
In Problems 1–12, use Definition 1 to determine the
Laplace transform of the given function.

1. 2.
3. 4.
5. 6. cos bt, b a constant
7. 8.

9.

10.

11.

12.

In Problems 13–20, use the Laplace transform table and
the linearity of the Laplace transform to determine the
following transforms.

13.
14.
15.
16.
17.
18.
19.
20.

In Problems 21–28, determine whether is continu-
ous, piecewise continuous, or neither on and
sketch the graph of 

21.

22.

23.

24.

25. f AtB !
t2 " t " 20

t2 # 7t # 10

f AtB !
t2 " 3t # 2

t2 " 4

f AtB ! !1  , 0 $ t 6 1  ,

t " 1  , 1 6 t 6 3  ,

t2 " 4  , 3 6 t $ 10

f AtB ! e0  , 0 $ t 6 2  ,

t  , 2 $ t $ 10

f AtB ! e 1  , 0 $ t $ 1  ,At " 2B2  , 1 6 t $ 10

f AtB. 3 0, 10 4f AtB
!Ee"2t cos23t " t2e"2tF!Et4e5t " et cos27tF!Et4 " t2 " t # sin22 tF!Ee3t sin 6t " t3 # etF!Et2 " 3t " 2e"t sin 3tF!Et3 " tet # e4t cos tF!E5 " e2t # 6t2F!E6e"3t " t2 # 2t " 8F

f AtB ! e e2t  , 0 6 t 6 3  ,

1  , 3 6 t

f AtB ! e sin t  , 0 6 t 6 p  ,

0  , p 6 t

f AtB ! e1 " t  , 0 6 t 6 1  ,

0  , 1 6 t

f AtB ! e0  , 0 6 t 6 2  ,

t  , 2 6 t

e"t sin 2te2t cos 3t
cos 2t

te3te6t

t2t

360 Chapter 7 Laplace Transforms

26.

27.

28.

29. Which of the following functions are of exponential
order?
(a) (b)
(c) (d)

(e) (f)

(g) (h)
(i) ( j)

30. For the transforms in Table 7.1, what can be
said about lim ?

31. Thanks to Euler’s formula (page 168) and the alge-
braic properties of complex numbers, several of the
entries of Table 7.1 can be derived from a single
formula; namely,

(6)

(a) By computing the integral in the definition of the
Laplace transform on page 353 with !

show that

(b) Deduce (6) from part (a) by showing that

(c) By equating the real and imaginary parts in
formula (6), deduce the last two entries in 
Table 7.1.

32. Prove that for fixed s % 0, we have

33. Prove that if f is piecewise continuous on and
g is continuous on , then the product fg is
piecewise continuous on .3 a, b 43 a, b 4 3 a, b 4lim

NSq
e"sN As sin bN # b cos bNB ! 0  .

1
s " Aa # ibB !

s " a # ibAs " aB2 # b2  .

! U e Aa#ibBt V AsB !
1

s " Aa # ibB   ,    s 7 a.

e Aa#ibBt, f AtB
! U e Aa# ibBt V AsB !

s " a # ibAs " aB2 # b2  ,    s 7 a.

sSq F AsBF AsB sin Aet2B # esin texpEt2/ At # 1B F 3 " et2 # cos 4tsin At2B # t4e6t

1
t2 # 1

cosh At2B t ln tet3

100e49 tt3 sin t

f AtB ! ! sin t

t
  , t & 0  ,

1  , t ! 0

f AtB ! !1/t  , 0 6 t 6 1  ,

1  , 1 $ t $ 2  ,

1 " t  , 2 6 t $ 10

f AtB !
t

t2 " 1

7.2 EXERCISES



In Problems 1–20, determine the Laplace transform of the
given function using Table 7.1 and the properties of the
transform given in Table 7.2. [Hint: In Problems 12–20,
use an appropriate trigonometric identity.]

1. 2.
3. 4.
5. 6.
7. 8.
9. 10.

11. cosh bt 12. sin 3t cos 3t
13. 14.
15. 16.
17. 18.

19. 20.

21. Given that use the
translation property to compute 

22. Starting with the transform use for-
mula (6) for the derivatives of the Laplace transform
to show that , ,
and, by using induction, that 

.n ! 1, 2, . . . 
!EtnF AsB ! n!/sn"1,

!Et2F AsB ! 2!/s3!EtF AsB ! 1/s2

!E1F AsB ! 1 /s,
!Eeat cos btF.!Ecos btF AsB ! s/ As2 " b2B,m # n

t sin 2t sin 5tcos nt sin mt  ,
m # n
cos nt cos mt  ,sin 2t sin 5t
t sin2 tcos3 t
e7t sin2 tsin2 t

te2t cos 5te$tt sin 2t

A1 " e$tB2At $ 1B4 e$2t sin 2t " e3tt22t2e$t $ t " cos 4t
3t4 $ 2t2 " 1e$t cos 3t " e6t $ 1
3t2 $ e2tt2 " et sin 2t
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TABLE 7.2 Properties of Laplace Transforms

for any constant c .

!Etnf AtB F AsB ! A$1Bn 
dn

dsn  A!E f F AsBB   .! U f AnBV AsB ! sn!E f F AsB $ sn$1f A0B $ sn$2f ¿A0B $ p $ f An$1B A0B  .!E f –F AsB ! s2!E f F AsB $ sf A0B $ f ¿ A0B  .!E f ¿F AsB ! s!E f F AsB $ f A0B  .!Eeatf AtB F AsB ! !E f F As $ aB  .!Ecf F ! c!E f F!E f " gF ! !E f F " !EgF  .
For easy reference, Table 7.2 lists some of the basic properties of the Laplace transform

derived so far.

23. Use Theorem 4 to show how entry 32 follows from
entry 31 in the Laplace transform table on the inside
back cover of the text.

24. Show that in two ways:
(a) Use the translation property for 
(b) Use formula (6) for the derivatives of the

Laplace transform.
25. Use formula (6) to help determine

(a) (b)

26. Let be piecewise continuous on and of
exponential order.
(a) Show that there exist constants K and such that

for all 
(b) By using the definition of the transform and

estimating the integral with the help of part (a),
prove that

27. Let be piecewise continuous on and of
exponential order and assume lim
exists. Show that

! e f AtB
t
f  AsB ! !

q

s
F AuB  du  ,

tS0" 3 f AtB / t 4a

3 0, q Bf AtBlim
sSq

!E f F AsB ! 0  .

t % 0  .0 f AtB 0 & Keat

a

3 0, q Bf AtB !Et2cos btF  .!Et cos btF  .
F AsB.!EeattnF AsB ! n! / As $ aBn"1
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where [Hint: First show that
and then use the result of

Problem 26.]
28. Verify the identity in Problem 27 for the following

functions. (Use the table of Laplace transforms on
the inside back cover.)
(a) (b)

29. The transfer function of a linear system is defined
as the ratio of the Laplace transform of the output
function to the Laplace transform of the input
function when all initial conditions are zero. If a
linear system is governed by the differential equation

use the linearity property of the Laplace transform
and Theorem 5 on the Laplace transform of higher-
order derivatives to determine the transfer function

for this system.
30. Find the transfer function, as defined in Problem 29,

for the linear system governed by

31. Translation in t. Show that for c ' 0, the trans-
lated function

has Laplace transform
!EgF AsB ! e$cs!E f F AsB  .
g AtB ! e 0  , 0 6 t 6 c  ,

f At $ cB  , c 6 t

y– AtB " 5y¿ AtB " 6y AtB ! g AtB  ,    t 7 0  .

