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Global Exponential Stability of Competitive Neural
Networks With Different Time Scales

A. Meyer-Baese, S. S. Pilyugin, and Y. Chen

Abstract—The dynamics of cortical cognitive maps developed by self-
organization must include the aspects of long and short-term memory. The
behavior of such a neural network is characterized by an equation of neural
activity as a fast phenomenon and an equation of synaptic modification as
a slow part of the neural system. We present a new method of analyzing the
dynamics of a biological relevant system with different time scales based
on the theory of flow invariance. We are able to show the conditions under
which the solutions of such a system are bounded being less restrictive than
with the –monotone theory, singular perturbation theory, or those based
on supervised synaptic learning. We prove the existence and the uniqueness
of the equilibrium. A strict Lyapunov function for the flow of a competitive
neural system with different time scales is given and based on it we are able
to prove the global exponential stability of the equilibrium point.

Index Terms—Flow invariance, global exponential stability, multitime
scale neural network.

I. INTRODUCTION

Dynamic neural networks which contain both feedforward and
feedback connections between the neural layers play an important
role in visual processing, pattern recognition, neural computing,
and control. Moreover, biological networks possess synapses whose
synaptic weights vary in time. Thus, competitive neural networks with
a combined activity and weight dynamics constitute an important
class of neural networks. Their capability of storing desired patterns
as stable equilibrium points requires stability criteria which include
the mutual interference between neuron and learning dynamics.

This paper investigates the dynamics of cortical cognitive maps,
modeled by a system of competitive differential equations, from a
rigorous analytic standpoint. The networks under study model the
dynamics of both the neural activity levels, the short-term memory
(STM), and the dynamics of unsupervised synaptic modifications,
the long-term memory (LTM). The actual network models under
consideration may be considered extensions of Grossberg’s shunting
network [4] or Amari’s model for primitive neuronal competition [2].
These earlier networks are considered pools of mutually inhibitory
neurons with fixed synaptic connections. Our results extend the
previous studies to systems where the synapses can be modified by
external stimuli. Also, the learning algorithm is unsupervised.

Summarizing, we present a mathematical analysis of a revised
version of the Willshaw–Malsburg model [11] of topographic forma-
tion, solving the equations of synaptic self-organization coupled with
the field equation of neural excitations. In other words, we study the
dynamics of cortical cognitive maps developed by self-organization
which can be found in the nervous system.
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Recently, several articles have discussed neural systems with
time-varying weights. In [8] the dynamical behavior of discrete-time
neural networks is studied using stable dynamic backpropagation
algorithms. Two new stable learning concepts, the multiplier and
the constrained learning rate methods, are employed. They describe
supervised learning algorithms, and evaluate an error function.
Generalized dynamic neural networks described in [9] are recurrent
neural networks with time-dependent weights. The algorithm for
learning continuous trajectories is based on a variational formulation
of the Pontryagin maximum principle, and is also supervised. A robust
local stability condition has been presented in [10] for multilayer
recurrent neural networks with two hidden layers. TheNLq theory
was proposed as a stability theory for multilayer recurrent neural
with application to neural control. All these above mentioned papers
employ a supervised learning dynamics.

In this paper, we apply the theory of flow invariance on large-scale
neural networks, which have two types of state variables (LTM and
STM) describing the slow unsupervised and the fast dynamics of
the system. We will give the mathematical conditions for showing
when the STM and LTM trajectories are bounded. Our design is more
general than that given in [6] since it is not required to assume a high
gain approximation and it does not treat the two dynamics separately.
In addition, it does not require the excitatory region to comprise only
one neuron. We also give a strict Lyapunov function for the neural
multi-time scale system, show the existence and uniqueness of the
equilibrium, and prove global exponential stability for the equilibrium.
Also, our proof is based on a different approach than in [7] where the
analysis of only global asymptotic stability was based on the theory
of singular perturbations. Besides showing here the uniqueness and
existence of the equilibrium, we are able to prove milder and fewer
necessary conditions for stability.

