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Abstract. We consider a mathematical model that describes the competition

of three species for a single nutrient in a chemostat in which the dilution rate
is assumed to be controllable by means of state dependent feedback. We con-

sider feedback schedules that are affine functions of the species concentrations.

In case of two species, we show that the system may undergo a Hopf bifur-
cation and oscillatory behavior may be induced by appropriately choosing the

coefficients of the feedback function. When the growth of the species obeys
Michaelis-Menten kinetics, we show that the Hopf bifurcation is supercritical

in the relevant parameter region, and the bifurcating periodic solutions for two

species are always stable. Finally, we show that by adding a third species to
the system, the two-species stable periodic solutions may bifurcate into the

coexistence region via a transcritical bifurcation. We give conditions under

which the bifurcating orbit is locally asymptotically stable.

1. Introduction. We study the mathematical model of a chemostat:

Ṡ = D(S0 − S)−
n∑
i=1

xifi(S)/γi,

ẋi = xi(fi(S)−D), i = 1, . . . , n, n ≥ 2

where S is the nutrient concentration and xi are the concentrations of the competing
species. The fi are the growth functions of the species and they are assumed to be
monotonically increasing. The yield constants, denoted by γi, reflect that only a
fraction of the nutrient of what the different species consume, leads to new biomass.

The two natural control parameters are the input nutrient concentration S0 and
the dilution rate D. If these are constant, then at most one species survives as
dictated by the principle of competitive exclusion [17, 5, 29, 25]. But in practice, it
often happens that S0 and/or D change over time, and a well-established literature
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exists in case these variations are periodic. For results in the case S0 is periodic, see
[23, 13, 22], and for periodic variations in D see [4, 25]. In both cases coexistence is
possible under certain conditions, contrasting the competitive exclusion principle.
The case when S0 is a general time-dependent function has been studied in [11].

More recently a program of feedback control in the chemostat has been initiated
in [9], where the dilution rate is treated as a feedback variable and made dependent
on the concentrations of the competitors in the following simple way:

D(x) = ε+
n∑
i=1

kixi,

where ε and the ki are non-negative design parameters. The feedback approach is
perhaps most natural in the lab setting. For instance, optical sensors can be used
to measure turbidity, giving a rough estimate of the concentrations of the species.
An alternative way to measure concentrations is to use GFP’s (Green Fluorescence
Proteins), especially since nowadays GFP’s can emit light of different color, thus
allowing to distinguish between different species. These concentration estimates
can be processed by a computer to (online) calculate the dilution rate. The result
then determines the speed of the pump -the device that is being actuated- which
supplies the reactor with fresh medium.

The introduction of feedback controls can lead to significant changes in the as-
ymptotic behavior of solutions when compared to the case in which the control
parameters are fixed. These changes have been well documented for the case n = 2.
For example, it was shown in [9] that the system may be rendered coexistent for
suitable choices of the feedback parameters. This result was generalized in [12] to
include chemostat models with non-monotone growth functions. In both cases, co-
existence takes its simplest form: a globally asymptotically stable positive steady
state. For other choices of the feedback parameters – but still assuming n = 2
– it was shown in [10] that bistability can occur, meaning that the single-species
boundary steady states are stable and attract almost all solutions starting in the
interior, with the exception of solutions on the stable manifold of a saddle point in
the interior.

Unfortunately, it was pointed out in [9] that feedback-mediated-coexistence using
the feedback law above typically does not occur if n > 2. In fact, it was shown in
[10] that if there are three competitors, no interior solution is persistent and at least
one species disappears.

Here we wish to investigate another type of feedback law for the dilution rate, and
see whether or not coexistence is possible when there are more than two competitors.
We will show that this is indeed the case when n = 3, using the following feedback
law:

D(x) = ε−
2∑

n=1

kixi,

for certain values of the non-negative parameters ε and ki. Notice the subtle dif-
ference between the latter and former feedback law, expressed merely by the sign
change, and that the concentration of the third species is not used in the feedback
law. Now, coexistence will take the form of an interior periodic solution, bifurcating
from a periodic solution on the boundary through what is traditionally referred to
as a transcritical bifurcation of the associated Poincaré map. Transcritical bifurca-
tions of limit cycles leading to coexistence have been reported in [2], [3] (see also
Chapter 3 in [25]), and in [20, 1] for different chemostat models. In general, it is not
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difficult to establish the existence of the transcritical bifurcation. It considerably
more difficult to determine the stability of the bifurcating periodic orbit because
the precise location of the boundary periodic solution is typically unknown. In the
present case, the stability determination is based upon a perturbation technique
used by Smith [24] in the study of a system with two predators and one prey. For
a chemostat with three species, is shown that local asymptotically stable periodic
orbits result when the growth functions intersect in a specified manner.

As we already alluded to in the last paragraph, we will show along the way
that in a chemostat with n = 2 species and controlled by a feedback law of the
new type, asymptotically stable periodic solutions are possible (these will be the
boundary periodic solutions mentioned in the previous paragraph). Perhaps this
result is of interest by itself because this type of dynamical behavior does not occur
in chemostats with 2 species which are controlled by the former feedback law, see
[10] which will be briefly reviewed in the next section for convenient reference.
Finally, this report also investigates the relationship between the divergence criteria
[21] and the vague attractor property [19] in determining the stability of a Hopf
bifurcation. Specifically, it is shown that the sign of the quadratic form for the
divergence coincides with the sign of V ′′′(0). This result is used in the study of
coexistence for three organisms.

2. Coexistence and bistability for two species. Consider the following chemo-
stat which is an appropriately scaled version of the model presented in the Intro-
duction:

Ṡ = D(x, y)(1− S)− xf(S)− yg(S)
ẋ = x(f(S)−D(x, y)),
ẏ = y(g(S)−D(x, y)), (1)

where (S, x, y) ∈ R3
+. It is assumed that f and g are nonnegative C1 functions on

R+ with f(0) = g(0) = 0 and f ′, g′ > 0. Moreover we assume the existence of
λ ∈ (0, 1) and D∗ > 0 such that f(λ) = g(λ) = D∗, f ′(λ) < g′(λ) and f(S) > g(S)
for S ∈ (0, λ) and f(S) < g(S) for S > λ. We assume that D(x, y) is affine:

D(x, y) = k1x+ k2y + ε, (2)

where k1, k2 and ε are nonnegative parameters. Notice that (1)-(2) is well-posed
since R3

+ is a forward invariant set.
The following coexistence result was obtained in [9].

Theorem 1. Fix ε ∈ [0, D∗) and let k̃ := D∗−ε
1−λ . Suppose that the ki satisfy

k2 < k̃ < k1,

and k2 > 0 in case ε = 0.
Then system (1) with feedback (2), has a unique steady state(

λ,
(1− λ)(k̃ − k2)

k1 − k2
,

(1− λ)(k1 − k̃)
k1 − k2

)
in int(R3

+), which is globally asymptotically stable with respect to initial conditions
in int(R3

+).

We wish to complete the picture of the dynamical behavior for all ranges of the
parameters ki and start with the most interesting case of bistability, see [10].
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Figure 1. Coexistence I, bistability II, competitive exclusion III-
1: species 1 wins, III-2: species 2 wins.

Theorem 2. Fix ε ∈ [0, D∗) and let k̃ := D∗−ε
1−λ . Suppose that the ki satisfy

k1 < k̃ < k2,

and k1 > 0 in case ε > 0. Then system (1) with feedback (2), has a unique steady
state

E =

(
λ,

(1− λ)(k2 − k̃)
k2 − k1

,
(1− λ)(k̃ − k1)

k2 − k1

)
in int(R3

+), which is a saddle. In addition to the washout steady state at E0 =
(1, 0, 0), there are two asymptotically stable single-species boundary steady states

E1 = (λ1, 1− λ1, 0) and E2 = (λ2, 0, 1− λ2),

where λ1 ∈ (0, 1) is the unique solution of f(λ1) = k1(1 − λ1) + ε and λ2 ∈ (0, 1)
is the unique solution of g(λ2) = k2(1 − λ2) + ε. Almost all solutions starting
in int(R3

+) converge to either E1 or E2, except for those solutions starting on the
two-dimensional (and hence zero-measure) stable manifold of E.

To complete the global picture we indicate the parameter region for the ki which
gives rise to competitive exclusion, see [10] as well.

Theorem 3. Fix ε ∈ [0, D∗) and let k̃ := D∗−ε
1−λ . We distinguish the following cases:

Case 1: k1, k2 < k̃, and k1 or k2 > 0 in case ε > 0.
Case 2: k1, k2 > k̃.

System (1) with feedback (2), has no steady states in int(R3
+). In addition to the

washout steady state at E0 = (1, 0, 0), there are two single-species boundary steady
states

E1 = (λ1, 1− λ1, 0) and E2 = (λ2, 0, 1− λ2),

where λ1 ∈ (0, 1) is the unique solution of f(λ1) = k1(1− λ1) + ε and λ2 ∈ (0, 1) is
the unique solution of g(λ2) = k2(1−λ2)+ε. In case 1, E1 is a stable node, while E2

is a saddle with two-dimensional stable manifold contained in {(S, x, y) ∈ R3
+ |x =

0}. In case 2, E1 is a saddle with two-dimensional stable manifold contained in
{(S, x, y) ∈ R3

+ | y = 0}, while E2 is a stable node.
In case 1, all solutions of (1)-(2) starting in int(R3

+) converge to E1, while in
case 2 they converge to E2.

The results of Theorems 1, 2 and 3 are summarized in Figure 1.

3. Oscillations in the chemostat.

3.1. Two species. Consider the following chemostat model:

Ṡ = D(x, y)(1− S)− xf(S)− yg(S),
ẋ = x(f(S)−D(x, y)),
ẏ = y(g(S)−D(x, y)), (3)

where
(S, x, y) ∈ T := {(S, x, y) ∈ R3

+ |S + x+ y ≤ 1}.
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We assume that the f and g are nonnegative C3 functions on R+ with f(0) = g(0) =
0 and f ′, g′ > 0. As before we assume the existence of λ ∈ (0, 1) and D∗ > 0 such
that f(λ) = g(λ) = D∗, f ′(λ) < g′(λ) and f(S) > g(S) for S ∈ (0, λ) and f(S) <
g(S) for S > λ. Moreover we assume that f ′′(S), g′′(S) < 0 and f ′′′(S), g′′′(S) > 0
for all S ≥ 0.

Notice that all these assumptions hold if f and g are of Michaelis-Menten form
mS/(a+ S).