H AsB ! Y AsB /G AsB
y– AtB " 6y¿ AtB " 10y AtB ! g AtB  ,    t 7 0  ,

g AtB,y AtB
f AtB ! t3/ 2f AtB ! t5

d
ds !E f AtB / tF AsB ! $F AsBF AsB ! !E f F AsB.
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In Problems 32–35, let be the given function 
translated to the right by c units. Sketch and and
find (See Problem 31.)
32.
33.
34.
35.

36. Use equation (5) to provide another derivation of the
formula ! [Hint: Start with

and use induction.]

37. Initial Value Theorem. Apply the relation

(7)

to argue that for any function whose derivative
is piecewise continuous and of exponential order 
on

38. Verify the initial value theorem (Problem 37) for the
following functions. (Use the table of Laplace trans-
forms on the inside back cover.)
(a) 1 (b) (c) (d) cos t
(e) sin t (f) (g) t cos tt2

e$te t

f A0B ! lim
sSq

s!E f F AsB  .3 0, q B,
f AtB

!E f ¿F AsB ! !
q

0
e$stf ¿AtB  dt ! s!E f F AsB $ f A0B

!E1F AsB ! 1/s
n! /sn"1.!EtnF AsB

c ! p/2f AtB ! sin t  ,
c ! pf AtB ! sin t  ,
c ! 1f AtB ! t  ,
c ! 2f AtB " 1  ,

!Eg AtB F AsB. g AtBf AtB f AtBg AtB

In Section 7.2 we defined the Laplace transform as an integral operator that maps a function
into a function In this section we consider the problem of finding the function 

when we are given the transform That is, we seek an inverse mapping for the Laplace
transform.

To see the usefulness of such an inverse, let’s consider the simple initial value problem

(1)

If we take the transform of both sides of equation (1) and use the linearity property of the
transform, we find

!Ey–F AsB $ Y AsB ! $ 
1
s2  ,

y– $ y ! $t  ;    y A0B ! 0  ,    y¿ A0B ! 1  .

F AsB. f AtBF AsB.f AtB
7.4 INVERSE LAPLACE TRANSFORM



and, hence, With in (11), we obtain

and since the last equation becomes Thus Finally, setting
in (11) and using and gives

Hence, and so that

With this partial fraction expansion in hand, we can immediately determine the inverse
Laplace transform:

◆

In Section 7.7, we discuss a different method (involving convolutions) for computing
inverse transforms that does not require partial fraction decompositions. Moreover, the convo-
lution method is convenient in the case of a rational function with a repeated quadratic factor in
the denominator. Other helpful tools are described in Problems 33–36 and 38–43.

 ! 3et cos 2t " 4et sin 2t # e#t  .

 ! " 4!#1 e 2As # 1B2 " 22 f AtB # !#1 e 1
s " 1

f AtB
 ! 3!#1 e s # 1As # 1B2 " 22 f AtB

 !#1 e 2s2 " 10sAs2 # 2s " 5B As " 1B f AtB ! !#1 e 3 As # 1B " 2 A4BAs # 1B2 " 22 #
1

s " 1
f AtB

2s2 " 10sAs2 # 2s " 5B As " 1B !
3 As # 1B " 2 A4BAs # 1B2 " 22 #

1

s " 1
  .

C ! #1A ! 3, B ! 4,

 A ! 3  .

 0 ! #A " 8 # 5  ,

 0 ! 3A A#1B " 2B 4 A1B " C A5B  ,B ! 4C ! #1s ! 0
B ! 4.12 ! 4B # 4.C ! #1,

2 " 10 ! 3A A0B " 2B 4 A2B " C A4B  ,s ! 1C ! #1.

374 Chapter 7 Laplace Transforms

7.4 EXERCISES

In Problems 1–10, determine the inverse Laplace trans-
form of the given function.

1. 2.

3. 4.

5. 6.

7. 8.

9. 10. s # 1
2s2 " s " 6

3s # 15
2s2 # 4s " 10

1
s5

2s " 16
s2 " 4s " 13

3A2s " 5B31
s2 " 4s " 8

4
s2 " 9

s " 1
s2 " 2s " 10

2
s2 " 4

6As # 1B4
In Problems 11–20, determine the partial fraction expan-
sions for the given rational function.

11. 12.

13.

14.

15. 16.

17. 18. 3s2 " 5s " 3
s4 " s3

3s " 5
s As2 " s # 6B

#5s # 36As " 2B As2 " 9B8s # 2s2 # 14As " 1B As2 # 2s " 5B
#8s2 # 5s " 9As " 1B As2 # 3s " 2B

#2s2 # 3s # 2
s As " 1B2

#s # 7As " 1B As # 2Bs2 # 26s # 47As # 1B As " 2B As " 5B



19. 20.

In Problems 21–30, determine 

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31. Determine the Laplace transform of each of the
following functions:

(a)

(b)

(c)
Which of the preceding functions is the inverse
Laplace transform of ?

32. Determine the Laplace transform of each of the
following functions:

(a)

(b) f2 AtB ! ! et  , t $ 5, 8  ,

6  , t ! 5  ,

0  , t ! 8 .

f1 AtB ! e t  , t ! 1, 2, 3, . . .  ,

et  , t $ 1, 2, 3, . . .  .

1 /s2

f3 AtB ! t  .

f2 AtB ! !5  , t ! 1  ,

2  , t ! 6  ,

t  , t $ 1, 6 .

f1 AtB ! e0  , t ! 2 ,

t  , t $ 2 .

sF AsB # F AsB !
2s " 5

s2 " 2s " 1

sF AsB " 2F AsB !
10s2 " 12s " 14

s2 # 2s " 2

s2F AsB " sF AsB # 6F AsB !
s2 " 4
s2 " s

s2F AsB # 4F AsB !
5

s " 1

F AsB !
7s3 # 2s2 # 3s " 6

s3 As # 2B
F AsB !

7s2 " 23s " 30As # 2B As2 " 2s " 5B
F AsB !

7s2 # 41s " 84As # 1B As2 # 4s " 13B
F AsB !

5s2 " 34s " 53As " 3B2 As " 1B
F AsB !

s " 11As # 1B As " 3B
F AsB !

6s2 # 13s " 2
s As # 1B As # 6B

!#1EFF  .
sAs # 1B As2 # 1B1As # 3B As2 " 2s " 2B
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(c)
Which of the preceding functions is the inverse
Laplace transform of ?

Theorem 6 in Section 7.3 can be expressed in terms of the
inverse Laplace transform as

where . Use this equation in Problems
33–36 to compute 

33. 34.

35. 36.

37. Prove Theorem 7 on the linearity of the inverse
transform. [Hint: Show that the right-hand side of
equation (3) is a continuous function on 
whose Laplace transform is 

38. Residue Computation. Let be a rational
function with deg P % deg Q and suppose is a
nonrepeated linear factor of Prove that the por-
tion of the partial fraction expansion of 
corresponding to is

where A (called the residue) is given by the formula

39. Use the residue computation formula derived in
Problem 38 to determine quickly the partial fraction
expansion for

40. Heaviside’s Expansion Formula.† Let and
be polynomials with the degree of less

than the degree of Let

where the ’s are distinct real numbers. Show that

!#1 e P

Q
f AtB !an

i!1

P AriB
Q¿AriB  erit  .

ri

Q AsB ! As # r1B As # r2B p As # rnB  ,Q AsB. P AsBQ AsB P AsBF AsB !
2s " 1

s As # 1B As " 2B   .

A ! lim
sSr

As " rBP AsB
Q AsB   .

A
s " r  ,

s # r
P AsB /Q AsBQ AsB. s # r

P AsB /Q AsBF1 AsB " F2 AsB. 4 3 0, q B
F AsB ! arctan A1/sBF AsB ! ln as2 " 9

s2 " 1
b

F AsB ! ln as # 4
s # 3

bF AsB ! ln as " 2
s # 5

b
!#1EFF.f ! !#1EFF

!#1 e dnF
dsn f AtB ! A#tBnf AtB  ,

1 / As # 1B
f3 AtB ! et  .