We consider a laterally inhibited network with a deterministic signal
Hebbian learning law [5] that is similar to the spatiotemporal system of
Amari [1]. The general neural network equations describing the tem-
poral evolution of the STM and LTM states for thejth neuron of a
N -neuron network are

STM: � _xj =� ajxj +

N

i=1

Dijf(xi) +Bj

p

i=1

mijyi (1)

LTM: _mij =�mij + yif(xj) (2)

wherexj is the current activity level,aj is the time constant of the
neuron,Bj is the contribution of the external stimulus term,f(xi) is
the neuron’s output,yi is the external stimulus, andmij is the synaptic
efficiency.� is the fast time-scale associated with the STM state.Dij

represents a synaptic connection parameter between theith neuron and
thejth neuron. We assume here, that the recurrent neural network con-
sists of both feedforward and feedback connections between the layers
and neurons forming complicated dynamics.

The neural network is modeled by a system of deterministic equa-
tions with a time-dependent input vector rather than a source emitting
input signals with a prescribed probability distribution.1By introducing

1Our interest is to store patterns as equilibrium points in theN -dimensional
space. In fact, in [2] is demonstrated the formation of stable one-dimensional
cortical maps under the aspect of topological correspondence and under the re-
striction of a constant probability of the input signal.
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the dynamic variableSj = yTmj , we get a state-space representation
of the LTM and STM equations of the system

� _xj =� ajxj +

N

i=1

Dijf(xi) +BjSj (3)

_Sj =� Sj + jyj2f(xj): (4)

The input stimuli are assumed to be normalized vectors of unit magni-
tudejyj2 = 1. This system is subject to our analysis considerations to
show that the LTM and STM trajectories are bounded.

II. EQUILIBRIUM AND GLOBAL ASYMPTOTIC STABILITY ANALYSIS

OF NEURO-SYNAPTIC SYSTEMS

In this section, we present a new condition for the uniqueness and
global exponential stability for neuro-synaptic systems which improves
the previous stability results. The existence and uniquenss of the equi-
librium is given based on flow-invariance while the global exponential
stability is shown by a strict Lyapunov function.

The theory of flow-invariance gives a qualitative interpretation of the
dynamics of a system, taking into account the invariance of the flow of
the system. In other words a trajectory gets trapped in an invariant set.

Before we state the stability results based on the concept of flow-
invariance we will first give some useful definitions used in nonlinear
analysis.

A. Definitions

Definition 1: Let F : RN ! RN be a Lipschitz continuous map
and letS be a subset ofRN . We say thatS is flow-invariantwith respect
to the system of differential equations

x0(t) = F (x(t)) (5)

if any solutionx(t) starting inS at t = 0 remains inS for all t � 0
as long asx(t) is defined. In dynamical systems terminology, such sets
are called positively invariant under the flow generated by (5).

Definition 2: We say that the system (S) isdissipativeinRN if there
exists a precompact (bounded) setU � RN such that for any solution
x(t) of (S) there existsT � 0 such thatx(t) 2 U for all t � T . In
other words, all solutions of (S) enter this bounded setU in finite time.

If (S) is dissipative, then all solutions of (S) are defined fort � 0,
and there exists a compact setA � U which attracts all solutions of
(S). The setA is invariant under the flow of (S) and it is called the
global attractorof (S) inRN .

