 # 8r 3 " 26r 2 # 40r " 25 ! Ar 2 # 4r " 5B2 ! 0  .

y A4B # 8y A3B " 26y– # 40y¿ " 25y ! 0  ,

y AxB ! C1e
x " C2xex " C3x

2ex " C4e
#2x  .

r1 ! 1, r2 ! 1, r3 ! 1, r4 ! #2.

r 4 # r 3 # 3r 2 " 5r # 2 ! Ar # 1B3 Ar " 2B ! 0  ,

y A4B # y A3B # 3y– " 5y¿ # 2y ! 0  .
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Example 3

Solution

Example 4

Solution

In Problems 1–14, find a general solution for the differ-
ential equation with x as the independent variable.

1.
2.
3.
4.
5.
6.
7.
8.
9.

10.
11.
12.
13.
14.

[Hint: is a solution.]

In Problems 15–18, find a general solution to the given
homogeneous equation.
15.
16.

# AD2 " 4B 3 y 4 ! 0

AD " 1B2 AD # 6B3 AD " 5B AD2 " 1BAD # 1B2 AD " 3B AD2 " 2D " 5B2 3 y 4 ! 0

y AxB ! sin 3x
yA4B " 2y‡ " 10y– " 18y¿ " 9y ! 0
y A4B " 4y– " 4y ! 0
y‡ " 5y– " 3y¿ # 9y ! 0
y A4B " 4y‡ " 6y– " 4y¿ " y ! 0
y‡ " 3y– # 4y¿ # 6y ! 0
u‡ # 9u– " 27u¿ # 27u ! 0
y‡ " 5y– # 13y¿ " 7y ! 0
2y‡ # y– # 10y¿ # 7y ! 0
y‡ # y– " 2y ! 0
y‡ " 3y– " 28y¿ " 26y ! 0
y‡ " 2y– # 19y¿ # 20y ! 0
6z‡ " 7z– # z¿ # 2z ! 0
y‡ # 3y– # y¿ " 3y ! 0
y‡ " 2y– # 8y¿ ! 0

17.

18.

In Problems 19–21, solve the given initial value problem.
19.

20.

21.

In Problems 22 and 23, find a general solution for the
given linear system using the elimination method of
Section 5.2.

22.

23.

dx/dt # x " y ! 0

d3x/dt3 # x " dy/dt " y ! 0  ,

2x " d2y/dt2 " 2y ! 0

d2x/dt2 # x " 5y ! 0  ,

y A0B ! 1  ,    y¿ A0B ! 0  ,    y– A0B ! 0
y‡ # 4y– " 7y¿ # 6y ! 0  ;
y A0B ! 1  ,    y¿ A0B ! #3  ,    y– A0B ! 13
y‡ " 7y– " 14y¿ " 8y ! 0  ;
y A0B ! #4  ,    y¿ A0B ! #1  ,    y– A0B ! #19
y‡ # y– # 4y¿ " 4y ! 0  ;

# AD2 " 6D " 10B3 3 y 4 ! 0

AD # 1B3 AD # 2B AD2 " D " 1B # D5 3 y 4 ! 0

AD " 4B AD # 3B AD " 2B3 AD2 " 4D " 5B2
6.2 EXERCISES



24. Let be a polyno-
mial with real coefficients an, . . . , a0. Prove that if r1

is a zero of then so is its complex conjugate
[Hint: Show that where the bar denotes
complex conjugation.]

25. Show that the m functions
are linearly independent on [Hint: Show
that these functions are linearly independent if and
only if are linearly independent.]

26. As an alternative proof that the functions 
are linearly independent on when

rn are distinct, assume

(33)

holds for all x in and proceed as follows:
(a) Because the ri’s are distinct we can (if neces-

sary) relabel them so that

Divide equation (33) by to obtain

Now let on the left-hand side to
obtain

(b) Since equation (33) becomes

for all x in Divide this equation by
and let to conclude that 

(c) Continuing in the manner of (b), argue that all
the coefficients, C1, C2, . . . , Cn are zero and
hence are linearly indepen-
dent on 

27. Find a general solution to

by using Newton’s method (Appendix B) or some
other numerical procedure to approximate the roots
of the auxiliary equation.

28. Find a general solution to by
using Newton’s method or some other numerical
procedure to approximate the roots of the auxiliary
equation.