† Historical Footnote: This formula played an important role in the “operational solution” to ordinary differential
equations developed by Oliver Heaviside in the 1890s.



41. Use Heaviside’s expansion formula derived in Prob-
lem 40 to determine the inverse Laplace transform of

42. Complex Residues. Let be a rational
function with deg P % deg Q and suppose

is a nonrepeated quadratic factor of Q.
(That is, are complex conjugate zeros of Q.)
Prove that the portion of the partial fraction expansion
of corresponding to is

A As # aB " bBAs # aB2 " b2   ,

As # aB2 " b2P AsB /Q AsB
a & ib

As # aB2 " b2

P AsB /Q AsB
F AsB !

3s2 # 16s " 5As " 1B As # 3B As # 2B   .
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where the complex residue is given by
the formula

(Thus we can determine B and A by taking the real
and imaginary parts of the limit and dividing them
by

43. Use the residue formulas derived in Problems 38 and
42 to determine the partial fraction expansion for

F AsB !
6s2 " 28As2 # 2s " 5B As " 2B   .

b.B
bB " ibA ! lim

sSa"ib

3 As # aB2 " b2 4P AsB
Q AsB   .

bB " ibA

Our goal is to show how Laplace transforms can be used to solve initial value problems for
linear differential equations. Recall that we have already studied ways of solving such initial
value problems in Chapter 4. These previous methods required that we first find a general
solution of the differential equation and then use the initial conditions to determine the desired
solution. As we will see, the method of Laplace transforms leads to the solution of the initial
value problem without first finding a general solution.

Other advantages to the transform method are worth noting. For example, the technique
can easily handle equations involving forcing functions having jump discontinuities, as illus-
trated in Section 7.1. Further, the method can be used for certain linear differential equations
with variable coefficients, a special class of integral equations, systems of differential equa-
tions, and partial differential equations.

7.5 SOLVING INITIAL VALUE PROBLEMS

Method of Laplace Transforms
To solve an initial value problem:

(a) Take the Laplace transform of both sides of the equation.
(b) Use the properties of the Laplace transform and the initial conditions to obtain an

equation for the Laplace transform of the solution and then solve this equation for
the transform.

(c) Determine the inverse Laplace transform of the solution by looking it up in a table or
by using a suitable method (such as partial fractions) in combination with the table.

In step (a) we are tacitly assuming the solution is piecewise continuous on and of
exponential order. Once we have obtained the inverse Laplace transform in step (c), we can
verify that these tacit assumptions are satisfied.

Solve the initial value problem

(1) y– # 2y¿ " 5y ! #8e#t  ;    y A0B ! 2  ,    y¿ A0B ! 12  .

30, q B
Example 1



small by making k large relative to I, but then the term becomes large, causing the error to oscil-
late more rapidly. (See Figure 7.7.) As with vibrations, the oscillations or oversteering can be con-
trolled by introducing a damping torque proportional to but opposite in sign (see Problem 40).e¿ AtB2k/I
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e(t)

8642

1

0.5
k = 16
I

I

0

−0.5

−1

t

k = 1

Figure 7.7 Error for automatic pilot when and when k/I ! 16k/I ! 1

7.5 EXERCISES

In Problems 1–14, solve the given initial value problem
using the method of Laplace transforms.

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.
y A0B ! 0  ,    y¿ A0B ! 5
y– " 4y ! 4t " 8e"2t  ;
z A1B ! "1  ,    z¿ A1B ! 9
z– # 5z¿ " 6z ! 21et"1  ;
y A0B ! 0  ,    y¿ A0B ! 3
y– # 4y ! 4t2 " 4t # 10  ;
y A0B ! 5  ,    y¿ A0B ! "4
y– " 7y¿ # 10y ! 9 cos t # 7 sin t  ;
y A0B ! 2  ,    y¿ A0B ! 7
y– " 4y¿ # 5y ! 4e3t  ;
w A0B ! 1  ,    w¿ A0B ! "1
w– # w ! t2 # 2  ;
y A0B ! "1  ,    y¿ A0B ! 7
y– # 6y¿ # 5y ! 12et  ;
y A0B ! "1  ,    y¿ A0B ! 6
y– # 6y¿ # 9y ! 0  ;
y A0B ! "2  ,    y¿ A0B ! 5
y– " y¿ " 2y ! 0  ;
y A0B ! 2  ,    y¿A0B ! 4
y– " 2y¿ # 5y ! 0  ;

11.
12.

13.

14.

In Problems 15–24, solve for the Laplace transform
of the solution to the given initial value problem.
15.

16.

17.

18.

19.

20.
21.

y A0B ! 1  ,    y¿ A0B ! 3
y– " 2y¿ # y ! cos t " sin t  ;
y– # 3y ! t3  ;    y A0B ! 0  ,    y¿ A0B ! 0
y A0B ! 1  ,    y¿ A0B ! 1
y– # 5y¿ " y ! et " 1  ;
y A0B ! 1  ,    y¿ A0B ! 3
y– " 2y¿ " y ! e2t " et  ;
y A0B ! 1  ,    y¿ A0B ! 0
y– # y¿ " y ! t3  ;
y A0B ! 0  ,    y¿ A0B ! "1
y– # 6y ! t2 " 1  ;
y A0B ! 0  ,    y¿ A0B ! "1
y– " 3y¿ # 2y ! cos t  ;

y AtB Y AsB,
y– # y ! t  ;    y ApB ! 0  ,    y¿ ApB ! 0
y Ap/2B ! 1  ,    y¿ Ap/2B ! 0
y– " y¿ " 2y ! "8 cos t " 2 sin t  ;
w A"1B ! 3  ;    w¿ A"1B ! 7
w– " 2w¿ # w ! 6t " 2  ;
y– " y ! t " 2  ;    y A2B ! 3  ,    y¿ A2B ! 0



22.

23.
where

24.
where

In Problems 25–28, solve the given third-order initial
value problem for using the method of Laplace
transforms.
25.

26.

27.

28.

In Problems 29–32, use the method of Laplace trans-
forms to find a general solution to the given differential
equation by assuming and where a
and b are arbitrary constants.
29. 30.
31.
32.

33. Use Theorem 6 in Section 7.3 to show that

where Y AsB ! !EyF AsB  .!Et2y¿ AtB F AsB ! sY–AsB # 2Y¿AsB  ,
y– " 5y¿ # 6y ! "6te2t

y– # 2y¿ # 2y ! 5
y– # 6y¿ # 5y ! ty– " 4y¿ # 3y ! 0

y¿ A0B ! b,y A0B ! a

y A0B ! 0  ,    y¿ A0B ! 2  ,    y– A0B ! "4
y‡ # y– # 3y¿ " 5y ! 16e"t  ;
y A0B ! "4  ,    y¿ A0B ! 4  ,    y– A0B ! "2
y‡ # 3y– # 3y¿ # y ! 0  ;
y A0B ! 1  ,    y¿ A0B ! 4  ,    y– A0B ! "2
y‡ # 4y– # y¿ " 6y ! "12  ;
y A0B ! 1  ,    y¿ A0B ! 1  ,    y– A0B ! 3
y‡ " y– # y¿ " y ! 0  ;

y AtB
g AtB ! e 1  , t 6 3  ,

t  , t 7 3

y– " y ! g AtB  ;    y A0B ! 1  ,    y¿ A0B ! 2  ,

g AtB ! e t  , t 6 2  ,

5  , t 7 2

y– # 4y ! g AtB  ;   y A0B ! "1  ;   y¿ A0B ! 0  ,
y A0B ! 2  ,    y¿ A0B ! "1
y– " 6y¿ # 5y ! te t  ;

Section 7.6 Transforms of Discontinuous and Periodic Functions 383

34. Use Theorem 6 in Section 7.3 to show that

where

In Problems 35–38, find solutions to the given initial
value problem.
35.