The function D(x, y) is a positive C3 function to be determined later.
The model is well-posed since for V := S+x+y, we have that V̇ = D(x, y)(1−V ),

and so T is forward invariant. Moreover, an obvious reduction argument suggests
the study of the following two-dimensional system:

ẋ = x(f(1− x− y)−D(x, y))
ẏ = y(g(1− x− y)−D(x, y)) (4)

where (x, y) ∈ ∆ = {(x, y) ∈ R2
+ |x+ y ≤ 1}.

Denoting the right-hand side of system (4) by (F (x, y), G(x, y)) and suppressing
the argument of D and its partial derivatives, we find that the Jacobian matrix is:

J =
(
Fx Fy
Gx Gy

)
,

where

Fx = (f(1− x− y)−D)− x(f ′(1− x− y) +Dx),
Fy = −x(f ′(1− x− y) +Dy),
Gx = −y(g′(1− x− y) +Dx),
Gy = (g(1− x− y)−D)− y(g′(1− x− y) +Dy).

For future reference we also calculate the second order derivatives of F and G:

Fxx = −2(f ′(1− x− y) +Dx)− x(−f ′′(1− x− y) +Dxx)
Fxy = Fyx = −(f ′(1− x− y) +Dy)− x(−f ′′(1− x− y) +Dxy),

Fyy = −x(−f ′′(1− x− y) +Dyy),
Gxx = −y(−g′′(1− x− y) +Dxx)
Gxy = −(g′(1− x− y) +Dx)− y(−g′′(1− x− y) +Dxy),
Gyy = −2(g′(1− x− y) +Dy)− y(−g′′(1− x− y) +Dyy),

and some of their third order derivatives:

Fxxx = −3(−f ′′(1− x− y) +Dxx)− x(f ′′′(1− x− y) +Dxxx),
Fxyy = Fyyx = −(−f ′′(1− x− y) +Dyy)− x(f ′′′(1− x− y) +Dyyx),
Gyxx = Gxxy = −(−g′′(1− x− y) +Dxx)− y(g′′′(1− x− y) +Dxxy),

Gyyy = −3(−g′′(1− x− y) +Dyy)− y(g′′′(1− x− y) +Dyyy).

From now on we will assume that D(x, y) is affine:

D(x, y) = −k1x− k2y + ε, (5)

where k1, k2 and ε are non-negative parameters to be determined later.
An interior steady state of system (4)-(5) is a solution (x∗, y∗) ∈ int(∆) of:

x∗ + y∗ = 1− λ
k1x
∗ + k2y

∗ = ε−D∗. (6)
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Assuming that an interior steady state (x∗, y∗) exists, we evaluate the trace and
determinant of the variational matrix J(x∗, y∗):

tr(J(x∗, y∗)) = −x∗(f ′(λ)− k1)− y∗(g′(λ)− k2),
det(J(x∗, y∗)) = x∗y∗(f ′(λ)− g′(λ))(k1 − k2)

Notice that if we set k1 = k̄1 and k2 = k̄2 where

f ′(λ) =: k̄1 < k̄2 := g′(λ) (7)

in the feedback (5), then tr(J(x∗, y∗)) = 0 and det(J(x∗, y∗)) = x∗y∗(k̄2− k̄1)2 > 0,
and hence the occurrence of a Hopf bifurcation becomes plausible.

This suggests treating (k1, k2) as a bifurcation parameter, while using ε > 0 to
guarantee that

1. (x∗, y∗) ∈ int(∆).
2. D(x, y) > 0 in ∆.

Explicitly solving (6) for (x∗, y∗) shows that

(x∗, y∗) =
1

k̄2 − k̄1

(
k̄2(1− λ)− (ε−D∗), (ε−D∗)− k̄1(1− λ)

)
, (8)

and so the first condition is satisfied if

ε ∈ (k̄1(1− λ) +D∗, k̄2(1− λ) +D∗), (9)

a nonempty interval since k̄1 < k̄2.
The affine function D(x, y) = −k̄1x − k̄2y + ε reaches its minimum in ∆ at the

point (0, 1), and so the second condition holds if

ε > k̄2. (10)

Notice that both constraints (9) and (10) for ε are compatible only if

k̄2 < k̄2(1− λ) +D∗,

or equivalently, k̄2 < D∗/λ. The latter inequality is satisfied: by the mean value
theorem there is some c ∈ (0, λ) such that g′(c) = D∗/λ and since g′ is decreasing
as g′′ < 0, this implies that k̄2 ≡ g′(λ) < g′(c).

Therefore, if we fix an ε in the nonempty interval

I :=
(
max(k̄1(1− λ) +D∗, k̄2), k̄2(1− λ) +D∗

)
, (11)

then there is some open neighborhood N of (k̄1, k̄2), such that for all (k1, k2) ∈ N ,
D(x, y) > 0 in ∆, and system (4)-(5) has an interior steady state (x∗, y∗) (this
is because both D(x, y) and the point (x∗, y∗) depend continuously on (k1, k2)).
Moreover, the interior steady state (x∗, y∗) undergoes a Hopf bifurcation at the
bifurcation value (k̄1, k̄2). To be more precise, a Hopf bifurcation occurs along any
smooth parametric path (k1, k2) = (k1(σ), k2(σ)) such that (k̄1, k̄2) = (k1(0), k2(0))
and x∗k′1(0) + y∗k′2(0) 6= 0. The first condition ensures that the eigenvalues of
J(x∗, y∗) are purely imaginary at σ = 0. The second condition implies that this pair
of complex conjugate eigenvalues of J(x∗, y∗) crosses the imaginary axis transver-
sally. Hence, a Hopf bifurcation occurs at σ = 0. In what follows, we will make
use of one particular parametric path (k1, k2) = (k̄1 + σ, k̄2) where the value of k2

is fixed, and k1 alone is treated as the bifurcation parameter. Such a path clearly
satisfies the above conditions for the Hopf bifurcation. To determine the nature
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of the bifurcation (super- or subcritical), we follow the procedure outlined in [21].
There it is shown that if the sign of the quantity

φ∗xx =
1
2

(Qxx −QyyG
∗
x

F ∗y
)−Qxy F

∗
x

F ∗y
, (12)

is negative (positive), then a supercritical (subcritical) Hopf bifurcation occurs.
Here

Qxx = (F ∗xxx +G∗yxx) + a∗x(3F ∗xx + 2G∗xy) + a∗yG
∗
xx,

and
Qyy = (F ∗xyy +G∗yyy) + a∗xF

∗
yy + a∗y(2F ∗xy + 3G∗yy)

(there is no need to calculate Qxy since it is multiplied by F ∗x in (12), and the latter
is 0 in our case). The quantities a∗x and a∗y are given by:

a∗x =
(F ∗xx +G∗yx)G∗y − (F ∗xy +G∗yy)G∗x

− det(J(x∗, y∗))
,

and

a∗y =
−(F ∗xx +G∗yx)F ∗y + (F ∗xy +G∗yy)F ∗x

−det(J(x∗, y∗))
.

We start by evaluating the first, second and third order derivatives mentioned
above at the interior steady state (x∗, y∗), using the particular form of the feedback
(5) and the choices for k̄1 and k̄2, given in (7) (we suppress the argument λ of the
derivatives of the functions f and g):

F ∗x = 0,
F ∗y = x∗(k̄2 − k̄1) > 0,

G∗x = −y∗(k̄2 − k̄1) < 0,
G∗y = 0,

F ∗xx = F ∗yy = x∗f ′′ < 0,

F ∗xy = (k̄2 − k̄1) + x∗f ′′,

G∗xx = G∗yy = y∗g′′ < 0

G∗xy = −(k̄2 − k̄1) + y∗g′′ < 0,

F ∗xxx = 3f ′′ − x∗f ′′′ < 0,
F ∗xyy = f ′′ − x∗f ′′′ < 0,

G∗yxx = g′′ − y∗g′′′ < 0,

G∗yyy = 3g′′ − y∗g′′′ < 0.

Substituting these values into the formulas for a∗x and a∗y, we obtain

a∗x = −x
∗f ′′ + y∗g′′ + (k̄2 − k̄1)

x∗(k̄2 − k̄1)
,

and

a∗y =
x∗f ′′ + y∗g′′ − (k̄2 − k̄1)

y∗(k̄2 − k̄1)
< 0.

Substituting the quantities

G∗x
F ∗y

=
y∗(−k̄2 + k̄1)
x∗(−k̄1 + k̄2)

= −y
∗

x∗
, and F ∗x = 0
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into (12), it follows that φ∗xx < 0 if and only if x∗Qxx + y∗Qyy < 0. Define

A := x∗f ′′ + y∗g′′ < 0, δ := k̄2 − k̄1 > 0,

to see that

x∗Qxx = x∗(3f ′′ + g′′ − x∗f ′′′ − y∗g′′′)− (A+ δ)
δ

(2(A− δ) + x∗f ′′)

+
(A− δ)

δ
(x∗g′′),

and

y∗Qyy = y∗(f ′′ + 3g′′ − x∗f ′′′ − y∗g′′′)− (A+ δ)
δ

(y∗f ′′)

+
(A− δ)

δ
(2(A+ δ) + y∗g′′).

Adding the last two equalities, we obtain

x∗Qxx + y∗Qyy = (1− λ)(f ′′ + g′′) + 2A− (1− λ)(x∗f ′′′ + y∗g′′′)

− (A+ δ)
δ

(2(A− δ) + (1− λ)f ′′) +
(A− δ)

δ
(2(A+ δ) + (1− λ)g′′),

where we used the fact that x∗ + y∗ = 1− λ. This can be simplified to

x∗Qxx + y∗Qyy = (1− λ)(f ′′ + g′′) + 2A− (1− λ)(x∗f ′′′ + y∗g′′′)

+
1− λ
δ

A(g′′ − f ′′)− (1− λ)(f ′′ + g′′).

Notice that the first and last term in the above sum cancel each other, so we conclude
that

x∗Qxx + y∗Qyy = −(1− λ)(x∗f ′′′ + y∗g′′′) +A(2 + (1− λ)
g′′ − f ′′

g′ − f ′
).

The first term is negative since f ′′′, g′′′ < 0 by assumption. We see that if

g′′ − f ′′ ≥ 0, (13)

then the second term is negative as well, and hence a supercritical Hopf bifurcation
occurs.

If both growth functions are of Michaelis-Menten form, we have a stronger result.