29. Find a general solution to

y A4B " 2y A3B " 4y– " 3y¿ " 2y ! 0

y‡ # 3y¿ # y ! 0

y A4B " 2y‡ # 3y– # y¿ "
1
2

 y ! 0

A#q, q B.er1x, er2x, . . . , ernx

C2 ! 0.x S " qer2x
A#q, q B.C2er2x " C3er3x " p " Cnernx ! 0

C1 ! 0,
C1 ! 0.

x S " q

C1 " C2 
er2x

er1x " p " Cn 
ernx

er1x ! 0  .

er1x

r1 7 r2 7 p 7 rn  .

A#q, q BC1er1x " C2er2x " p " Cnernx ! 0

r1, r2, . . . ,
A#q, q Bernx

er1x, er2x, . . . ,

1, x, . . . , xm#1

A#q, q B.erx, xerx, . . . , xm#1erx

P ArB ! P ArB, r1.P ArB,
P ArB ! anr n " p " a1r " a0
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by using Newton’s method to approximate numeri-
cally the roots of the auxiliary equation. [Hint: To
find complex roots, use the Newton recursion
formula and start with a
complex initial guess z0.]

30. (a) Derive the form

for the general solution to the equation 
from the observation that the fourth roots of
unity are , i, and

(b) Derive the form

"

for the general solution to the equation 
from the observation that the cube roots of unity
are , and 

31. Higher-Order Cauchy–Euler Equations. A dif-
ferential equation that can be expressed in the form

"

where are constants, is called a
homogeneous Cauchy–Euler equation. (The second-
order case is discussed in Section 4.7.) Use the substi-
tution to help determine a fundamental solution
set for the following Cauchy–Euler equations:
(a)
(b)

(c)

[Hint:

32. Let , where and r are real num-
bers, be a solution to a differential equation. Sup-
pose we cannot determine r exactly but can only
approximate it by . Let and consider
the error
(a) If r and are positive, show that the error

grows exponentially large as x approaches "
(b) If r and are negative, show that the error

goes to zero exponentially as x approaches " 

33. On a smooth horizontal surface, a mass of m1 kg is
attached to a fixed wall by a spring with spring con-
stant k1 N/m. Another mass of m2 kg is attached to
the first object by a spring with spring constant k2

N/m. The objects are aligned horizontally so that the
springs are their natural lengths. As we showed in

q.
r $ r~,r~

q.
r $ r~,r~

@ y AxB # y~ AxB @ . y~ AxB J Cer~xr~

C A$ 0By AxB ! Cerx

! xaEcos Ab ln xB " i sin Ab ln xB F. 4xa"ib ! e Aa"ibBln x
x 7 0
x3y‡ # 2x2y– " 13xy¿ # 13y ! 0  ,    
x 7 0  .
x4y A4B " 6x3y‡ " 2x2y– # 4xy¿ " 4y ! 0  ,
x3y‡ " x2y– # 2xy¿ " 2y ! 0  ,  x 7 0  .

y ! xr

an, an#1, . . . , a0

a0y AxB ! 0  ,an xny AnB AxB " an#1xn#1y An#1B AxB " p

e#i2p/3.1, ei2p/3

y A3B ! y,
A3e#x/2 sin A23x/2By AxB ! A1ex " A2e#x/2 cos A23x/2B#i.1, #1

y A4B ! y,

y AxB ! A1ex " A2e#x " A3 cos x " A4 sin x

zn"1 ! zn # f AznB / f ¿ AznB



Section 5.6, this coupled mass–spring system is
governed by the system of differential equations

(34)

(35)

Let’s assume that , and
If both objects are displaced 1 m to the right

of their equilibrium positions (compare Figure 5.26,
page 285) and then released, determine the equa-
tions of motion for the objects as follows:
(a) Show that satisfies the equation

(36)
(b) Find a general solution to (36).
(c) Substitute back into (34) to obtain a general

solution for 
(d) Use the initial conditions to determine the solu-

tions, and which are the equations of
motion.

y AtB,x AtB
y AtB.x AtB x AtBx A4B AtB ! 7x " AtB ! 6 x AtB # 0  .

x AtB
k2 ! 2.

m1 ! m2 ! 1, k1 ! 3

m2 

d2y

dt2 $ k2x ! k2 y # 0  .

m1 
d2x
dt2 ! Ak1 ! k2Bx $ k2 y # 0  ,
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34. Suppose the two springs in the coupled mass–spring
system discussed in Problem 33 are switched, giving
the new data , and If
both objects are now displaced 1 m to the right of
their equilibrium positions and then released, deter-
mine the equations of motion of the two objects.