36.

37.

[Hint:
38.

39. Determine the error for the automatic pilot in
Example 5 if the shaft is initially at rest in the zero
direction and the desired direction is 
where a is a constant.

40. In Example 5 assume that in order to control
oscillations a component of torque proportional to

but opposite in sign, is also fed back to the
steering shaft. Show that equation (17) is now
replaced by

where is a positive constant. Determine the error
for the automatic pilot with mild damping (i.e.,

if the steering shaft is initially at rest in
the zero direction and the desired direction is given
by where a is a constant.

41. In Problem 40 determine the error when the
desired direction is given by where a is a
constant.

g AtB ! at,
e AtBg AtB ! a,

m 6 22IkBe AtB m

Iy– AtB ! "ke AtB " me¿ AtB  ,
e¿ AtB,

g AtB ! a,

e AtBy A0B ! 0  ,    y¿ A0B ! 3
y– # ty¿ " y ! 0  ;

!"1E1 / As2 # 1B2F AtB ! Asin t " t cos tB /2. 4y A0B ! 1  ,    y¿ A0B ! 0
ty– " 2y¿ # ty ! 0  ;
y A0B ! 2  ,    y¿ A0B ! "1
ty– " ty¿ # y ! 2  ;
y A0B ! 0  ,    y¿ A0B ! 0
y– # 3ty¿ " 6y ! 1  ;

Y AsB ! !EyF AsB  .!Et2y– AtB F AsB ! s2Y– AsB # 4sY¿ AsB # 2Y AsB  ,

7.6 TRANSFORMS OF DISCONTINUOUS AND 
PERIODIC FUNCTIONS

In this section we study special functions that often arise when the method of Laplace trans-
forms is applied to physical problems. Of particular interest are methods for handling functions
with jump discontinuities. Jump discontinuities occur naturally in physical problems such as
electric circuits with on/off switches. To handle such behavior, Oliver Heaviside introduced the
following step function.



When t is a positive integer, say then the recursive relation (19) can be repeatedly
applied to obtain

It follows from the definition (18) that so we find

Thus, the gamma function extends the notion of factorial!
As an application of the gamma function, let’s return to the problem of determining the

Laplace transform of an arbitrary power of t. We will verify that the formula

(20)

holds for every constant 
By definition,

Let’s make the substitution Then and we find

Notice that when is a nonnegative integer, then and so formula 
(20) reduces to the familiar formula for !EtnF. ! An " 1B # n!,r # n

#
1

sr" 1 !
q

0
e$ uur

 du #
! Ar " 1B

sr" 1   .

!EtrF AsB # !
q

0
e$ u au

s
b r a1

s
bdu

du # s dt,u # st.

!EtrF AsB # !
q

0
e$ sttr

 dt  .

r 7 $ 1  .

!EtrF AsB !
" Ar # 1B

sr# 1

" An # 1B ! n!  .

! A1B # 1,

# n An $ 1B An $ 2B p 2! A1B  .! An " 1B # n! AnB # n An $ 1B! An $ 1B # p

t # n,
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7.6 EXERCISES

In Problems 1–4, sketch the graph of the given function
and determine its Laplace transform.

1.
2.
3.
4.

In Problems 5–10, express the given function using window
and step functions and compute its Laplace transform.

5. g AtB # "
0  , 0 6 t 6 1  ,

2  , 1 6 t 6 2  ,

1  , 2 6 t 6 3  ,

3  , 3 6 t

tu At $ 1Bt2u At $ 2Bu At $ 1B $ u At $ 4BAt $ 1B2u At $ 1B 6. g AtB # e 0  , 0 6 t 6 2  ,

t " 1  , 2 6 t

g(t)

t

2

1

0
1 2

Figure 7.16 Function in Problem 7

7.
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1

t

g(t)

−1

sin t

Figure 7.17 Function in Problem 8

g (t)

t

1

10 2 3 4

Figure 7.18 Function in Problem 9

t
43

(t − 1)2

21

1

2

3

0

g(t)

Figure 7.19 Function in Problem 10

8.

9.

10.

In Problems 11–18, determine an inverse Laplace trans-
form of the given function.

11. 12.

13. 14.

15. 16.

17. 18.

19. The current in an RLC series circuit is governed
by the initial value problem

I A0B # 10  ,    I¿ A0B # 0  ,
I– AtB " 2I¿ AtB " 2I AtB # g AtB  ;

I AtB
e$ s A3s2 $ s " 2BAs $ 1B As2 " 1Be$ 3s As $ 5BAs " 1B As " 2B

e$ s

s2 " 4
se$ 3s

s2 " 4s " 5

e$ 3s

s2 " 9
e$ 2s $ 3e$ 4s

s " 2

e$ 3s

s2
e$ 2s

s $ 1

where

Determine the current as a function of time t. Sketch
for

20. The current in an LC series circuit is governed
by the initial value problem

where

Determine the current as a function of time t.

In Problems 21–24, determine , where is peri-
odic with the given period. Also graph 
21. and has period 2.
22. and has period 1.

23.

and has period 2.

24.

and has period 2.

In Problems 25–28, determine where the periodic
function is described by its graph.

!E f F,f AtBf AtB # e t  , 0 6 t 6 1  ,

1 $ t  , 1 6 t 6 2  ,

f AtBf AtB # e e$ t  , 0 6 t 6 1  ,

1  , 1 6 t 6 2  ,

f AtBf AtB # et  ,  0 6 t 6 1  ,  
f AtBf AtB # t  ,  0 6 t 6 2  ,  

f AtB. f AtB!E f F
g AtB J e 3 sin t  , 0 % t % 2p  ,

0  , 2p 6 t  .

I¿ A0B # 3  ,I A0B # 1  ,    

I– AtB " 4I AtB # g AtB  ;    

I AtB0 6 t 6 8p.I AtB
g AtB J " 20  , 0 6 t 6 3p  ,

0  , 3p 6 t 6 4p  ,

20  , 4p 6 t  .

2a

f (t)

t
a 3a 4a0

1

Figure 7.20 Square wave

5a2a

f (t)

t
a 3a 4a0

1

Figure 7.21 Sawtooth wave

25.

26.
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2a

f (t)

t
a 3a 4a0

1

Figure 7.22 Triangular wave

f (t)

t
0

1

Figure 7.23 Half-rectified sine wave

27.

28.

In Problems 29–32, solve the given initial value problem
using the method of Laplace transforms. Sketch the graph
of the solution.
29.

30.

31.

32.

In Problems 33–40, solve the given initial value problem
using the method of Laplace transforms.
33.

34.

35.

36.