B. Results

Theorem 1: Consider the system of differential equations

x0
i(t) =� aixi(t) +

N

j=1

Dijf(xj(t))

+BiSi(t); i=1; . . . ; N (6)

S0
i(t) =� Si(t) + f(xi(t)); i = 1; . . . ; N (7)

and suppose thatai > 0 for all i = 1; . . . ; N . Also suppose thatf is
locally Lipschitz and bounded, that is, there exists a constantM > 0
such that�M � f(x) � M for all x 2 R. Let

li =
M

ai

N

j=1

jDij j+ jBij > 0; i = 1; . . . ; N: (8)

Then for any� > 0 and for any initial conditionfxi(0); Si(0)g 2
R2N there exists aT � 0 such that

Si(t) 2 [�M � �;M + �]; xi(t) 2 [�li � �; li + �]

for all i = 1; . . . ; N and allt � T .
Proof: Sincef is locally Lipschitz, system (6)–(7) enjoys local

existence and uniqueness of solutions. Moreover, sincef is uniformly
bounded, there exist constantsK1; . . . ; K5 > 0 such that

jx0
i(t)j � K1 +K2jxi(t)j+K3jSi(t)j; jS

0
i(t)j � K4 +K5jSi(t)j

thus all solutions are defined globally (for allt � 0).
Given � > 0, we define

�i =
min( a �

2jB j
; �); Bi 6= 0

�; Bi = 0

for i = 1; . . . ; N . It follows that�i > 0 and�jBij�i + ai� � ai�=2
for all i = 1; . . . ; N . Then fort � 0 and forSi(t) � �M � �i the
following inequality holds:

S0
i(t) � �(�M � �i) + f(xi(t)) = �i + (f(xi(t))+M) � �i > 0:

Similarly, for t � 0 and forSi(t) � M + �i we have that

S0
i(t) � �(M + �i) + f(xi(t))

= ��i + (f(xi(t))�M) � ��i < 0:

Therefore, for anyi 2 f1; . . . ; Ng there exists aT s
i � 0 such that

Si(t) 2 [�M � �i;M + �i] � [�M � �;M + �] (9)

for all t � T s
i . Let T s = maxi T

s
i , then (9) holds for all

i 2 f1; . . . ; Ng and for allt � T s.
Now we considert � T s. Forxi(t) � �li � �, (6) and (9) imply

that

x0
i(t) � ai(li + �) +

N

j=1

Dijf(xj) +Bi(�M � �i):

Using the definition ofli given by (8), we find that fort � T s and
xi(t) � �li � �

x0
i(t) � aili + ai��M

N

j=1

jDij j+ jBij � jBij�i

= �jBij�i + ai� �
ai�

2
> 0:

Similarly, for t � T s and forxj(t) � li + �, (6) and (9) imply that

x0
i(t) � �ai(li + �) +

N

j=1

Dijf(xj) +Bi(M + �i):

Using (8) again, we find that fort � T s andxi(t) � li + �,

x0
i(t) � �aili � ai�+M

N

j=1

jDij j+ jBij + jBij�i

= �ai�+ jBij�i � �
ai�

2
< 0:

Consequently, for anyi 2 f1; . . . ; Ng there exists aT x
i � T s � 0

such that

xi(t) 2 [li � �; li + �] (10)

for all t � T x
i . Let T = maxi T

x
i , then both (9) and (10) hold for all

i 2 f1; . . . ; Ng and allt � T .
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Corollary 1: The system (6)–(7) is dissipative inR2N and, there-
fore, it has a compact global attractor

A � D =

N

i=1

[�li; li]�

N

i=1

[�M;M ]:

Corollary 2: It follows from the proof of Theorem 1 that the setD is
flow invariant under (6)–(7). In other words,D is a positively invariant
set of (6)–(7), that is, any solution starting inD at t = 0 remains inD
for all t � 0.

Corollary 3: Since the setH can be contracted to a point andD is
flow-invariant with respect to (6)–(7), the Brower fixed point theorem
implies that there exists a pointe 2 D which is fixed under the flow of
(6)–(7). Consequently,e 2 D is an equilibrium of (6)–(7).