35. Vibrating Beam. In studying the transverse vibra-
tions of a beam, one encounters the homogeneous
equation

where is related to the displacement of the beam
at position x, the constant E is Young’s modulus, I is
the area moment of inertia, and k is a parameter.
Assuming E, I, and k are positive constants, find a
general solution in terms of sines, cosines, hyper-
bolic sines, and hyperbolic cosines.

y AxB
EI 

d 4y

dx4 # ky ! 0  ,

k2 ! 3.m1 ! m2 ! 1, k1 ! 2

In Sections 4.4 and 4.5 we mastered an easy method for obtaining a particular solution to a nonho-
mogeneous linear second-order constant coefficient equation,

(1)

when the nonhomogeneity had a particular form (namely, a product of a polynomial, an expo-
nential, and a sinusoid). Roughly speaking, we were motivated by the observation that if a function
ƒ, of this type, resulted from operating on y with an operator L of the form then
we must have started with a y of the same type. So we solved (1) by postulating a solution form yp
that resembled ƒ, but with undetermined coefficients, and we inserted this form into the equation to
fix the values of these coefficients. Eventually, we realized that we had to make certain accommoda-
tions when ƒ was a solution to the homogeneous equation 

In this section we are going to reexamine the method of undetermined coefficients from
another, more rigorous, point of view—partly with the objective of tying up the loose ends in
our previous exposition and more importantly with the goal of extending the method to higher-
order equations (with constant coefficients). At the outset we’ll describe the new point of view
that will be adopted for the analysis. Then we illustrate its implications and ultimately derive a
simplified set of rules for its implementation: rules that justify and extend the procedures of
Section 4.4. The rigorous approach is known as the annihilator method.

The first premise of the annihilator method is the observation, gleaned from the analysis
of the previous section, that all of the “suitable types” of nonhomogeneities (products ofƒ AxB

L 3 y 4 ! 0.

AaD2 " bD " cB,ƒ AxBL 3 y 4 ! AaD2 " bD " cB 3 y 4 ! ƒ AxB ,

6.3 UNDETERMINED COEFFICIENTS AND THE 
ANNIHILATOR METHOD
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In Problems 1–4, use the method of undetermined coeffi-
cients to determine the form of a particular solution for
the given equation.

1.
2.
3.
4.

In Problems 5–10, find a general solution to the given
equation.

5.
6.
7.
8.
9.

10.

In Problems 11–20, find a differential operator that anni-
hilates the given function.
11. 12.
13. 14.
15. 16.
17. 18.
19. 20.

In Problems 21–30, use the annihilator method to deter-
mine the form of a particular solution for the given equa-
tion.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.

In Problems 31–33, solve the given initial value problem.
31.

y A0B ! "2  ,    y¿ A0B ! "8  ,    y– A0B ! "12
y‡ # 2y– " 9y¿ " 18y ! "18x2 " 18x # 22  ;

y‡ # 2y– " y¿ " 2y ! ex " 1
z‡ " 2z– # z¿ ! x " ex

y– " 6y¿ # 10y ! e3x " x
y– # 2y¿ # 2y ! e"x cos x # x2

y– # 2y¿ # y ! x2 " x # 1
y– " 6y¿ # 9y ! sin 2x # x
u– " u ! xex

y– " 5y¿ # 6y ! e3x " x2

y– # 6y¿ # 8y ! e3x " sin x
u– " 5u¿ # 6u ! cos 2x # 1

x2ex " x sin 4x # x3xe"2 x # xe"5x sin 3x
xe3x cos 5xx2e"x sin 2x
x2 " exe2x " 6ex

e5xe"7x

3x2 " 6x # 1x4 " x2 # 11

y‡ # 4y– # y¿ " 26y ! e"3x sin 2x # x
y‡ " 3y– # 3y¿ " y ! ex

y‡ # y– " 2y ! xex # 1
y‡ # 3y– " 4y ! e"2x

y‡ # y– " 5y¿ # 3y ! e"x # sin x
y‡ " 2y– " 5y¿ # 6y ! ex # x2

y‡ # y– " 2y ! xex # 1
y‡ # 3y– " 4y ! e"2x

y‡ # y– " 5y¿ # 3y ! e"x # sin x
y‡ " 2y– " 5y¿ # 6y ! ex # x2

32.