37.

where

38.

where g AtB # "10  , 0 % t % 10  ,

20  , 10 6 t 6 20  ,

0  , 20 6 t

y¿ A0B # 0  ,y A0B # $ 1  ,    
y– " 2y¿ " 10y # g AtB  ;    

g AtB # e sin t  , 0 % t % 2p  ,

0  , 2p 6 t

y¿ A0B # 3  ,y– " 4y # g AtB  ;    y A0B # 1  ,    
y A0B # 0  ,    y¿ A0B # 1
y– " 5y¿ " 6y # tu At $ 2B  ;z A0B # 2  ,    z¿ A0B # $ 3
z– " 3z¿ " 2z # e$ 3t

 u At $ 2B  ;y A0B # 0  ,    y¿ A0B # 0
y– " 4y¿ " 4y # u At $ pB $ u At $ 2pB  ;y A0B # 1  ,    y¿ A0B # 1
y– " 2y¿ " 2y # u At $ 2pB $ u At $ 4pB  ;
y A0B # 1  ,    y¿ A0B # $ 2
y– " y # 3 sin 2t $ 3 Asin 2tBu At $ 2pB  ;y A0B # 0  ,    y¿ A0B # 1
y– " y # t $ At $ 4Bu At $ 2B  ;w A0B # 1  ,    w¿ A0B # 0
w– " w # u At $ 2B $ u At $ 4B  ;y¿ A0B # 1y A0B # 0  ,    
y– " y # u At $ 3B  ;    

39.

where

40.

where

41. Show that if 
where is fixed, then

(21)

[Hint: Use the fact that

42. The function in (21) can be expressed in a more
convenient form as follows:
(a) Show that for each n # 0, 1, 2, . . . ,

for
[Hint: Use the fact that #

(b) Let Show that when 
& then and

(22)

(c) Use the facts that the first term in (22) is
periodic with period T and the second term is
independent of n to sketch the graph of in
(22) for and 

43. Show that if #
then

44. Use the result of Problem 43 to show that

where is periodic with period and

g AtB J e sin t  , 0 % t % p  ,

0  , p % t % 2p  .

2pg AtB!$ 1 e 1As2 " 1B A1 $ e$ psB f AtB # g AtB  ,
# 3 sin B At $ 3TB 4u At $ 3TB # p   .
# 3 sin B At $ 2TB 4u At $ 2TBg AtB ! sin Bt # 3 sin B At $ TB 4u At $ TB

b 3 As2 " b2B A1 $ e$ TsB 4 $ 1,!EgF AsB T # 2.a # 1
g AtB

g AtB !
e$AY

eAT $ 1
$

e$At

eAT $ 1
  .

$ T 6 y 6 0t 6 An " 1BT,nT
y # t $ An " 1BT.

Axn" 1 $ 1B / Ax $ 1B. 4 1 " x " x2 " p " xn

  nT 6 t 6 An " 1BT.

g AtB # e$ at ce An" 1BaT $ 1
eaT $ 1

d
g AtB1 " x " x2 " p # 1 / A1 $ xB. 4# e$AAt$ 3TBu At $ 3TB # p   .

# e$AAt$ 2TBu At $ 2TBg AtB ! e$ at # e$AAt$ TBu At $ TBT 7 0
!EgF AsB # 3 As " aB A1 $ e$ TsB 4 $ 1,

g AtB # e e$ t  , 0 % t 6 3  ,

1  , 3 6 t

y¿ A0B # $ 1  ,y A0B # 2  ,    
y– " 3y¿ " 2y # g AtB  ;    

g AtB # "0  , 0 % t 6 1  ,

t  , 1 6 t 6 5  ,

1  , 5 6 t

y¿ A0B # 2  ,y A0B # 0  ,    
y– " 5y¿ " 6y # g AtB  ;    
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In Problems 45 and 46, use the method of Laplace trans-
forms and the results of Problems 41 and 42 to solve the
initial value problem.

where is the periodic function defined in the stated
problem.
45. Problem 22 46. Problem 25 with 

In Problems 47–50, find a Taylor series for about
Assuming the Laplace transform of can be

computed term by term, find an expansion for in
powers of . If possible, sum the series.
47. 48.

49. 50.

51. Using the recursive relation (19) and the fact that
determine

(a) (b)
52. Use the recursive relation (19) and the fact that

to show that

where n is a positive integer.

53. Verify (15) in Theorem 9 for the function
taking the period as Repeat, taking

the period as 

54. By replacing s by in the Maclaurin series expan-
sion for arctan s, show that

55. Find an expansion for in powers of . Use
the expansion for to obtain an expansion for

in terms of Assuming the
inverse Laplace transform can be computed term by
term, show that

[Hint: Use the result of Problem 52.]

56. Use the procedure discussed in Problem 55 to show
that

!$ 1Es$ 3/2e$ 1/sF AtB #
11p 

 sin 21t  .

!$ 1Es$ 1/2e$ 1/sF AtB #
11pt

 cos 21t  .

1 /sn" 1/2.s$ 1/2e$ 1/s
e$ 1/s

1 /se$ 1/s

arctan 
1
s

#
1
s

$
1

3s3 "
1

5s5 $
1

7s7 " p   .

1 /s
4p.

2p.ƒ AtB # sin t,

!$ 1 U s$ An" 1/2B V AtB #
2ntn$ 1/2

1 # 3 # 5 p A2n $ 1B1p  ,

! A1 /2B # 1p !Et7/2F .!Et$ 1/2F .
! A1 /2B # 1p,

f AtB # e$ t2
f AtB #

1 $ cos t
t

f AtB # sin tf AtB # et

1 /s
!E f F AsBf AtBt # 0.
f AtB

a # 1

f AtBy A0B # 0  ,    y¿ A0B # 0  ,
y– " 3y¿ " 2y # f AtB  ;    

57. Find an expansion for ln in powers of
. Assuming the inverse Laplace transform can be

computed term by term, show that

58. The unit triangular pulse is defined by

(a) Sketch the graph of . Why is it so named?
Why is its symbol appropriate?

(b) Show that .

(c) Find the Laplace transform of .

59. The mixing tank in Figure 7.24 initially holds 500 L
of a brine solution with a salt concentration of 
0.2 kg/L. For the first 10 min of operation, valve A is
open, adding 12 L/min of brine containing a 
0.4 kg/L salt concentration. After 10 min, valve B is
switched in, adding a 0.6 kg/L concentration at 
12 L/min. The exit valve C removes 12 L/min,
thereby keeping the volume constant. Find the con-
centration of salt in the tank as a function of time.

¶ AtB¶ AtB #!
t

$ q
2Eß0,1/2 AtB $ ß1/2,1 AtB Fdt
¶ AtB

¶ AtB J " 0  , t 6 0  ,
2t  , 0 6 t 6 1 /2  ,
2 $ 2t  , 1 /2 6 t 6 1  ,
0  , t 7

1  .

¶ AtB
!$ 1 e ln a1 "

1
s2b f AtB #

2
t

 A1 $ cos tB  .
1 /s

3 1 " A1 /s2B 4

C

A

12 L/min
0.4 kg/L

12 L/min
0.6 kg/L

B

Figure 7.24 Mixing tank

60. Suppose in Problem 59 valve B is initially opened
for 10 min and then valve A is switched in for 10
min. Finally, valve B is switched back in. Find the
concentration of salt in the tank as a function of time.

61. Suppose valve C removes only 6 L/min in Prob-
lem 59. Can Laplace transforms be used to solve
the problem? Discuss.



The inverse Laplace transform of is the impulse response function

To solve the initial value problem, we need the solution to the corresponding homoge-
neous problem. The auxiliary equation for the homogeneous equation is 
which has roots Thus a general solution is Choos-
ing and so that the initial conditions in (21) are satisfied, we obtain 

Hence, a formula for the solution to the initial value problem (21) is

◆Ah * gB AtB ! yk AtB "
1
2 !

t

0
e#At#yB sin 32 At # yB 4g AyBdy ! 2e#t cos 2t  .

yk AtB " 2e#t cos 2t.C2C1

C1e
#t cos 2t ! C2e

#t sin 2t.r " #1 $ 2i.
r 2 ! 2r ! 5 " 0,

"
1
2

e#t sin 2t  .

h AtB " !#1EHF AtB "
1
2

 !#1 e 2As ! 1B2 ! 22 f AtB
H AsB
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7.7 EXERCISES

In Problems 1–4, use the convolution theorem to obtain a
formula for the solution to the given initial value prob-
lem, where is piecewise continuous on and of
exponential order.

1.