Lemma 1. Let f(s) = m1s
a1+s and g(s) = m2s

a2+s . Suppose that there exists λ ∈ (0, 1)
and D∗ > 0 such that f(λ) = g(λ) = D∗ and g′(λ) > f ′(λ). Then x∗Qxx+y∗Qyy <
0 for all x∗, y∗ > 0.

Proof. Since m1λ
a1+λ = m2λ

a2+λ = D∗, it follows that D∗

mi
< 1, i = 1, 2. Furthermore, the

conditions

f ′(λ) =
m1a1

(a1 + λ)2
<

m2a2

(a2 + λ)2
= g′(λ),

m1

a1 + λ
=

m2

a2 + λ

together imply that a2 > a1 and thus

γ =
m2

m1
=
a2 + λ

a1 + λ
> 1.
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Using the relations 1
ai+λ

= D∗

miλ
and γ = m2

m1
, we find that

f ′′′

f ′′
=
−3D∗

m1λ
,

g′′′

g′′
=
−3D∗

m1γλ
.

We also find that

g′′ − f ′′

g′ − f ′
= 2

m1a1
(a1+λ)3 −

m2a2
(a2+λ)3

m2a2
(a2+λ)2 −

m1a1
(a1+λ)2

= 2
D∗

λ

a1
m2

1
− a2

m2
2

a2
m2
− a1

m1

,

which can be further simplified substituting the expressions ai = λ(miD∗ −1), so that

g′′ − f ′′

g′ − f ′
= 2

D∗

λ

1
m2

1
(m1
D∗ − 1)− 1

m2
2
(m2
D∗ − 1)

1
m2

(m2
D∗ − 1)− 1

m1
(m1
D∗ − 1)

=
2
λ

(
1−D∗( 1

m1
+

1
m2

)
)
.

Replacing m2 with γm1, we obtain the final expression

g′′ − f ′′

g′ − f ′
=

2
λ

(
1− D∗

m1

1 + γ

γ

)
.

The quantity x∗Qxx + y∗Qyy can be rewritten as x∗f ′′Mf + y∗g′′Mg, where

Mf = −(1− λ)
f ′′′

f ′′
+ 2 + (1− λ)

g′′ − f ′′

g′ − f ′
,

Mg = −(1− λ)
g′′′

g′′
+ 2 + (1− λ)

g′′ − f ′′

g′ − f ′
.

Equivalently, we have

Mf = (1− λ)
3D∗

m1λ
+ 2 + (1− λ)

2
λ

(
1− D∗

m1

1 + γ

γ

)
,

Mg = (1− λ)
3D∗

m1γλ
+ 2 + (1− λ)

2
λ

(
1− D∗

m1

1 + γ

γ

)
.

Observe that γ > 1 implies Mf > Mg. The expression for Mg can be further
simplified to

Mg =
(1− λ)D∗

λγm1
+

2
λ

(
1− (1− λ)

D∗

m1

)
,

and since 0 < 1 − λ < 1 and D∗

m1
< 1, it is immediate that Mg > 0. Hence, both

quantities Mf and Mg are positive, and the quantity x∗f ′′Mf +y∗g′′Mg is negative
as long as x∗, y∗ > 0.

Summarizing,

Theorem 4. Fix ε ∈ I, and let N be a (sufficiently small) open neighborhood of
(k̄1, k̄2). Assume that either (13) holds, or that f(s) and g(s) are of Michaelis-
Menten type. Fixing k2 = k̄2, a supercritical Hopf bifurcation occurs at the interior
steady state of system (4)-(5) when k1 passes through k̄1. There exists a δ > 0 such
that for all k1 ∈ (k̄1, k̄1 + δ), (4)-(5) has an asymptotically stable periodic solution
having a Floquet multiplier in (0, 1).

Since the set {(S, x, y) ∈ R3
+ |S + x+ y = 1} is forward invariant for (3)-(5), we

immediately have:
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Corollary 1. Under the conditions of Theorem 4, system (3)-(5) has an interior
steady state in T which undergoes a supercritical Hopf bifurcation when k1 passes
through k̄1. There exists a δ > 0 such that for all k1 ∈ (k̄1, k̄1 + δ), (3)-(5) has
an asymptotically stable periodic solution having two Floquet multipliers inside the
unit circle.

Proof. The statements regarding the occurrence of the Hopf bifurcation are straight-
forward. Let p(t) = (p1(t), p2(t)) denote the periodic solution of (4)-(5) of period
T , and Jr(t) the T -periodic linearization at p(t). Notice that (3)-(5) is equivalent
to the following system:

V̇ = D(x, y)(1− V ),
ẋ = x(f(V − x− y)−D(x, y)),
ẏ = y(g(V − x− y)−D(x, y)).

This system has a periodic solution (1, p1(t), p2(t)), and the linearized system along
this periodic solution has the following matrix

J(t) =
(
−D(p1(t), p2(t)) 0

∗ Jr(t)

)
The fundamental matrix solution associated with J(t) takes the form(

e−T 〈D〉 0
∗ Φr(T )

)
where

〈D〉 :=
1
T

∫ T

0

D(p1(t), p2(t))dt,

and Φr(T ) is the fundamental matrix associated with Jr(t). By Theorem 4 the
eigenvalues of Φr(T ) are 1 and r1 ∈ (0, 1). This implies that two of the Floquet
multipliers of (1, p1(t), p2(t)) are inside the unit circle.

3.2. The divergence criterion and the vague attractor property. In this
section, we establish a formal connection between the divergence criterion [20] and
the classical method for analyzing the Hopf bifurcation [16, 19, 6, 14]. In the classical
approach, the direction of the Hopf bifurcation is determined by checking the vague
attractor property at the point of bifurcation. Specifically, if the quantity V ′′′(0)
is negative then the Hopf bifurcation is supercritical, and if V ′′′(0) is positive then
the Hopf bifurcation is subcritical. The divergence criterion allows to transform the
original system into one with sign definite divergence near the Hopf point without
changing the geometry of the nearby orbits [21]. Knowing that the divergence
remains of one sign allows to apply the Dulac criterion and conclude that the Hopf
point is a weak attractor/repellor [15, 20]. The resulting conclusion is typically
weaker than the classical result: one can only infer the existence of periodic solutions
with small amplitude on either side of the bifurcation value. In contrast, the fact
that V ′′′(0) 6= 0 implies the existence of the uniquely determined family of bifurcating
limit cycles. The bifurcating limit cycles are stable if V ′′′(0) < 0 and unstable if
V ′′′(0) > 0.

The transformation that preserves the orbits generically results in a system whose
divergence is asymptotic to a sign definite or semi-definite quadratic form [21]. In
the following Theorem, we establish that for such systems the sign of the quadratic
form for the divergence coincides with the sign of V ′′′(0). This result closes the
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Figure 2. The function V (r) is the map of the first return to the
positive x-axis. The elliptical region E(r) represents the interior of
the orbit of the linearized system that passes through (r, 0). The
region A(r) represents the interior of the region bounded by the
part of the orbit of the full system starting at (r, 0) and ending at
(V (r), 0), and the part of the x-axis between x = r and x = V (r).

existing gap between the divergence criterion and the classical analysis of the Hopf
bifurcation.

Theorem 5. Consider a sufficiently smooth system

ẋ = q(x, y), ẏ = r(x, y), (14)

that has an equilibrium at (0, 0), such that the variational matrix

∂(q, r)
∂(x, y)

(0, 0) =
(
q0
x q0

y

r0
x r0

y

)
has pure imaginary eigenvalues. Denote the map of the first return to the positive
x-axis as V . Suppose that the divergence of (14) has the form

qx(x, y) + ry(x, y) = ax2 + 2bxy + cy2 +O(r3), r =
√
x2 + y2.

Then the following implications hold

(i) If the quadratic form ax2 + 2bxy + cy2 6= 0 is negative semi-definite, then
V ′′′(0) > 0;

(ii) If the quadratic form ax2 + 2bxy + cy2 6= 0 is positive semi-definite, then
V ′′′(0) < 0.

Proof. We will only prove the implication (i). The proof of (ii) is similar. By
interchanging the roles of x and y if necessary, we may assume that r0

x > 0. Denote
the vector field of the system (14) as ~F = (q, r). Consider the orbit of (14) starting
at (r, 0). Let (V (r), 0) be the point of the first return of this orbit to the positive
x-axis (see Fig. 2). Let A(r) denote the region enclosed by this orbit as described
in Fig. 2. The Green’s Theorem implies that∫

∂A(r)

~F · ~n ds =
∫ ∫

A(r)

div ~F dx dy, (15)

where the boundary ∂A(r) is treated as a positively oriented contour with the unit
outward normal ~n and arclength measure ds. Since ~F ·~n ≡ 0 along any orbit of the
full system, we can express the integral on the l.h.s of (15) as∫

∂A(r)

~F · ~n ds =
∫ V (r)

r

r(x, 0) dx.

Substituting the Taylor expansions r(x, 0) = r0
xx+O(x2), and V (r) = r+ 1

6V
′′′(0)r3+

O(r4) [19], and applying the Intermediate Value Theorem, we find that∫ V (r)

r

r(x, 0) dx = r0
x(r + o(r2))(V (r)− r) =

r0
xV
′′′(0)
6

r4 +O(r5), r → 0.
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Now we evaluate the leading term of the integral on the r.h.s of (15). Expanding
the system near (0, 0), we find that(

ẋ
ẏ

)
=
(
q0
x q0

y

r0
x r0

y

)(
x
y

)
+ ~F2(x, y), ~F2(x, y) = O(r2).

Let ~z(t) = (x(t), y(t)) denote the solution of the full system with the initial condition
z(0) = (r, 0). Let ~z1(t) = (x1(t), y1(t)) denote the corresponding solution of the
linearized system (

ẋ1

ẏ1

)
=
(
q0
x q0

y

r0
x r0

y

)(
x1

y1

)
,

(
x1(0)
y1(0)

)
=
(
r
0

)
.

Since the eigenvalues of the variational matrix are pure imaginary, the orbit of ~z1(t)
is an ellipse. We denote the interior elliptical region by E(r). For any fixed T > 0,
we have the following estimate:

|~z(t)− ~z1(t)| = O(r2), 0 ≤ t ≤ T.
Since the length of the elliptical orbit ∂E(r) is proportional to r, and the distiance
between the boundaries ∂E(r) and ∂A(r) is at most O(r2), we conclude that the
difference between the areas of A(r) and (r) is of the order O(r3). Taking into
account the fact that div ~F = ax2 + 2bxy + cy2 +O(r3), we find that∫ ∫

A(r)

div ~F dx dy =
∫ ∫

E(r)

(ax2 + 2bxy + cy2) dx dy +O(r5).