33.

34. Use the annihilator method to show that if in
equation (4) and has the form

(17)

then

is the form of a particular solution to equation (4).
35. Use the annihilator method to show that if and

in (4) and has the form given in (17), then
equation (4) has a particular solution of the form

36. Use the annihilator method to show that if in (4)
has the form then equation (4) has a
particular solution of the form 
where s is chosen to be the smallest nonnegative
integer such that is not a solution to the corre-
sponding homogeneous equation.

37. Use the annihilator method to show that if in (4)
has the form

then equation (4) has a particular solution of the form

(18)

where s is chosen to be the smallest nonnegative
integer such that and are not solu-
tions to the corresponding homogeneous equation.

In Problems 38 and 39, use the elimination method of
Section 5.2 to find a general solution to the given system.

38.

39.

x # d2y/dt2 " y ! e3t

d2x/dt2 " x # y ! 0  ,

dx/dt # dy/dt " 2y ! et

x " d2y/dt2 ! t # 1  ,

xs sin bxxs cos bx

ypAx B ! x sEA cos Bx " B sin Bx F  ,
f AxB ! a cos bx # b sin bx  ,

f AxB
xsea x

yp AxB ! xsBea x,
f AxB ! Bea x,

f AxByp AxB ! xEBm x m # Bm"1x m"1 # p # B1x # B0F  .
f AxBa1 $ 0

a0 ! 0

yp AxB ! Bm x m # Bm"1x m"1 # p # B1x # B0

f AxB ! bm x m # bm"1x m"1 # p # b1x # b0  ,

f AxB a0 $ 0

y A0B ! 3  ,    y¿ A0B ! 0  ,    y– A0B ! 0
! 34xe"2x " 16e"2x " 10x2 # 6x # 34  ;

y‡ " 2y– " 3y¿ # 10y
y A0B ! 4  ,    y¿ A0B ! "1  ,    y– A0B ! "5
y‡ " 2y– # 5y¿ ! "24e3x  ;
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40. The currents in the electrical network in Figure 6.1
satisfy the system

where I1, I2, and I3 are the currents through the dif-
ferent branches of the network. Using the elimina-
tion method of Section 5.2, determine the currents if
initially , ,

, and I¿3 A0B ! 16 /3.I¿2 A0B ! 3 /4
I¿1 A0B ! 73 /12I1 A0B ! I2 A0B ! I3 A0B ! 0

 I1 ! I2 # I3  ,

 
1

64
 I3 # 9I–3 " 64I–2 ! 0  ,

 
1
9

 I1 # 64I–2 ! "2 sin 
t

24
  ,
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48 cos( t /24) 
volts 9 henrys 

9 farads 64 farads 

64 henrys 

I 1 
I 2 I 3 

Figure 6.1 An electrical network

In the previous section, we discussed the method of undetermined coefficients and the annihila-
tor method. These methods work only for linear equations with constant coefficients and when
the nonhomogeneous term is a solution to some homogeneous linear equation with constant
coefficients. In this section we show how the method of variation of parameters discussed in
Sections 4.6 and 4.7 generalizes to higher-order linear equations with variable coefficients.

Our goal is to find a particular solution to the standard form equation

(1)

where and the coefficient functions p1, . . . , pn, as well as
g, are continuous on . The method to be described requires that we already know a funda-
mental solution set for the corresponding homogeneous equation

(2)

A general solution to (2) is then

(3)

where C1, . . . , Cn are arbitrary constants. In the method of variation of parameters, we assume
there exists a particular solution to (1) of the form

(4)

and try to determine the functions 
There are n unknown functions, so we will need n conditions (equations) to determine

them. These conditions are obtained as follows. Differentiating yp in (4) gives

(5)

To prevent second derivatives of the unknowns from entering the formula for we
impose the condition

y¿1y1 # p # y¿nyn ! 0  .

y–p,y1, . . . , yn

y¿p ! Ay1y¿1 # p # yny¿nB # Ay¿1y1 # p # y¿nynB  .
y1, . . . , yn.

ypAx B ! Y1 Ax By1 Ax B " p " Yn Ax Byn Ax B
yh AxB ! C1y1 AxB # p # Cnyn AxB  ,
L 3 y 4 AxB ! 0  .