2.
3.

4.

In Problems 5–12, use the convolution theorem to find
the inverse Laplace transform of the given function.

5. 6.

7. 8.

9. 10.

11.

12.

13. Find the Laplace transform of

f AtB J !
t

0
At # yBe3ydy .

s ! 1As2 ! 1B2
cHint:

s
s # 1

" 1 !
1

s # 1
  . dsAs # 1B As ! 2B

1
s3 As2 ! 1BsAs2 ! 1B2

1As2 ! 4B214As ! 2B As # 5B
1As ! 1B As ! 2B1

s As2 ! 1B

y¿ A0B " 1y– ! y " g AtB  ;    y A0B " 0  ,    
y¿ A0B " 1y A0B " 1  ,    

y– ! 4y¿ ! 5y " g AtB  ;    
 y¿ A0B " 0y– ! 9 y " g AtB  ;    y A0B " 1  ,    

y¿ A0B " 1y A0B " #1  ,    
y– # 2y¿ ! y " g AtB  ;    

3 0, q Bg AtB
14. Find the Laplace transform of

In Problems 15–22, solve the given integral equation or
integro-differential equation for 

15.

16.

17.

18.

19.

20.

21.

22.

In Problems 23–28, a linear system is governed by the
given initial value problem. Find the transfer function

y¿ AtB # 2 !
t

0
et#yy AyB  dy " t  ,    y A0B " 2

y A0B " 1

y¿ AtB ! y AtB # !
t

0
y AyBsin At # yB  dy " #sin t  ,

y¿ AtB ! !
t

0
At # yBy AyB  dy " t  ,    y A0B " 0

y AtB ! !
t

0
At # yB2y AyB  dy " t3 ! 3

y AtB ! !
t

0
At # yBy AyB  dy " t2

y AtB ! !
t

0
At # yBy AyB  dy " 1

y AtB ! !
t

0
et#yy AyB  dy " sin t

y AtB ! 3 !
t

0
y AyBsin At # yB  dy " t

y AtB.
f AtB J !

t

0
ey sin At # yB dy .



for the system and the impulse response function
and give a formula for the solution to the initial

value problem.
23.

24.
25.

26.

27.

28.

In Problems 29 and 30, the current in an RLC
circuit with voltage source is governed by the
initial value problem

where (see Figure 7.25). For the given
constants R, L, C, a, and b, find a formula for the solu-
tion in terms of e AtB  .I AtB

e AtB " E¿ AtB I¿ A0B " b  ,I A0B " a  ,    

LI– AtB ! RI¿ AtB !
1
C

 I AtB " e AtB  ,  

E AtB I AtBy¿ A0B " 1y A0B " 0  ,    
y– # 4y¿ ! 5y " g AtB  ;    

y¿ A0B " 2y A0B " 0  ,    
y– # 2y¿ ! 5y " g AtB  ;    

y¿ A0B " 8y A0B " 0  ,    
y– ! 2y¿ # 15y " g AtB  ;    

y¿ A0B " 8y A0B " 1  ,    
y– # y¿ # 6y " g AtB  ;    

y¿ A0B " 0y A0B " 2  ,    y– # 9 y " g AtB  ;    
y¿ A0B " #3y A0B " 2  ,    

y– ! 9 y " g AtB  ;    

h AtBH AsB
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29. Ω, H, F, A,
A/sec.

30. Ω, H, F, A,
A/sec.

31. Use the convolution theorem and Laplace transforms
to compute 

32. Use the convolution theorem and Laplace transforms
to compute 

33. Prove property (5) in Theorem 10.

34. Prove property (6) in Theorem 10.

35. Use the convolution theorem to show that

where 

36. Using Theorem 5 in Section 7.3 and the convolution
theorem, show that

where 

37. Prove directly that if is the impulse response func-
tion characterized by equation (16), then for any con-
tinuous we have "
[Hint: Use Leibniz’s rule, described in Group Project E
of Chapter 4.]

Ah * gB ¿ A0B " 0.Ah * gB A0Bg AtB,
h AtBF AsB " !E f F AsB.
 " t !

t

0
 f AyB dy # !

t

0
y f AyB dy  ,

 !
t

0
 !
y

0
 f AzB dz dy " !#1 e F AsB

s2 f AtB
F AsB " !E f F AsB.

!#1 e F AsB
s
f AtB " !

t

0
 f AyB  dy  ,

1 * t * t2.

1 * 1 * 1.

b " #8
a " 2C " 1 /410L " 10R " 80

b " 8
a " #1C " 0.005L " 5R " 20

E 

Resistance R 

Voltage
source

Capacitance C 

Inductance L 

Figure 7.25 Schematic representation of an RLC series circuit

7.8 IMPULSES AND THE DIRAC DELTA FUNCTION
In mechanical systems, electrical circuits, bending of beams, and other applications, one
encounters functions that have a very large value over a very short interval. For example, the
strike of a hammer exerts a relatively large force over a relatively short time, and a heavy
weight concentrated at a spot on a suspended beam exerts a large force over a very small
section of the beam. To deal with violent forces of short duration, physicists and engineers use
the delta function introduced by Paul A. M. Dirac. Relaxing our standards of rigor for the
moment, we present the following somewhat informal definition.



where is the Laplace transform of the solution to (12) with zero initial conditions and 
is the Laplace transform of It is important to note that and hence does not
depend on the choice of the function in (12) [see equation (15) in Section 7.7]. However, it
is useful to think of the impulse response function as the solution of the symbolic initial value
problem

(13)

Indeed, with we have and hence Consequently 
So we see that the function is the response to the impulse for a mechanical system
governed by the symbolic initial value problem (13).

d AtBh AtB h AtB ! y AtB.H AsB ! Y AsB.G AsB ! 1,g AtB ! d AtB,ay! " by# " cy $ D AtB  ;    y A0B $ 0  ,    y# A0B $ 0  .

g AtB h AtB,H AsB,g AtB. G AsBY AsB
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7.8 EXERCISES

In Problems 1–6, evaluate the given integral.

1.

2.

3.

4.

5.

6.

In Problems 7–12, determine the Laplace transform of
the given generalized function.

7. 8.
9. 10.

11. 12.

In Problems 13–20, solve the given symbolic initial value
problem.
13.

14.

15.
y A0B ! 2  ,    y¿ A0B ! "2
y– # 2y¿ " 3y ! d At " 1B " d At " 2B  ;y A0B ! 1  ,    y¿ A0B ! 1
y– # 2y¿ # 2y ! d At " pB  ;w A0B ! 0  ,    w¿ A0B ! 0
w– # w ! d At " pB  ;

etd At " 3Bd At " pBsin t
t3d At " 3Btd At " 1B 3d At " 1Bd At " 1B " d At " 3B

!
1

"1
Acos 2tBd AtB  dt

!
q

0
e"2td At " 1B  dt

!
q

"q
e"2td At # 1B dt

!
q

"q
Asin 3tBd at "

p

2
bdt

!
q

"q
e3td AtB dt

!
q

"q
At2 " 1Bd AtB dt 

16.

17.

18.

19.

20.

In Problems 21–24, solve the given symbolic initial value
problem and sketch a graph of the solution.
21.

22.

23.

24.