The integral on the r.h.s. can be evaluated explicitly. Indeed, let E(r) = {(x, y) :
αx2 + 2βxy + γy2 ≤ r2}, in fact the coefficients α, β, γ can be obtained explicitly
from the variational matrix. Now we introduce auxiliary matrices

U =
(
α β
β γ

)
, W =

(
a b
b c

)
,

where U > 0 and W ≥ 0. Let Q be an orthogonal matrix such that QTUQ =
diag(e1, e2), and let H = diag(1/

√
e1, 1/

√
e2). Changing the coordinates (x, y)T =

QH(u, v)T transform the ellipse E(r) = {(x, y)U(x, y)T ≤ r2} into the circle u2 +
v2 ≤ r2. Hence, we have that∫ ∫

E(r)

(ax2 + 2bxy + cy2) dx dy =

=
1

√
e1e2

∫ ∫
u2+v2≤r2

(u, v)HTQTWQH(u, v)T du dv.

Let ∆ = QTWQ, then ∆ = (δij) is also positive semi-definite. The Sylvester
criterion implies that the trace

tr(HTQTWQH) =
δ11

e1
+
δ22

e2

is strictly positive. Finally, we use the polar coordinates to evaluate the integral

1
√
e1e2

∫ ∫
u2+v2≤r2

(u, v)HTQTWQH(u, v)T du dv =
πr4

4
√
e1e2

(δ11

e1
+
δ22

e2

)
.

Therefore, we conclude that∫ ∫
A(r)

div ~F dx dy =
πr4

4
√
e1e2

(δ11

e1
+
δ22

e2

)
+O(r5),
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which immediately implies that

V ′′′(0) =
3π

2r0
x

√
e1e2

(δ11

e1
+
δ22

e2

)
> 0.

This observation concludes the proof.

3.3. Three species. Having established the necessary conditions for the existence
of stable periodic orbits for two species, we now examine a system with three or-
ganisms. Consider the following chemostat model:

Ṡ = D(x, y)(1− S)− xf(S)− yg(S)− zh(S),
ẋ = x(f(S)−D(x, y)),
ẏ = y(g(S)−D(x, y)),
ż = z(h(S)−D(x, y)), (16)

where
(S, x, y, z) ∈ T := {(S, x, y, z) ∈ R4

+ |S + x+ y + z ≤ 1},
D(x, y) is given by (5) and f , g, h are Michaelis Menten growth funcitons given by:

f(S) =
m1S

a1 + S
,

g(S) =
m2S

a2 + S
,

h(S) =
m3S

a3 + S
. (17)

We assume that there exists substrate concentrations S̄ and Ŝ such that 0 < S̄, Ŝ <
1; f(S̄) = g(S̄); and f(Ŝ) = h(Ŝ). For this system the set T is clearly forward
invariant and hence (16) is well-posed. As in section 3.1, we introduce the variable
V = S + x+ y + z and use a reduction argument to study the system

ẋ = x(f(1− x− y − z)−D(x, y)),
ẏ = y(g(1− x− y − z)−D(x, y)),
ż = z(h(1− x− y − z)−D(x, y)). (18)

The main result to be derived is given by the following theorem

Theorem 6. For a system of the form (18) with D(x, y) given by (5) and where
k1 = f ′(S̄) + κ = k̄1 + κ and k2 = g′(S̄) = k̄2, then for Ŝ sufficiently close to S̄ and
κ a sufficiently small positive number, there exists a locally asymptotically stable
periodic orbit in the interior of the first orthant if h′(S̄) < min{f ′(S̄), g′(S̄)} or
h′(S̄) > max{f ′(S̄), g′(S̄)}, while an unstable periodic orbit results for
min{f ′(S̄), g′(S̄)} < h′(S̄) < max{f ′(S̄), g′(S̄)}.

The basic idea of the proof is to first obtain a periodic Hopf orbit in the xy plane
and then to bifurcate from this orbit to a limit cycle in the first octant. While this
statement of intent is concise, the actual methodology is quite tedious and lengthy.
To guide the reader, we first outline the approach and then fill in the necessary
details to complete the proof. The development begins with a limiting system for
two organisms (3) with growth functions f(S) and g(S) and a diluter rate D(x, y)
as described above. By Theorem 4, for sufficiently small positive κ there exists
an asymptotically stable Hopf orbit in the x, y plane. This orbit is approximated
by a perturbation technique and the system is then expanded by adding a third
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organism with a growth function h(S, η) where η is the second bifurcation parameter
and h(S̄, 0) = f(S̄). Next we determine a neutral stability condition for the Hopf
orbit with respect to the third organism and establish a neutral stability curve by
obtaining a relation between η and the Poincaré-Lindstedt perturbation parameter
ε. We define a Poincaré map in a plane parallel to the yz coordinate plane and for the
fixed point corresponding to the Hopf orbit test the conditions for a bifurcation from
a simple eigenvalue. This bifurcation result provides the existence of parametric
family of periodic orbits in the first octant yet does not provide information on the
stability of these orbits. We express the new orbits as an expansion in the parameter
s. We also expand η as a function of s, η = η∗ + η1s + O(s2), and demonstrate
that the stability of the orbits are determined by the sign of η1. To find this sign
we substitute the s-based parameter expansions into the neutral stability equation
and calculate it’s derivative with respect to s at s = 0. By combining like-terms of
ε in the resulting equations an expression for η1 is found. Finally, the dependence
of the sign of η1 on the relative positions of the growth functions is determined.

Proof.

3.3.1. A planar Hopf orbit and its approximation. We begin by establishing the
existence of a periodic Hopf orbit in the x, y plane and approximating the orbit
using a perturbation technique. For the system (3) and the conditions given in
the statement of the above theorem, Theorem (4) provides the existence of the
Hopf orbit for sufficiently small positive values of the bifurcation parameter κ. An
approximation to the orbit is obtained by first varying the parameter κ which shifts
the original equilibrium (x̄, ȳ) (for κ = 0) to the point (x̂, ŷ). Next, this new system
and its equilibrium are perturbed as follows

x = x̂+ x1ε+ x2ε
2 + x3ε

3 + · · ·,
y = ŷ + y1ε+ y2ε

2 + y3ε
3 + · · ·,

ω = ω0 + ω1ε+ ω2ε
2 + ω3ε

3 + · · ·,
κ = κ1ε+ κ2ε

2 + κ3ε
3 + · · ·.

Substituting the above perturbed variables into the system and writing
t = ωτ we obtain a sequence of equations by collecting and equating powers of ε.
The ε0 terms correspond to equilibrium and vanish. The ε1 terms yield(

ẋ1

ẏ1

)
=
(

0 ω0x̄(k̄2 − k̄1)
−ω0ȳ(k̄2 − k̄1) 0

)(
x1

y1

)
.

In order for this system to have a solution of period 2π we choose ω0 so that
ω0 = (

√
x̄ȳ(k̄2− k̄1))−1. Utilizing this new value, a fundamental matrix solution for

the above is given by

Ψ(τ) =

(√
x̄
ȳ cos τ

√
x̄
ȳ sin τ

− sin τ cos τ

)
.

We are free to choose an arbitrary initial value for (x1, y1) and choose one such that(
x1

y1

)
=

(√
x̄
ȳ cos τ

− sin τ

)
.

The ε2 terms are of the form(
ẋ2

ẏ2

)
=
(

0 ω0x̄(k̄2 − k̄1)
−ω0ȳ(k̄2 − k̄1) 0

)(
x2

y2

)
+
(
f1(ω1, κ1, x1, y1)
f2(ω1, κ1, x1, y1)

)
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where fi are quadratic functions of x1 and y1 with nontrivial coefficients. In order
for the x2 and y2 to be 2π periodic, the following secularity condition must be
satisfied (

0
0

)
=
∫ 2π

0

Ψ−1(τ)
(
f1(ω1, κ1, x1, y1)
f2(ω1, κ1, x1, y1)

)
dτ.

After integrating and simplifying it is found that the secularity conditions can be
fulfilled if and only if κ1 = ω1 = 0. Thus we may modify the expansions of ω and
κ as follows

ω = ω0 + ω2ε
2 + ω3ε

3 + · · ·,
κ = κ2ε

2 + κ3ε
3 + · · ·

and write the parameterization of the Hopf orbit as

x(t, ε) = x̃(τ, ε) = x̂+ ε

√
x̄

ȳ
cos(τ) + ε2x2(τ) + · · ·,

y(t, ε) = ỹ(τ, ε) = ŷ − ε sin(τ) + ε2y2(τ) + · · ·.

In addition to the ε1 terms, the constant terms of the functions x2(τ) and y2(τ) will
also be required in the next step of method. The general form for these functions
is given by (

x2

y2

)
= Ψ(τ)

((
p2

q2

)
+
∫ τ

0

Ψ−1(s)
(
f1(ω1, κ1, x1, y1)
f2(ω1, κ1, x1, y1)

)
ds

)
.

The constant terms are obtained as follows(
cx2

cy2

)
=

1
2π

∫ 2π

0

Ψ(τ)
(∫ τ

0

Ψ−1(s)
(
f1(ω1, κ1, x1, y1)
f2(ω1, κ1, x1, y1)

)
ds

)
dτ.

Performing this calculation we find(
cx2

cy2

)
=

(
−(x̄+ ȳ)k̄

3
2
2 (2
√
a2m2(k̄2 − k̄1)ȳ)−1

(x̄+ ȳ)k̄
3
2
1 (2
√
a1m1(k̄2 − k̄1)ȳ)−1

)
.

3.3.2. Neutral stability. We now consider the system represented by (18) and note
that the Hopf orbit obtained in the previous section exists in the present system
when z = 0. The present focus will be to determine the conditions for the neutral
stability of this orbit with respect to the third species. Following the development
in Smith [24], by examining the variational equation of (18), the neutral stability
condition can be expressed by

G(ε) =
1

2π

∫ 2π

0

m3(1− x̃(τ, ε)− ỹ(τ, ε))
a3 + 1− x̃(τ, ε)− ỹ(τ, ε)

− ε+ k1x̃(τ, ε) + k̄2ỹ(τ, ε) dτ = 0.