Ey1, . . . , ynFAa, bBL 3 y 4 J y AnB # p1y
An"1B # p # pny

L 3 y 4 AxB ! g AxB  ,
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In Problems 1–6, use the method of variation of parame-
ters to determine a particular solution to the given
equation.

1.
2.
3.

4.

5.

6.

7. Find a general solution to the Cauchy–Euler equa-
tion

given that is a fundamental solution set
for the corresponding homogeneous equation.

8. Find a general solution to the Cauchy–Euler equation

given that is a fundamental solution
set for the corresponding homogeneous equation.

9. Given that is a fundamental solution
set for the homogeneous equation corresponding to
the equation

determine a formula involving integrals for a partic-
ular solution.

10. Given that is a fundamental solution set
for the homogeneous equation corresponding to the
equation

determine a formula involving integrals for a partic-
ular solution.

11. Find a general solution to the Cauchy–Euler equation

12. Derive the system (7) in the special case when 
n ! 3. [Hint: To determine the last equation, require
that and use the fact that , and 
satisfy the corresponding homogeneous equation.]

13. Show that

Wk AxB ! A"1B An"kBW 3 y1, . . . , yk"1, yk#1, . . . , yn 4 AxB  .
y3y1, y2L 3 yp 4 ! g

x3y‡ " 3xy¿ # 3y ! x4
 cos x  ,    x 7 0

x 7 0  ,
x3y‡ " x2y– " 4 xy¿ # 4 y ! g AxB  ,    

Ex, x"1, x 4 F
y‡ " 2y– " y¿ # 2y ! g AxB  ,

Eex, e"x, e2xFEx, x ln x, x3Fx 7 0  ,
x3y‡ " 2x2y– # 3xy¿ " 3y ! x2  ,    

Ex, x2, x3Fx 7 0  ,
x3y‡ " 3x2y– # 6xy¿ " 6y ! x"1  ,    

y‡ # y¿ ! sec u tan u  ,    0 6 u 6 p /2
y‡ # y¿ ! tan x  ,    0 6 x 6 p /2
y‡ " 3y– # 3y¿ " y ! ex

z‡ # 3z– " 4 z ! e2x

y‡ " 2y– # y¿ ! x
y‡ " 3y– # 4 y ! e2x
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14. Deflection of a Beam Under Axial Force. A
uniform beam under a load and subject to a constant
axial force is governed by the differential equation

where is the deflection of the beam, L is the length
of the beam, is proportional to the axial force, and

is proportional to the load (see Figure 6.2).
(a) Show that a general solution can be written in

the form

(b) Show that the general solution in part (a) can be
rewritten in the form

where

(c) Let First compute the general solution
using the formula in part (a) and then using the
formula in part (b). Compare these two general
solutions with the general solution

which one would obtain using the method of
undetermined coefficients.

(d) What are some advantages of the formula in
part (b)?

y AxB ! B1 # B2 x # B3ekx # B4 e"kx "
1

2k2 x2  ,

q AxB ! 1.

G As, xB J
s " x

k2 "
sin h 3 k As " xB 4

k3   .

# "
x

0
 q AsBG As, xB  ds  ,

 y AxB ! c1 # c2x # c3ekx # c4 e"kx

#
ekx

2k3"q AxBe"kx
 dx "

e"kx

2k3 "q AxBekx
 dx  .

#
1
k2 " q AxB  x dx "

x
k2 " q AxB  dx

 y AxB ! C1 # C2x # C3ekx # C4 e"kx

q AxB k2
y AxBy A4 B AxB " k2y– AxB ! q AxB  ,    0 6 x 6 L,

x 
L 

y ( x ) 

Load 

Axial force

Figure 6.2 Deformation of a beam under axial force and load

6.4 EXERCISES



where is some particular solution to (1) and is a general solution to the corresponding
homogeneous equation. Two useful techniques for finding particular solutions are the annihi-
lator method (undetermined coefficients) and the method of variation of parameters.

The annihilator method applies to equations of the form

(6)

where L is a linear differential operator with constant coefficients and the forcing term is a
polynomial, exponential, sine, or cosine, or a linear combination of products of these. Such a func-
tion is annihilated (mapped to zero) by a linear differential operator A that also has constant
coefficients. Every solution to the nonhomogeneous equation (6) is then a solution to the homoge-
neous equation and, by comparing the solutions of the latter equation with a general
solution to we can obtain the form of a particular solution to (6). These forms have
previously been studied in Section 4.4 for the method of undetermined coefficients.