In Problems 25–28, find the impulse response function
by using the fact that is the solution to the sym-

bolic initial value problem with and zero ini-
tial conditions.
25.
26.
27. 28. y– " y ! g AtBy– " 2y¿ # 5y ! g AtBy– " 6y¿ # 13y ! g AtBy– # 4y¿ # 8y ! g AtB

g AtB ! d AtBh AtBh AtB
y A0B ! 0  ,    y¿ A0B ! 1
y– # y ! d At " pB " d At " 2pB  ;y A0B ! 0  ,    y¿ A0B ! 1
y– # y ! "d At " pB # d At " 2pB  ;y¿ A0B ! 1y A0B ! 0  ,    
y– # y ! d At " p/2B  ;    

y¿ A0B ! 1y A0B ! 0  ,    
y– # y ! d At " 2pB  ;    

y A0B ! 2  ,    y¿ A0B ! "5
y– # 5y¿ # 6y ! e"td At " 2B  ;w A0B ! 0  ,    w¿ A0B ! 4
w– # 6w¿ # 5w ! etd At " 1B  ;y¿ A0B ! 3y A0B ! 0  ,    
y– " y¿ " 2y ! 3d At " 1B # et  ; 

y¿ A0B ! 2y A0B ! 0  ,    
y– " y ! 4d At " 2B # t2  ;    
y A0B ! 2  ,    y¿ A0B ! 2
y– " 2y¿ " 3y ! 2d At " 1B " d At " 3B  ;



29. A mass attached to a spring is released from rest 1 m
below the equilibrium position for the mass–spring
system and begins to vibrate. After sec, the
mass is struck by a hammer exerting an impulse on
the mass. The system is governed by the symbolic
initial value problem

where denotes the displacement from equilib-
rium at time t. What happens to the mass after it is
struck?

30. You have probably heard that soldiers are told not to
march in cadence when crossing a bridge. By solv-
ing the symbolic initial value problem

explain why soldiers are so instructed. [Hint: See
Section 4.10.]

31. A linear system is said to be stable if its impulse
response function remains bounded as 
If the linear system is governed by

where b and c are not both zero, show that the system
is stable if and only if the real parts of the roots to

are less than or equal to zero.
32. A linear system is said to be asymptotically stable

if its impulse response function satisfies as
If the linear system is governed by

show that the system is asymptotically stable if and
only if the real parts of the roots to

are strictly less than zero.
33. The Dirac delta function may also be characterized

by the properties

and !
q

"q
d AtB  dt ! 1  .

d AtB ! e 0  , t $ 0  ,

“infinite,” t ! 0  ,

ar 2 # br # c ! 0

ay– # by¿ # cy ! g AtB  ,t S #q.
h AtB S 0

ar 2 # br # c ! 0

ay– # by¿ # cy ! g AtB  ,
t S #q.h AtB

y¿ A0B ! 0  ,y A0B ! 0  ,    

y– # y ! a
q

k!1
d At " 2kpB  ;  

x AtB
dx
dt
A0B ! 0  ,x A0B ! 1 ,

d2x
dt2 # 9x ! "3d at "

p

2
b

p /2

Section 7.8 Impulses and the Dirac Delta Function 411

Formally using the mean value theorem for definite
integrals, verify that if is continuous, then the
above properties imply

34. Formally using integration by parts, show that

Also show that, in general,

35. Figure 7.29 shows a beam of length that is
imbedded in a support on the left side and free on the
right. The vertical deflection of the beam a distance x
from the support is denoted by If the beam has
a concentrated load L acting on it in the center of the
beam, then the deflection must satisfy the symbolic
boundary value problem

where E, the modulus of elasticity, and I, the
moment of inertia, are constants. Find a formula for
the displacement in terms of the constants

and I. [Hint: Let and 
First solve the fourth-order symbolic initial value
problem and then use the conditions 

to determine A and B.]y‡ A2lB ! 0
y– A2lB !

y‡ A0B ! B.y– A0B ! Al, L, E,
y AxB

y A0B ! y¿ A0B ! y– A2lB ! y‡ A2lB ! 0  ,
EIy A4B AxB ! Ld Ax " lB  ;

y AxB.
2l

!
q

"q
f AtBdAnB AtB  dt ! A"1Bnf AnB A0B  .

!
q

"q
f AtBd¿ AtB  dt ! "f ¿ A0B  .

!
q

"q
f AtBd AtB  dt ! f A0B  .

f AtB

Imbedded
in support

L

2

y(x)

x
Free

Figure 7.29 Beam imbedded in a support 
under a concentrated load at x ! l



To compute the inverse transform, we first write in the partial fraction form

Hence, from the Laplace transform table on the inside back cover, we find that

(4)

To determine we could solve system (3) for and then compute its inverse Laplace
transform. However, it is easier just to solve the first equation in system (1) for in terms of

Thus,

Substituting from equation (4), we find that

(5)

The solution to the initial value problem (1) consists of the pair of functions given by
equations (4) and (5). ◆

x AtB, y AtBy AtB ! "6e"4t # e2t " 2t  .

x AtB
y AtB !

1
2

 x¿ AtB " 2t  .

x AtB. y AtBY AsBy AtB,x AtB ! 3e"4t # e2t  .

X AsB !
3

s # 4
#

1
s " 2

  .

X AsB
Section 7.9 Solving Linear Systems with Laplace Transforms 413

7.9 EXERCISES

In Problems 1–19, use the method of Laplace transforms
to solve the given initial value problem. Here etc.,
denotes differentiation with respect to t; so does the sym-
bol D.

1.

2.

3.

4.

5.

6.

7.

8.
 4x # D 3 y 4 ! 3  ;    y A0B ! 4

D 3 x 4 # y ! 0  ;    x A0B ! 7 /4  ,

x " AD " 1B 3 y 4 ! 5e"3t ;    y A0B ! 4

AD " 4B 3 x 4 # 6y ! 9e"3t ;    x A0B ! "9  ,

"x # y¿ " y ! 0  ;    y A0B ! "5 /2
x¿ " x " y ! 1  ;    x A0B ! 0  ,

y¿ ! x # 2 cos t  ;    y A0B ! 0
x¿ ! y # sin t  ;    x A0B ! 2  ,

4x " y¿ " y ! cos t  ;    y A0B ! 0
x¿ " 3x # 2y ! sin t  ;    x A0B ! 0  ,

z¿ " w¿ ! z " w  ;    w A0B ! 0
z¿ # w¿ ! z " w  ;    z A0B ! 1  ,

y¿ ! 2x # 4y  ;    y A0B ! 0
x¿ ! x " y  ;    x A0B ! "1  ,

y¿ ! 3y " 2x  ;    y A0B ! 1
x¿ ! 3x " 2y  ;    x A0B ! 1  ,

x¿, y¿,
9.

10.

11.

12.

13.

14.

15.

16.

17.
x– " x¿ " 2y ! "et"2 ;  x¿ A2B ! 1 , y A2B ! 1
x¿ # x " y¿ ! 2 At " 2Bet"2 ;    x A2B ! 0 ,

2x # y¿ # y ! sin t # 3 cos t  ;  y ApB ! 3

x¿ " 2x # y¿ ! " Acos t # 4 sin tB  ;  x ApB ! 0  ,

x¿ # x " y¿ ! t2 # 2t " 1  ;    y A1B ! 0

x¿ " 2y ! 2  ;      x A1B ! 1  ,

y¿ A0B ! 0

y– ! x # 1 " u At " 1B  ;    y A0B ! 0  ,

x¿ A0B ! 0  ,x– ! y # u At " 1B  ;  x A0B ! 1  ,  

x # y¿ ! 0  ;    y A0B ! 1

x¿ " y¿ ! Asin tBu At " pB  ;    x A0B ! 1  ,

 2x¿ # y– ! u At " 3B  ;    y¿ A0B ! "1

x¿ # y ! x  ;    x A0B ! 0  ,    y A0B ! 1  ,

x # y¿ ! 0  ;    y A0B ! 0

x¿ # y ! 1 " u At " 2B  ;    x A0B ! 0  ,

y¿ A0B ! "1x # y– ! "1  ;    y A0B ! 1  ,    
x¿ A0B ! 1  ,x– # y ! 1  ;    x A0B ! 1  ,    

"3x– # 2y– ! 3x " 4y  ; y A0B ! 4  , y¿ A0B ! "9
x– # 2y¿ ! "x  ;   x A0B ! 2  ,   x¿ A0B ! "7  ,



The use of the Laplace transform helps to simplify the process of solving initial value problems
for certain differential and integral equations, especially when a forcing function with jump
discontinuities is involved. The Laplace transform of a function is defined by

for all values of s for which the improper integral exists. If is piecewise continuous on
and of exponential order [that is, grows no faster than a constant times as

], then exists for all 
The Laplace transform can be interpreted as an integral operator that maps a function 

to a function The transforms of commonly occurring functions appear in Table 7.1, page 359,F AsB. f AtBs 7 a.!E f F AsBt S q
eat0 f AtB 0a30, q B f AtB

!E f F AsB J !
q

0
 e!stf AtB  dt

f AtB!E f F

18.