Expanding the integrand with respect to ε, performing the integration, and rewrit-
ing the result in terms of the growth functions we obtain

G(ε) =
S̄(m3 −m1)(S̄ − Ŝ)

(a3 + S̄)(a1 + S̄)
+ ε2

(
(x̄+ ȳ)

4ȳ(k̄2 − k̄1)

)(
h̄′′(S̄)(g′(S̄)− f ′(S̄)) +

+ g′′(S̄)(h′(S̄)− f ′(S̄)) + f ′′(S̄)(g′(S̄)− h′(S̄))
)

+ o(ε2).
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Based on the ε0 term in G(ε) we define η = S̄− Ŝ. From the fact that f(Ŝ) = h(Ŝ),
it is possible to define m3 as a function of η and write

m3(η) =
m1(a3 + Ŝ)
a1 + Ŝ

=
m1(a3 + S̄ − η)
a1 + S̄ − η

.

It is assumed that m3(0) 6= m1, so that by continuity, the sign of
(m3(η)−m1) is constant in some neighborhood of η = 0. The ε0 term is therefore
rewritten as

S̄(m3(η)−m1)η
(a3 + S̄)(a1 + S̄)

and it is noted that the sign of this expression changes as η passes through zero.
We define a new function

H(ε, η) =
1

2π

∫ 2π

0

m3(η)(1− x̃(τ, ε)− ỹ(τ, ε))
a3 + 1− x̃(τ, ε)− ỹ(τ, ε)

− ε+ k1x̃(τ, ε) + k̄2ỹ(τ, ε) dτ

and recognize thatH(ε, η) = 0 gives the neutral stability criteria. Using the previous
results and definitions, the following are derived

H(0, 0) = 0,
∂H

∂ε
(0, 0) = 0,

∂H

∂η
(0, 0) =

S̄(m3(0)−m1)
(a3 + S̄)(a1 + S̄)

.

From the implicit function theorem, η can be defined as a function of ε, η(ε), in
some neighborhood of ε = 0 with η(0) = 0. By implicit differentiation the following
results are established

∂η

∂ε
(0)−

∂H
∂ε (0, 0)
∂H
∂η (0, 0)

= 0,

∂2η

∂ε2
(0) = −

∂2H
∂ε2 (0, 0)
∂H
∂η (0, 0)

=
(

a1m3(0)(x̄+ ȳ)
2ȳh̄(S̄)f ′(S̄)(a1 − a3)(g′(S̄)− f ′(S̄))

)
×
(
h̄′′(S̄)(g′(S̄)− f ′(S̄)) + g′′(S̄)(h̄′(S̄)− f ′(S̄)) + f ′′(S̄)(g′(S̄)− h̄′(S̄))

)
.

where h̄(S) is the growth function with m3 = m3(0). Summarizing, the neutral
stability criteria near ε = 0 may be expressed as H(ε, η(ε)) = 0 where η(ε) =
∂2η
∂ε2 (0)ε2 +O(ε3) ≈ ∂2η

∂ε2 (0)ε2.

3.3.3. A bifurcation result. The next step in the technique is to obtain a parametric
family of periodic orbits which bifurcate form the planar Hopf orbit into first octant.
We begin my modifying the third equation in (18) to reflect its dependence on η

ż = z

(
m3(η)(1− x− y − z)
a3 + (1− x− y − z)

− ε+ k1x+ k̄2y

)
and assume that k1 and all other parameters are fixed. Letting x(t) = p(t) corre-
spond to the Hopf periodic orbit of the above system with z = 0, it is noted that
the orbit it is asymptotically stable in the xy plane. By the appropriate translation
of variables the Hopf orbit has the form p(0) = 0 and p′(0) = (p′1(0),0). Next,
φ(t, (x, y, z); η) is defined as a solution to the above system in the translated co-
ordinates with φ(0, (x, y, z); η) = (x, y, z). A Poincaré map P is established in a
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neighborhood U of 0 in the plane H = {x = 0} where P maps U into V , with
V another neighborhood of 0 in H. Corresponding to P is a smooth function
τ(y, z; η) which gives the first return time for any point in U to V . It follows that
τ(0, 0; η) = τ0, the period of the Hopf orbit p(t). Thus P (y, z; η) may be regarded as
a projection of φ(τ(y, z; η), 0, y, z; η) onto the yz plane with P (0, 0; η) = (0, 0). We
define the displacement map F̄ : U × R→ H by F̄ (y, z; η) = (y, z)−P (y, z; η) and
note that periodic solutions to (18) will be zeros of F̄ . Expressing the component
functions of P as P1 and P2 and using the invariance of the xy plane for the above
system we may write P2(y, 0; η) = 0 so that the Jacobian of the Poincaré map is
given by

D(y,z)P (0, 0; η) =
(∂P1

∂y (0, 0; η) ∂P1
∂z (0, 0; η)

0 ∂P2
∂z (0, 0; η)

)
.

Note that since p(t) is asymptotically stable and independent of η, the inequality
0 < ∂P1

∂y (0, 0; η) < 1 holds for all η. Expressing the component functions of φ
as φ1, φ2, and φ3, gives P2(0, z; η) = φ3(τ(0, z; η), 0, 0, z; η), and taking derivatives
yields

∂P2

∂z
(0, 0; η) =

∂φ3

∂t
(τ(0, 0; η), 0, 0, 0; η) · ∂τ

∂z
(0, 0; η) +

∂φ3

∂z
(τ(0, 0; η), 0, 0, 0; η)

and since φ3(t, 0, 0, 0; η) ≡ 0, the above simplifies to

∂P2

∂z
(0, 0; η) =

∂φ3

∂z
(τ(0, 0; η), 0, 0, 0; η). (19)

Expressing the third equation in (18) as ż = G(x, y, z; η) and integrating the varia-
tional equation of the system along p(t), we find

∂φ3

∂z
(τ(0, 0; η), 0, 0, 0; η) = e

R τ0
0

∂G
∂z (p1(s),p2(s),0;η)ds. (20)

If η is an element of the neutral stability curve, then the integral evaluates to zero
and ∂P2

∂z (0, 0; η) = 1. Next we seek a particular branch of solutions of F̄ (y, z; η) = 0
(i.e., a collection of periodic solutions) and begin by noting

D(y,z)F̄ (0, 0; η) =
(

1− ∂P1
∂y (0, 0; η) −∂P1

∂z (0, 0; η)
0 1− ∂P2

∂z (0, 0; η)

)
.

For η = η∗ the above Jacobian becomes

D(y,z)F̄ (0, 0; η∗) =
(

1− ∂P1
∂y (0, 0; η∗) −∂P1

∂z (0, 0; η∗)
0 0

)
which has a one-dimensional null space spanned by the vector

u =
(

∂P1
∂z (0,0;η∗)

1− ∂P1
∂y (0,0;η∗)

, 1
)T

.

Observing that the column space of D(y,z)F̄ (0, 0; η∗) has dimension one, we seek to
verify the condition

D(y,z),ηF̄ (0, 0; η∗)u 6∈ Range D(y,z)F̄(0, 0; η∗). (21)

Since the range of D(y,z)F̄ (0, 0; η∗) is of the form (a, 0)T with a ∈ R, the bifurcation
condition is satisfied if the second element of the column vector D(y,z),ηF̄ (0, 0; η∗)u
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is nonzero. Calculating we find that since ∂P1
∂y is independent of η

D(y,z),ηF̄ (0, 0; η∗)u =

(
0 − ∂2P1

∂z∂η (0, 0; η∗)
0 − ∂2P2

∂z∂η (0, 0; η∗)

)
u = −

(
∂2P1
∂z∂η (0, 0; η∗)
∂2P2
∂z∂η (0, 0; η∗)

)
so that the bifurcation condition is satisfied if ∂2P2

∂z∂η (0, 0; η∗) 6= 0. Combining equa-
tions (19), (20) and the observation following (20) provides the equation

∂2P2

∂z∂η
(0, 0; η∗) =

∫ τ0

0

∂2G

∂z∂η
(p1(r),p2(r), 0; η∗) dr = m′3(η∗)

∫ τ0

0

S(r)
a3 + S(r)

dr

Note that S(r) is strictly positive and since m′3(η∗) = m1(a3−a1)
(a1+S̄−η∗)2

6= 0, (it is assumed

a1 6= a3), this implies ∂2P2
∂z∂η (0, 0; η∗) < 0 so that (21) is satisfied. This development

verifies the conditions for Theorem 1.7 from Crandall and Rabinowitz [7] and as a
result establishes the existence of a branch of solutions of F̄ (y, z; η) = 0 of the form(

y
z

)
= su + o(s),

η = η∗ + sη1 + o(s) (22)

where s is a real scalar.

3.3.4. An expansion for the bifurcating orbit. In order to determine the stability
of the periodic solutions resulting from this branch, it is necessary to study the
interactions of the terms η1,

∂2η
∂ε2 (0), and S̄(m̄3−m1)η

(a1+S̄)(a3+S̄)
. Near the origin of the ε, η

plane, the curve η(ε) = ∂2η
∂ε2 (0)ε2 approximates the neutral stability curve and locally

partitions the plane into a region of stability and instability with respect to the
third organism for the planar Hopf orbit. The relative positions of the stable and
unstable regions can be determined by the term S̄(m̄3−m1)η

(a1+S̄)(a3+S̄)
since it governs the

sign of G(ε) at ε = 0. As the parameter s increases from zero, the bifurcating
orbits advance into the first octant and η increases if η1 is positive and decreases
otherwise. Therefore, once the relative positions of the stable and unstable regions
are known, the direction that η travels from the neutral stability curve as s is varied
will determine the stability of Hopf orbit and therefore of the bifurcating orbits since
they are opposite. Thus the problem is understood once the sign of η1 is determined
(see Fig. 2). To find the sign of η1, we begin by representing the branch of periodic
solutions as an expansion in s as follows

η = η∗ + sη1 + · · ·,
x(t) = x0(t) + sx1(t) + · · ·,
y(t) = y0(t) + sy1(t) + · · ·,
z(t) = sz1(t) + · · ·, (23)

where η∗ is on the neutral stability curve and (x0(t), y0(t)) are time translates of
the Hopf periodic solution to (18) which satisfy y′0(0) = 0. We use the previous
results obtained in the bifurcation discussion by translating the origin to the point
(x0(0), y0(0), 0). For the orbits described by (23) we require (y(0), z(0)) ∈ H =
{x = x0(0)} so that the periods may be given by τ = τ(y(0), z(0); η) ≡ τ(s). Since
the orbits are all periodic, from (18) it is deduced that

g(s) ≡
∫ τ(s)

0

{
m3(η)(1− x(t)− y(t)− z(t))
a3 + (1− x(t)− y(t)− z(t))

− ε+ k1x(t) + k̄2y(t)
}
dt ≡ 0.
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Differentiating g(s) with respect to s at s = 0 gives

0 =
(
m3(η∗)(1− x0(τ(0))− y0(τ(0)))
a3 + (1− x0(τ(0))− y0(τ(0)))

− ε+ k1x0(τ(0)) + k̄2y0(τ(0))
)
dτ

ds
(0)

+
∫ τ(0)

0

{
−a3m3(η∗)(x1(t) + y1(t) + z1(t))

(a3 + (1− x0(t)− y0(t)))2
+ k1x1(t) + k̄2y1(t)

}
dt

+
∫ τ(0)

0

η1m
′
3(η∗)(1− x0(t)− y0(t))

a3 + (1− x0(t)− y0(t))
dt. (24)

This equation will be used to calculate the sign of η1. Recalling the definition of
τ(y, z; η), we observe that the period of the planar Hopf orbit is independent of the
value of η; thus ∂τ

∂η (y0(0), 0; η∗) = 0 and using the chain rule we calculate

dτ

ds
(0) =

∂τ

∂y
(y0(0), 0; η∗)y1(0) +

∂τ

∂z
(y0(0), 0; η∗)z1(0).