Theorem 2: Suppose thatf(x) isC1 with jf 0(x)j < k for all x and

ai > k

N

j=1

jDij j+ jBij ; i = 1; . . .N (11)

then the equilibriume is unique.
Proof: At the equilibrium,Si = f(xi) from (7). Substituting

these expressions into (6), we obtain the system

0 = �aixi +

N

j=1

Dijf(xj) +Bif(xi); i = 1; . . .N:

Sinceai > 0, we can expressxi as

xi =
1

ai

N

j=1

Dijf(xj) +Bif(xi) = Fi(x1; . . . ; xN ):

The inequality (11) implies that

jF (x0)� F (x00)j < jx0 � x
00j

whereF = (F1; . . . ; FN ) so thatF is a contracting map in the sup
norm inRN . Consequently, there exists a unique fixed point ofF . The
xi-coordinates of this fixed point uniquely determine theSi-coordi-
nates of the equilibriume via Si = f(xi). We conclude that the equi-
librium e is unique.

We lete = (x01; S
0

1 ; . . . ; x
0

N ; S
0

N ) be the equilibrium of (6)–(7) and
introduce the change of variables�i = xi � x

0

i ,  i = Si � S
0

i which
shiftse to the origin. Specifically, if we denotefi(�i) = f(�i+x

0

i )�
S0i , thenfi(0) = 0 and (6)–(7) may be rewritten as

�
0

i =� ai�i +

N

j=1

Dijfj(�j) +Bi i (12)

 
0

i =�  i + fi(�i): (13)

Theorem 3: Suppose thatf(x) isC1 with jf 0(x)j � k for all x and
ai > 0. Let

di =
1

2

jBij

ai
+ k ; cij =

1

2
k

jDij j

ai
+
jDjij

aj

for i; j = 1; . . . ; N . If

max
i

di +

N

j=1

cij < 1 (14)

thene is a global attractor for system (12)–(13). Moreover, all solutions
of (12)–(13) converge toe exponentially fast ast ! 1.

Proof: We prove global convergence by presenting a strict Lya-
punov function for (12)–(13). Let

V =
1

2

N

i=1

�2i

ai
+  

2

i

then

d

dt
V =

N

i=1

�i ��i +

N

j=1

Dij

ai
fj(�j) +

Bi

ai
 i

+

N

i=1

 i (� i + fi(�i)) : (15)

Sincefi(0) = 0 and jf 0

i(x)j = jf 0(x + x0i )j < k, we have that
jfi(�i)j < kj�ij. Consequently, equality in (15) can be replaced by
the inequality

d

dt
V < �

N

i=1

�
2

i +  
2

i +

N

i;j=1

jDij j

ai
kj�ik�j j

+

N

i=1

jBij

ai
+ k j�ik ij:

The right-hand side of this inequality is given by the quadratic form
with the matrix�Q whereQ has the following block structure:

Qij =

1� cii �di
�di 1

; i = j;

�cij 0

0 0
; i 6= j;

i; j = 1; . . . ; N (16)

wheredi andcij are as defined above. Inequality (14) together with
Gerschgorin’s Theorem imply that�Q is positive definite, or equiva-
lently thatQ is negative definite. Let� > 0 be the smallest eigenvalue
of �Q. Then

d

dt
V < ��

N

i=1

�
2

i +  
2

i

and consequently,V is a strict Lyapunov function for (12)–(13). More-
over, there exists� > 0 such that

�V �

N

i=1

�
2

i +  
2

i

so that

d

dt
V < ���V: (17)

Equation (17) implies thatV converges to zero exponentially fast, and
thus solutions(�(t);  (t)) of (12)–(13) converge to the origin also ex-
ponentially fast. In terms of the original system (6)–(7), its solutions
(x(t); S(t)) converge toe exponentially fast.

III. COMPARISONS

In this section, we compare various stability theorems on competitive
neural networks with different time scales.

In [6], the convergence to point attractors is proved based on the con-
dition of high-gain approximation which means that the output nonlin-
earity is approximated by a step function. It is also assumed that the
synaptic connection parameterDij is given by

Dij =
�; i = j;

��; i 6= j;
:
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In this paper, we also employ the concept of flow invariance but are
able to prove the uniqueness and existence of the equilibrium by only
imposing that the output nonlinearity is bounded inR.