19.

20. Use the method of Laplace transforms to solve

[Hint: Let and then solve for c.]
21. For the interconnected tanks problem of Section 5.1,

page 242, suppose that the input to tank A is now
controlled by a valve which for the first 5 min deliv-
ers 6 L/min of pure water, but thereafter delivers 6
L/min of brine at a concentration of 2 kg/L. Assuming
that all other data remain the same (see Figure 5.1,
page 242), determine the mass of salt in each tank for 
t $ 0 if and .

22. Recompute the coupled mass–spring oscillator
motion in Problem 1, Exercises 5.6 (page 289),
using Laplace transforms.

In Problems 23 and 24, find a system of differential equa-
tions and initial conditions for the currents in the

y0 ! 4x0 ! 0

y A0B ! c
 4x # y¿ ! 6  ;     y A1B ! 4  .
 x– # y¿ ! 2  ;     x A0B ! 3  ,    x¿ A0B ! 0  ,

z¿ ! 4x # y " 3z  ;     z A0B ! "12
y¿ ! "x # 2y # z  ;     y A0B ! 2  ,
x¿ ! 3x # y " 2z  ;     x A0B ! "6  ,
x # y¿ " z ! 3  ;     z A0B ! "2
x¿ " z¿ ! 0  ;     y A0B ! 0  ,
x¿ " 2y ! 0  ;     x A0B ! 0  ,
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networks given by the schematic diagrams; the initial
currents are all assumed to be zero. Solve for the
currents in each branch of the network. (See Section 5.7
for a discussion of electrical networks.)

6 V

2 Ω

I2 I3

I1

I1

1 Ω

0.2 H

0.1 H

Figure 7.30 RL network for Problem 23

23.

50 V

I1 I3
I2

20 Ω10 Ω

0.005 H 0.01 H

Figure 7.31 RL network for Problem 24

24.

Chapter Summary



method. For this purpose, the rectangular window function is
useful. The transform of a periodic forcing function with period T is given by

The Dirac delta function is useful in modeling a system that is excited by a large force
applied over a short time interval. It is not a function in the usual sense but can be roughly
interpreted as the derivative of a unit step function. The transform of is

!Ed At ! aB F AsB " e!as  ,    a # 0  .

d At ! aBd AtB
!E f F AsB "

!
T

0
e!stf AtB  dt

1 ! e!sT   .

f AtB ßa,b AtB " u At ! aB ! u At ! bB
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REVIEW PROBLEMS

In Problems 1 and 2, use the definition of the Laplace
transform to determine .

1.

2.

In Problems 3–10, determine the Laplace transform of
the given function.

3. 4.
5.
6.
7.
8. 9.

10. and has period p.

In Problems 11–17, determine the inverse Laplace trans-
form of the given function.

11. 12.

13.

14.

15. 16.

17.
e!2s A4s $ 2BAs ! 1B As $ 2B

1As2 $ 9B22s2 $ 3s ! 1As $ 1B2 As $ 2B
s2 $ 16s $ 9As $ 1B As $ 3B As ! 2B

4s2 $ 13s $ 19As ! 1B As2 $ 4s $ 13B
2s ! 1

s2 ! 4s $ 6
7As $ 3B3

f AtBf AtB " cos t, !p/2 % t % p/2
t2u At ! 4BAt $ 3B2 ! Aet $ 3B2t cos 6t

7e2t cos 3t ! 2e7t sin 5t
e2t ! t3 $ t2 ! sin 5t

e3t sin 4tt2e!9t

f AtB " e e!t  , 0 % t % 5  ,

!1  , 5 6 t

f AtB " e 3  , 0 % t % 2  ,

6 ! t  , 2 6 t

!E f F 18. Find the Taylor series for about t " 0.
Then, assuming that the Laplace transform of 
can be computed term by term, find an expansion for

in powers of .

In Problems 19–24, solve the given initial value problem
for using the method of Laplace transforms.

19.

20.

21.

22.

23.

24.

In Problems 25 and 26, find solutions to the given initial
value problem.

25.

26.

y A0B " 1  ,    y¿ A0B " !1

ty– $ 2 At ! 1By¿ $ At ! 2By " 0  ;

y¿ A0B " 0y A0B " 0  ,    
ty– $ 2 At ! 1By¿ ! 2y " 0  ;    

y¿ A0B " 0y A0B " 0  ,    
y– ! 4y¿ $ 4y " t2et  ;    

y¿ A0B " 1y A0B " 0  ,    
y– $ 3y¿ $ 4y " u At ! 1B  ;    

y¿ A0B " 5y A0B " !1  ,    
y– $ 9y " 10e2t  ;    
y A0B " 0  ,    y¿ A0B " !1

y– $ 2y¿ $ 2y " t2 $ 4t  ;

y¿ A0B " 10y A0B " !3  ,    
y– $ 6y¿ $ 9y " 0  ;    

y¿ A0B " !3y A0B " 0  ,    
y– ! 7y¿ $ 10y " 0  ;    

y AtB
1 /s!E f F AsB f AtBf AtB " e!t2



In Problems 27 and 28, solve the given equation for 

27.

28.

29. A linear system is governed by

Find the transfer function and the impulse response
function.

y– ! 5y¿ $ 6y " g AtB  .
y A0B " !1

y¿ AtB ! 2 !
t

0
y AyBsin At ! yB  dy " 1  ;    

y AtB $ !
t

0
At ! yBy AyB  dy " e!3t

y AtB.
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30. Solve the symbolic initial value problem

In Problems 31 and 32, use Laplace transforms to solve
the given system.
31.

32.
y A0B " 0x $ y¿ " y  ;    

x– $ 2y¿ " u At ! 3B  ;   x A0B " 1  ,   x ¿A0B " !1  ,
x $ y¿ " 1 ! u At ! 2B  ;    y A0B " 0
x¿ $ y " 0  ;    x A0B " 0  ,

y A0B " 0  ,    y¿ A0B " 1  .

y– $ 4y " d at !
p
2
b   ;    

1. Compare the use of Laplace transforms in solving
linear differential equations with constant coeffi-
cients with the use of logarithms in solving algebraic
equations of the form 

2. Explain why the method of Laplace transforms
works so well for linear differential equations with
constant coefficients and integro-differential equa-
tions involving a convolution.

3. Discuss several examples of initial value problems
in which the method of Laplace transforms cannot
be applied.

xr " a.

4. A linear system is said to be asymptotically stable if
its impulse response function as 
Assume the Laplace transform of is a
rational function in reduced form with the degree of
its numerator less than the degree of its denominator.
Explain in detail how the asymptotic stability of the
linear system can be characterized in terms of the
zeros of the denominator of Give examples.

5. Compare and contrast the solution of initial value
problems by Laplace transforms versus the methods
of Chapter 4.

H AsB.

h AtB,H AsB, t S $q.h AtB S 0