Because the Poincaré map is defined in the plane x = x0(0) with the fixed point at
y = y0(0) and z = 0 corresponding to the Hopf orbit, the bifurcation result (22) is

used to conclude that y1(0) =
∂P1
∂z (y0(0),0;η∗)

1− ∂P1
∂y (y0(0),0;η∗)

and z1(0) = 1. Since P1(y, z; η) =

φ2(τ(y, z; η), x0(0), y, z; η), by taking derivatives the following equation results
∂P1

∂z
(y0(0), 0; η∗) =

∂φ2

∂t
(τ(0), x0(0), y0(0), 0; η∗)

∂τ

∂z
(y0(0), 0; η∗)

+
∂φ2

∂z
(τ(0), x0(0), y0(0), 0; η∗).

The point (x0(0), y0(0), 0) was defined so that 0 = y′0(0) = ∂φ2
∂t (τ(0), x0(0), y0(0), 0; η∗)

and thus
∂P1

∂z
(y0(0), 0; η∗) =

∂φ2

∂z
(τ(0), x0(0), y0(0), 0; η∗).

A similar calculation yields

1− ∂P1

∂y
(y0(0), 0; η∗) = 1− ∂φ2

∂y
(τ(0), x0(0), y0(0), 0; η∗)

and so

y1(0) =
∂φ2
∂z (τ(0), x0(0), y0(0), 0; η∗)

1− ∂φ2
∂y (τ(0), x0(0), y0(0), 0; η∗)

.

By definition φ1(τ(y, z; η), x0(0), y, z; η) ≡ x0(0), so by differentiating this expres-
sion with respect to y and evaluating at s = 0 we find

∂φ1

∂t
(τ(0), x0(0), y0(0), 0; η∗)

∂τ

∂y
(y0(0), 0; η∗)+

∂φ1

∂y
(τ(0), x0(0), y0(0), 0; η∗) = 0

or upon rearrangement and suppressing dependent variables

∂τ

∂y
(y0(0), 0; η∗) = −

∂φ1
∂y (τ(0), x0(0), y0(0), 0; η∗)
∂φ1
∂t (τ(0), x0(0), y0(0), 0; η∗)

.

A similar approach also yields

∂τ

∂z
(y0(0), 0; η∗) = −

∂φ1
∂z (τ(0), x0(0), y0(0), 0; η∗)
∂φ1
∂t (τ(0), x0(0), y0(0), 0; η∗)

.
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Thus by combining all of the above and displaying only the time dependence we
obtain

dτ

ds
(0) = −

( ∂φ1
∂y (τ0)
∂φ1
∂t (τ0)

)( ∂φ2
∂z (τ0)

1− ∂φ2
∂y (τ0)

)
−

∂φ1
∂z (τ0)
∂φ1
∂t (τ0)

. (25)

Next we need to calculate the expansions of x(t), y(t), and z(t) in (23). Beginning
with

x(t) = φ1(t, x(0), y(0), z(0); η)
and rewriting in terms of the expanded variables gives

x(t) = φ1(t, x0(0), y0(0) + sy1(0) + · · ·, sz1(0) + · · ·; η∗ + sη1 + · · ·),

x(t) = φ1

(
t, x0(0), y0(0) + s

∂φ2
∂z

1− ∂φ2
∂y

+ · · · , s+ · · · ; η∗ + sη1 + · · ·
)
,

where we omitted the argument (τ(0), x0(0), y0(0), 0; η∗) for notational brevity.
Performing a Taylor series expansion of the above about s = 0 provides the equation

x(t) = x0(t) + s

(
∂φ1

∂y

∂φ2
∂z

1− ∂φ2
∂y

+
∂φ1

∂z

)
+ o(s).

A similar expansion for the remaining two variables yields

y(t) = y0(t) + s

(
∂φ2

∂y

( ∂φ2
∂z

1− ∂φ2
∂y

)
+
∂φ2

∂z

)
+ o(s),

z(t) = s
∂φ3

∂z
+ o(s).

From the above series expansions we find the following expressions in which all
variables except t have been suppressed for ease of notation

x1(t) =
∂φ1

∂y
(t)
( ∂φ2

∂z (τ0)

1− ∂φ2
∂y (τ0)

)
+
∂φ1

∂z
(t),

y1(t) =
∂φ2

∂y
(t)
( ∂φ2

∂z (τ0)

1− ∂φ2
∂y (τ0)

)
+
∂φ2

∂z
(t),

z1(t) = 1. (26)

Substituting (25) and (26) into (24) yields after simplification

0 = −
(
m3(η∗)(1− x0(τ0)− y0(τ0))
a3 + (1− x0(τ0)− y0(τ0))

− ε+ k1x0(τ0) + k̄2y0(τ0)
)
×(

∂φ1

∂y
(τ0)

∂φ2

∂z
(τ0) +

∂φ1

∂z
(τ0)

(
1− ∂φ2

∂y
(τ0)

))

−
(

1− ∂φ2

∂y
(τ0)

)
∂φ1

∂t
(τ0)

∫ τ(0)

0

a3m3(η∗)
(
∂φ1
∂z + ∂φ2

∂z + ∂φ3
∂z

)
(a3 + (1− x0(t)− y0(t)))2

dt

−∂φ1

∂t
(τ0)

∫ τ(0)

0

a3m3(η∗)
(
∂φ1
∂y

∂φ2
∂z + ∂φ2

∂y
∂φ2
∂z

)
(a3 + (1− x0(t)− y0(t)))2

dt

+
(

1− ∂φ2

∂y
(τ0)

)
∂φ1

∂t
(τ0)

∫ τ(0)

0

(
k1
∂φ1

∂z
+ k̄2

∂φ2

∂z

)
dt
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+
∂φ1

∂t
(τ0)

∫ τ(0)

0

(
k1
∂φ1

∂y

∂φ2

∂z
+ k̄2

∂φ2

∂y

∂φ2

∂z

)
dt

+
(

1− ∂φ2

∂y
(τ0)

)
∂φ1

∂t
(τ0)

∫ τ(0)

0

η1m
′
3(η∗)(1− x0(t)− y0(t))

a3 + (1− x0(t)− y0(t))
dt. (27)

3.3.5. Additional expansions. In order to use (27) to determine the sign of η1, the
following perturbation expansions are required (note x0(t) and y0(t) are chosen so
that y′0(0) = 0):

η∗ =
1
2
ε2N + · · ·,

x0(t) = x̄+ ε

√
x̄

ȳ
sin
(
t

ω0

)
+ · · ·,

y0(t) = ȳ + ε cos
(
t

ω0

)
+ · · ·,

∂φ1

∂t
(τ0) =

∂φ1

∂t
(0) = x′0(0) = ε

√
x̄

ȳ

(
1
ω0

)
+ · · ·,

∂φ1

∂y
(t) = ψ0(t) + εψ1(t) + · · ·,

∂φ1

∂z
(t) = γ0(t) + εγ1(t) + · · ·,

∂φ2

∂y
(t) = δ0(t) + εδ1(t) + · · ·,

∂φ2

∂z
(t) = ρ0(t) + ερ1(t) + · · ·,

∂φ3

∂z
(t) = 1 + ε

(
ω0(k̄2 − h̄′(S̄)) sin

(
t

ω0

)
+

ω0(h̄′(S̄)− k̄1)
√
x̄

ȳ
cos
(
t

ω0

)
+ ω0(k̄1 − h̄′(S̄))

√
x̄

ȳ

)
+ · · · (28)

where the constant N is given by

N =
(

a1m3(0)(x̄+ ȳ)
2ȳh̄(S̄)f ′(S̄)(a1 − a3)(g′(S̄)− f ′(S̄))

)(
h̄′′(S̄)(g′(S̄)− f ′(S̄)) +

+g′′(S̄)(h̄′(S̄)− f ′(S̄)) + f ′′(S̄)(g′(S̄)− h̄′(S̄))
)
.

Note that the expansion for ∂φ3
∂z (t) results from taking the partial derivative with

respect to z of a term in the variational equation for system (18):

d

dt

(
∂φ3

∂z
(t)
)

=
∂φ3

∂z
(t)
(
m3(1− x0(t)− y0(t))
a3 + 1− x0(t)− y0(t)

− ε+ k1x0(t) + k̄2y0(t)
)

where φ3(0) = 0 and ∂φ3
∂z (0) = 1.

To evaluate the integrals in (27), we must perform some calculations on certain
quantities in the expansions given by (28). First the functions ψ0(t), δ0(t), γ0(t),
and ρ0(t) must be determined. Considering (φ1(t), φ2(t), φ3(t)) as a solution to the
system (18) and taking the derivative of the first two equations with respect to y
gives

d

dt

(
∂φ1

∂y

)
=
∂φ1

∂y

(
m1(1− φ1 − φ2 − φ3)
a1 + (1− φ1 − φ2 − φ3)

− ε+ k1φ1 + k̄2φ2

)
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+φ1

(
−

m1a1(∂φ1
∂y + ∂φ2

∂y + ∂φ3
∂y )

(a1 + (1− φ1 − φ2 − φ3))2
+ k1

∂φ1

∂y
+ k̄2

∂φ2

∂y

)
,

d

dt

(
∂φ2

∂y

)
=
∂φ2

∂y

(
m2(1− φ1 − φ2 − φ3)
a2 + (1− φ1 − φ2 − φ3)

− ε+ k1φ1 + k̄2φ2

)

+φ2

(
−

m2a2(∂φ1
∂y + ∂φ2

∂y + ∂φ3
∂y )

(a2 + (1− φ1 − φ2 − φ3))2
+ k1

∂φ1

∂y
+ k̄2

∂φ2

∂y

)
.