The method of variation of parameters is more general in that it applies to arbitrary equa-
tions of the form (1). The idea is, starting with a fundamental solution set for (2),
to determine functions such that

(7)

satisfies (1). This method leads to the formula

(8)

where

Wk AxB ! A"1Bn"kW 3 y1, . . . , yk"1, yk#1, . . . , yn4 AxB  ,    k ! 1, . . . , n  .

ypAxB ! a
n

k!1
 yk AxB ! g AxBWk AxB

W 3 y1, . . . , yn4 AxB dx  ,

ypAxB ! y1 AxBy1 AxB # p # ynAxBynAxBy1, . . . , yn

Ey1, . . . , ynF
L 3 y 4 ! 0,

AL 3 y 4 ! 0,

g AxB g AxBL 3 y 4 ! g AxB  ,
yhyp

Review Problems 343

REVIEW PROBLEMS

1. Determine the intervals for which Theorem 1 on
page 318 guarantees the existence of a solution in
that interval.
(a)
(b)

2. Determine whether the given functions are linearly
dependent or linearly independent on the interval

(a)
(b)
(c)

3. Show that the set of functions , , ,
is linearly independent on 

4. Find a general solution for the given differential
equation.

A"q, q B.x3 sin xF x2 sin xx sin xEsin x

E2e2x " ex, e2x # 1, e2x " 3, ex # 1FEexsin 2x, xexsin 2x, ex, xexFEe2x, x2e2x, e"xFA0, q B.
x2 # 3

Ax2 " 1By‡ # Asin xBy– # 2x # 4 y¿ # exy !

y A4B " Aln xBy– # xy¿ # 2y ! cos 3x

(a)
(b)
(c)
(d)

5. Find a general solution for the homogeneous linear
differential equation with constant coefficients
whose auxiliary equation is
(a) .
(b) .

6. Given that is a particular solution to

on find a general solution.

7. Find a differential operator that annihilates the given
function.
(a) (b)
(c) (d)
(e) x2 " 2x # xe"x # sin 2x " cos 3x

x2e"2x cos 3xx sin 2x
e3x # x " 1x2 " 2x # 5

A0, q B,y A4B # y ! A16x4 " 11B sin Ax2B " 48x2cos Ax2Byp ! sin Ax2Br4 Ar " 1B2 Ar2 # 2r # 4B2 ! 0

Ar # 5B2 Ar " 2B3 Ar2 # 1B2 ! 0

y‡ " 2y– " y¿ # 2y ! ex # x
y A5B " y A4B # 2y‡ " 2y– # y¿ " y ! 0
y‡ # 3y– " 5y¿ # y ! 0
y A4B # 2y‡ " 4y– " 2y¿ # 3y ! 0



8. Use the annihilator method to determine the form of
a particular solution for the given equation.
(a)
(b)
(c)
(d)

9. Find a general solution to the Cauchy–Euler equation

x 7 0  ,
x3y‡ " 2x2y– " 5xy¿ # 5y ! x"2  ,    

y‡ " y– # 2y ! x sin x
y A4B # 6y– # 9y ! x2 " sin 3x
y‡ # 2y– " 19y¿ " 20y ! xe"x
y– # 6y¿ # 5y ! e"x # x2 " 1
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given that is a fundamental solution set
to the corresponding homogeneous equation.

10. Find a general solution to the given Cauchy–Euler
equation.
(a)
(b) x3y‡ # 2x2y– # 2xy¿ # 4y ! 0  ,    x 7 0

4x3y‡ # 8x2y– " xy¿ # y ! 0  ,    x 7 0

Ex, x5, x"1F

TECHNICAL WRITING EXERCISES

1. Describe the differences and similarities between
second-order and higher-order linear differential
equations. Include in your comparisons both theoret-
ical results and the methods of solution. For exam-
ple, what complications arise in solving higher-order
equations that are not present for the second-order
case?

2. Explain the relationship between the method of
undetermined coefficients and the annihilator
method. What difficulties would you encounter in

applying the annihilator method if the linear equa-
tion did not have constant coefficients?

3. For students with a background in linear algebra:
Compare the theory for kth-order linear differential
equations with that for systems of nlinear equations
in n unknowns whose coefficient matrix has rank

Use the terminology from linear algebra; for
example, subspaces, basis, dimension, linear trans-
formation, and kernel. Discuss both homogeneous
and nonhomogeneous equations.

n" k.