Letting φ1(t) = x0(t), φ2(t) = y0(t), φ3(t) = 0, substituting from (28), and
collecting the ε0 terms gives the system(

ψ′0(t)
δ′0(t)

)
=
(

0 x̄(k̄2 − k̄1)
−ȳ(k̄2 − k̄1) 0

)(
ψ0(t)
δ0(t)

)
,

(
ψ0(0)
δ0(0)

)
=
(

0
1

)
with the solution given by (

ψ0(t)
δ0(t)

)
=

(√
x̄
ȳ sin( t

ω0
)

cos( t
ω0

)

)
.

The initial conditions result from the fact that φ1(0, x0(0), y0(0), 0; η) = x0(0) and
φ2(0, x0(0), y0(0), 0; η) = y0(0), which in turn implies ∂φ1

∂y (0) = 0 and ∂φ2
∂y (0) = 1

so that we conclude ψ0(0) = 0 and δ0(0) = 1. Similarly, taking the derivative with
respect to z of the first two equations of system (18), substituting the ε expansions,
using ∂φ3

∂z = 1 +O(ε), and collecting the ε0 terms gives a system with the following
solution (

γ0(t)
ρ0(t)

)
=

1
k̄2 − k̄1

k̄2 cos( t
ω0

)− k̄2 − k̄1

√
x̄
ȳ sin( t

ω0
)

k̄1 − k̄1 cos( t
ω0

)− k̄2

√
ȳ
x̄ sin( t

ω0
)

 . (29)

Additionally certain quantities involving ψ1(t), δ1(t), γ1(t) and ρ1(t) are needed.
Proceeding as above we collect the ε1 terms of the expansions and find a system of
the form (

ψ′1(t)
δ′1(t)

)
= A

(
ψ1(t)
δ1(t)

)
+D(t)

Letting Φ(t) be the fundamental matrix for the homogeneous problem, then the
following equations are developed(

ψ1(τ0)
δ1(τ0)

)
= Φ(τ0)

∫ τ0

0

Φ(t)−1D(t) dt,∫ 2πω0

0

(
ψ1(t)
δ1(t)

)
dt =

∫ 2πω0

0

Φ(t)
(∫ t

0

Φ(s)−1D(s) ds
)
dt.

which when solved yields ψ1(τ0) = δ1(τ0) = 0 and∫ 2πω0

0

(
ψ1(t)
δ1(t)

)
dt =

 ω2
0π(x̄+ ȳ)g′′(S̄)

√
x̄
ȳ

−ω2
0π(x̄+ ȳ)f ′′(S̄)

√
x̄
ȳ

 .

A similar system is obtained for γ1(t) and ρ1(t) and using the previous techniques
gives ρ1(τ0) = −ω0πh̄

′(S̄). As a final preparatory step, we note that in their text,
Marsden and McCracken define a displacement function by V (y) = P1(y, 0) − y.
They demonstrate that V (0) = V ′(0) = V ′′(0) so that by using a Taylor expansion
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it is possible to write V (y) = 1
3!V
′′′(0)y3 + · · · (Note that the dependence of V on

the bifurcation parameter has been suppressed). The above implies

1− ∂φ2

∂y
(τ0) = 1− ∂P1

∂y
(y, 0) = − 1

2!
V ′′′(0)y2 + · · · = − 1

2!
V ′′′(0)ε2 + · · ·

where y has been replaced by ε since they agree to the first order. (Recall the fixed
point of the Poincare map corresponds to (0, 0).) This gives

1− ∂φ2

∂y
(τ0) = N̄ε2 +O(ε3)

where N̄ = − 1
2!V
′′′(0) > 0.

3.3.6. The sign of η1. Having performed all of the above calculations, we are in a
position to solve (27) for η1. We begin by expanding this equation with respect to ε,
performing the integrations, simplifying, collecting the like powers of ε, and equating
their coefficients to zero. The result of these operations will be an expression for
η1 in terms of the system variables, the growth functions, and their derivatives. To
aid in the simplification of (27), we perform some preliminary computations. Based
upon (28) and the discussion at the end on section 3.3.5 the following equality holds(

1− ∂φ2

∂y
(τ0)

)(
∂φ1

∂t
(τ0)

)
=
N̄

ωo

√
x̄

ȳ
ε3 +O(ε4). (30)

Using the definition of m3(η) and η∗, one can easily derive the expansions

m3(η∗) =
m1(a3 + S̄ − η∗)
a1 + S̄ − η∗

=
m1(a3 + S̄)
a1 + S̄

+O(ε2) = m̄3 +O(ε2),

m′3(η∗) =
m1(a3 − a1)

(a1 + S̄ − η∗)2
=
m1(a3 − a1)

(a1 + S̄)2
+O(ε2). (31)

For the first term of (27), using (28) and (31) the first factor may be expanded as

m3(η∗)(1− x0(τ0)− y0(τ0))
a3 + (1− x0(τ0)− y0(τ0))

− ε+ k1x0(τ0) + k̄2y0(τ0) =

ε0

(
m̄3(1− x̄− ȳ)
a3 + (1− x̄− ȳ)

− ε+ k̄1x̄+ k̄2ȳ

)
+

ε1

(
m̄3(1− x̄− ȳ)

(a3 + (1− x̄− ȳ))2
− m̄3

a3 + (1− x̄− ȳ)
+ k̄2

)
+O(ε2).

From the development of h(S), if m3(η) = m̄3, then h(S̄) = f(S̄) so that the ε0

term vanishes in the above expression. For the second factor, we deduce from section
3.3.5 that ψ0(τ0) = ρ0(τ0) = γ0(τ0) = ψ1(τ0) = 0 and upon expansion obtain

∂φ1

∂y
(τ0)

(
∂φ2

∂z
(τ0)

)
= ε0(ψ0(τ0)ρ0(τ0)) + ε1(ψ0(τ0)ρ1(τ0) + ψ1(τ0)ρ0(τ0)) +

ε2(ψ1(τ0)ρ1(τ0) + ψ0(τ0)ρ2(τ0) + ψ2(τ0)ρ0(τ0)) +O(ε3) = O(ε3),
∂φ1

∂z
(τ0)

(
1− ∂φ2

∂y
(τ0)

)
=

(ε0γ0(τ0) + ε1γ1(τ0) +O(ε2))(ε2N̄ +O(ε3)) = O(ε4).
Combining all of this information, the first term is found to be of order O(ε4). For
the second term of (27), the numerator of the integrand can be expanded as

a3(ε0m̄3 +O(ε2))(ε0γ0(t) + ε1γ1(t) + ε0ρ0(t) + ε1ρ1(t) + 1),
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and the denominator can be written as

ε0

(a3 + 1− x̄− ȳ)2
+

2ε1
(√

x̄
ȳ sin

(
t
ω0

)
+ cos

(
t
ω0

))
(a3 + 1− x̄− ȳ)3

+O(ε2).

Combining these expressions with (30) yields(
N̄

ωo

√
x̄

ȳ

∫ 2πω0

0

a3m̄3(γ0(t) + ρ0(t) + 1)
(a3 + 1− x̄− ȳ)2

dt

)
ε3 +O(ε4).

From (29) it is clear that γ0(t) + ρ0(t) + 1 will integrate to zero so the above
expression is of order O(ε4). The numerator of the integrand in the third term may
be written as

a3(ε0m̄3 +O(ε2))(ε0ψ0(t) + ε1ψ1(t) + ε0δ0(t) + ε1δ1(t) +O(ε2))

×(ε1ρ1(τ0) + ε2ρ2(τ0) +O(ε3))
while the denominator may be expanded as

ε0

(a3 + 1− x̄− ȳ)2
+

2ε1
(√

x̄
ȳ sin

(
t
ω0

)
+ cos

(
t
ω0

))
(a3 + 1− x̄− ȳ)3

+O(ε2).

Combining this information, the integrand may be expressed as

ε1 a3m̄3ρ1(τ0)(ψ0(t) + δ0(t))
(a3 + 1− x̄− ȳ)2

+ ε2 a3m̄3ρ2(τ0)(ψ0(t) + δ0(t))
(a3 + 1− x̄− ȳ)2

+

ε2

(
2a3m̄3ρ1(τ0)(ψ0(t) + δ0(t))

(a3 + 1− x̄− ȳ)3

(√
x̄

ȳ
sin
(
t

ω0

)
+ cos

(
t

ω0

))
+

+
a3m̄3ρ1(τ0)(ψ1(t) + δ1(t))

(a3 + 1− x̄− ȳ)2

)
+O(ε3).

It is clear that the first two terms will integrate to zero while the remaining ε2 term
may be written as

ε2 2a3m̄3ρ1(τ0)
(a3 + 1− x̄− ȳ)3

(√
x̄

ȳ
sin
(
t

ω0

)
+ cos

(
t

ω0

))2

+ε2 a3m̄3ρ1(τ0)(ψ1(t) + δ1(t))
(a3 + 1− x̄− ȳ)2

.

After integration and using (28) the third term is given by

−ε3

[
2πa3m̄3ρ1(τ0)

(a3 + 1− x̄− ȳ)3

√
x̄

ȳ

(
x̄

ȳ
+ 1

)
+

+
√
x̄

ȳ

a3m̄3ρ1(τ0)
ω0(a3 + 1− x̄− ȳ)2

∫ τ(0)

0

(ψ1(t) + δ1(t)) dt
]

+ O(ε4).

In the fourth term, we note that for the integral, the coefficient of ε0 is given by∫ 2πω0

0

k̄1γ0(t) + k̄2ρ0(t)dt.

From (29), it is evident that this integral is equal to zero, so that using (30), the
fourth term is of order O(ε4). For the fifth term of (27), the integrand may be
expanded as

[(ε0k̄1 + ε2κ2 +O(ε3))(ε0ψ0(t) + ε1ψ1(t) + ε2ψ2(t) +O(ε3)) + k̄2(ε0δ0(t) +

ε1δ1(t) + ε2δ2(t) +O(ε3))](ε1ρ1(τ0) + ε2ρ2(τ0) +O(ε3))
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which reduces to

ε1[(k̄1ψ0(t) + k̄2δ0(t))ρ1(τ0)+

+ε2[(k̄1ψ0(t) + k̄2δ0(t))ρ2(τ0) + (k̄1ψ1(t) + k̄2δ1(t))ρ1(τ0)].

Each expression which involves ψ0(t) or δ0(t) integrates to zero so using (28), this
term can be expressed as

ε3

√
x̄

ȳ

(
ρ1(τ0)
ω0

)∫ 2πω0

0

k̄1ψ1(t) + k̄2δ1(t) dt+O(ε4).

Analysing the final term, we expand the integral as∫ τ(0)

0

(1− x0(t)− y0(t))
a3 + (1− x0(t)− y0(t))

dt =

∫ 2πω0

0

(1− x̄− ȳ)
a3 + (1− x̄− ȳ)

dt+O(ε1) =
2πω0h(S̄)

m3
+O(ε1).

Combining this with (30) and (31) the last term may be written as

η1

√
x̄

ȳ

(
2πm1N̄h(S̄)(a3 − a1)

m3(a1 + S̄)2

)
ε3 +O(ε4) =

η1

√
x̄

ȳ

(
2πN̄f ′(S̄)h(S̄)(a3 − a1)

a1m3

)
ε3 +O(ε4).

Using these expansions for the individual terms, we may rewrite (27) as

0 = η1

√
x̄

ȳ

(
2πN̄f ′(S̄)h(S̄)(a3 − a1)

a1m3

)
+

√
x̄

ȳ

(
ρ1(τ0)
ω0

)∫ 2πω0

0

k̄1ψ1(t) + k̄2δ1(t) dt

−2πa3m̄3ρ1(τ0)
(a3 + S̄)3

√
x̄

ȳ

(
x̄

ȳ
+ 1

)

−
√
x̄

ȳ

a3m̄3ρ1(τ0)
ω0(a3 + S̄)2

∫ 2πω0

0

ψ1(t) + δ1(t) dt .

Rearranging this equation, evaluating integrals, and substituting we obtain

η1 = ρ1(τ0)
(
m1

N̄

)(
a1(x̄+ ȳ)

2ȳh(S̄)f ′(S̄)(a1 − a3)(g′(S̄)− f ′(S̄))

)

×
(
h̄′′(S̄)(g′(S̄)− f ′(S̄)) + g′′(S̄)(f ′(S̄)− h̄′(S̄)) + f ′′(S̄)(h̄′(S̄)− g′(S̄))

)
.
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3.3.7. The stability of bifurcating orbits. As discussed previously, the stability of
the bifurcating orbits depends on η1,

∂2η
∂ε2 (0), and S̄(m̄3−m1)η

(a1+S̄)(a3+S̄)
. By defining

P =
a1(x̄+ ȳ)

2ȳh(S̄)f ′(S̄)(a1 − a3)(g′(S̄)− f ′(S̄))

Q = h̄′′(S̄)(g′(S̄)− f ′(S̄)) + g′′(S̄)(f ′(S̄)− h̄′(S̄)) + f ′′(S̄)(h̄′(S̄)− g′(S̄)),
it is possible to write

∂2η

∂ε2
(0) = m3PQ

η1 = ρ1(τ0)
(
m1

N̄

)
PQ. (32)

We observe from the statement of the problem as well as the definition of the growth
functions that P has the same sign as (a1−a3) and since ρ1(τ0) is strictly negative,
the two terms in (32) are of opposite sign. Having established the above identities
we wish to examine Q and to determine the sign of Q as a function of a3. Using the
fact that f(S̄) = g(S̄) = h(S̄) when η = 0, it follows that a3 = ai gives m3(0) = mi

for i ∈ {1, 2}. Thus a3 = a1 implies h̄(S) = f(S) and a3 = a2 implies h̄(S) = g(S)
(recall h̄(S) is the growth function with m3 = m3(0)), so that in either case, Q = 0.
Using the definitions of the uptake functions it is possible to express Q as a third
degree polynomial in a3 as follows

Q =
(

2m1m2(a2 − a1)
(a1 + S̄)3(a2 + S̄)3(a3 + S̄)3

)
×(

(m2 −m1)2S̄2a3
3 + S̄[2(m1a2 −m2a1) +m1a1 −m2a2]a2

3 +

(m2 −m1)S̄2[(m2 −m1)(a1 + a2)2 +m1a
2
1 −m2a

2
2]a3 + a1a2S̄

3(m2 −m1)2

)
.

Since, as previously discussed, a2 > a1, the term 2m1m2(a2−a1)
(a1+S̄)3(a2+S̄)3(a3+S̄)3

is positive,
which means that the constant term in the polynomial as well as the coefficient of
a3

3 are both positive. This implies Q has one negative root and the two positive
roots given by a1 and a2. From this information it is possible to deduce that Q > 0
for a3 ∈ (0, a1) ∪ (a2,+∞) and Q < 0 for a3 ∈ (a1, a2).

Table 1. The Signs of Essential Quantities as a Function of a3.

a3 < a1 a1 < a3 < a2 a2 < a3

η1 – – +

∂2η
∂ε2 (0) + + –

S̄(m̄3−m1)
(a1+S̄)(a3+S̄)

– + +

We are now in a position to determine how the interactions of the three growth
functions affect the bifurcation. First, Table 1 is constructed based upon the results
derived above. From the information in this table as well as the locally quadratic
nature of G(ε) it is possible to construct the following graphs of the neutral stability
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curves where U represents the region of instability for the planar Hopf orbit, S
represents the region of stability for the planar Hopf orbit, and the arrow points in
the direction of the change of η as the value of s becomes positive in the expansion
η = η∗ + sη1 +O(s2). These graphs demonstrate that for a3 < a1 or a2 < a3, the

Figure 3. Stability of the Hopf Orbit as a function of a3.

Hopf orbit loses its stability and the bifurcating orbit in the first octant becomes
asymptotically stable. The opposite is true for the case a1 < a3 < a2.

Figure 4. Relative positions of the growth functions as deter-
mined by a3.

The Figure 4 indicates the relative positions of the growth functions as the value
of a3 is varied. (Recall that g′(S̄) > f ′(S̄) implies that f(S) > g(S) for S ∈ (0, S̄).)

Correlating the information in Figures 3 and 4, we deduce that a stable periodic
orbit in the first octant results from a bifurcation when h′(0) is either greater than
or less than both f ′(0) and g′(0) while the bifurcating orbit is unstable otherwise.
Thus our initial claim is verified. The proof of Theorem 6 is now complete.

4. A numerical example. To illustrate the results obtained in Theorem 6, we
performed a numerical study of the model (18) with a specific choice of growth
functions

f(S) =
1.4S

0.2 + S
, g(S) =

2.5S
0.75 + S

, h(S) =
m3(η)S
0.1 + S

(m3(0) = 1.2) .

The graphs of all three growth functions intersect at the point (0.5, 1) when m3 =
1.2, in which case there exists an entire line of equilibria passing through the positive
octant. The derivatives of f and g are given by k̄1 = f ′(0.5) = 0.5714, and k̄2 =
g′(0.5) = 1.2 respectively. We set D(x, y) = 1.45 − k1x − k2y with k1 = k̄1 + 0.05
and k2 = k̄2 so that Lemma 1 warrants the existence of a limit cycle in the (x, y)
plane which is asymptotically stable in this plane.

Varying the value of the parameter m3 between 1.1998 and 1.1978, we located the
stable periodic solutions by forward numerical integration in Mathematica 5.2 [27].
The orbits of these periodic solutions are shown in Fig. 5. Numerical estimates
of the periods T and the Floquet multipliers µi corresponding to these periodic
solutions are presented in Table 2. Near the value m∗3 ≈ 1.1976, the limit cycle in
the (x, y) plane undergoes a transcritical bifurcation, and stable positive periodic
solutions exist for m3 > m∗3. As m3 increases towards the critical value 1.2, the
periods and amplitudes of the periodic solutions decrease monotonically. Another
bifurcation occurs at m3 = 1.2 where the periodic solutions interact with the line
of equilibria. The analysis of this bifurcation is a subject for a future study.

Figure 5. Stable periodic solutions obtained by varying the value m3.
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Table 2. Estimated periods and Floquet multipliers for the nu-
merical solutions shown in Fig. 5.

m3 T µ1, µ2, µ3

1.1978 43.566 1, 0.999, 0.531
1.1980 42.970 1, 0.993, 0.572
1.1982 42.289 1, 0.987, 0.619
1.1984 41.629 1, 0.975 , 0.623
1.1986 40.986 1, 0.973, 0.714
1.1988 40.361 1, 0.969, 0.763
1.1990 39.753 1, 0.962 , 0.814
1.1992 39.163 1, 0.953 , 0.868
1.1994 38.580 1, 0.933± 0.024i
1.1996 38.034 1, 0.955± 0.042i
1.1998 37.495 1, 0.977± 0.037i

5. Discussion. In this paper, we have analyzed the dynamics of microbial compe-
tition in the chemostat which is controlled by means of state dependent feedback.
We have considered the class of feedbacks where the dilution rate is a positive affine
function of the microbial concentrations. In case of two species competing in the
chemostat, we showed that the parameters of the feedback function may be varied
in such a way that the system undergoes a Hopf bifurcation. We have proved that
only supercritical Hopf bifurcations occur when the growth rates of both species
are governed by Michaelis-Menten kinetics (Theorem 4). Thus we established the
existence of stable periodic solutions in the two species case. In addition, we demon-
strated that under certain conditions on the growth functions, adding a third species
results in a transcritical bifurcation of limit cycles, where a periodic solution bifur-
cates into the region of coexistence for all three species (Theorem 6). We analyzed
the direction of the transcritical bifurcation and the stability of the bifurcating pe-
riodic solutions. We presented a numerical example illustrating the conclusion of
Theorem 6. The importance of the present study is to point the range of dynamic
possibilities for the coexistence of species by means of state-dependent control where
coexistence is impossible in the absence of such control.

The theoretical question of the existence and stability of stable periodic solutions
for growth functions with less stringent constraints remains open. Another open
and interesting question is the global dynamics in the two species case. In the
present report, we have left out several interesting details such as the existence of
multiple saddles on the boundary, possible existence of heteroclinic connections, and
resulting multistability. These questions will be addressed in the future reports.
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