While only the local stability is given in [6], the global asymptotic
stability is proved in [7] based on the theory of singular perturbation.
This approach treats both fast and slow dynamics separatedly, and re-
quires certain growth conditions to be satisfied by both the slow and
fast system in order to determine a coupled Lyapunov function. How-
ever, the imposed conditions are too difficult to test, and they give only
global asymptotic stability. Our approach gives global exponential sta-
bility, requires only a simple inequality to hold, and requires that the
first derivative of the output nonlinearity to be bounded.

A comparison between the results obtained in this paper with those in
[8]–[10] cannot be made. We employ in this paper a Hebbian learning
law while the others employ a supervised learning law such as dynamic
backpropagation algorithm [8], [10] or an optimal control problem [9].
Besides the supervised learning algorithms which does not pertain to
cortical cognitive maps, there are also dissimilarities in the neural-net-
work architecture.

IV. CONCLUSION

In this paper, we prove global exponential stability of competitive
neural networks with fast and slow dynamics describing cognitive cor-
tical maps developed by self-organization. Based on the flow invariance
technique we can show the conditions that the LTM and STM trajec-
tories are bounded, being at the same time less restrictive than with
theK–monotone theory, or for systems with supervised LTM trajecto-
ries. We also presented a strict Lyapunov function and based on it we
have shown global exponential stability of the equilibrium point. Be-
sides proving the existence and uniqueness of the equilibrium, we are
presenting milder and more general conditions than based on singular
perturbation theory.
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Further Results on Adaptive Control for a Class of
Nonlinear Systems Using Neural Networks

Sunan N. Huang, K. K. Tan, and T. H. Lee

Abstract—Zhang et al.presented an excellent neural-network (NN) con-
troller for a class of nonlinear control designs. The singularity issue is com-
pletely avoided. Based on a modified Lyapunov function, their lemma illus-
trates the existence of an ideal control which is important in establishing the
NN approximator. In this note, we provide a Lyapunov function to realize
an alternative ideal control which is more direct and simpler. The major
contributions of this note are divided into two parts. First, it proposes a
control scheme which results in a smaller dimensionality of NN than that
of Zhang et al. In this way, the proposed NN controller is easier to imple-
ment and more reliable for practical purposes. Second, by removing certain
restrictions from the design reported by Zhanget al., we further develop a
new NN controller, which can be applied to a wider class of systems.

Index Terms—Adaptive control, Lyapunov function, neural networks,
nonlinear systems.

I. INTRODUCTION

In [1], the nonlinear system under consideration is of the following
form:

_xi = xi+1; i = 1; 2; ::; n� 1

_xn = a(x) + b(x)u

y = x1

(1)

wherex = [x1; x2; . . . xn]
T 2 Rn, u 2 R, y 2 R are the state vari-

ables, system input and output, respectively. The objective is to enable
the outputy to follow a desired trajectoryyd.

Assumption 1: [1] The sign ofb(x) is known, and a known con-
tinuous function�a(x) � 0 and a constantb0 > 0 exist such that
ja(x)j � �a(x) andjb(x)j � b0, 8x 2 Rn.

Define vectorxd, e and a filtered tracking errors as

xd =[yd; _yd; . . . ; y
(n�1)
d

]T

e =x� xd = [e1; e2; . . . en]
T

s =
d

dt
+ �

n�1

e1 = [�T 1]e; with � > 0 (2)

where� = [�n�1; (n � 1)�n�2; . . . ; (n� 1)�]T .
The time derivative ofs can be written as

_s = a(x) + b(x)u+ v (3)

wherev = �y
(n)
d

+ [0 �T ]e.
Assumption 2: [1] A desired trajectory vectorxd is continuous and

available, andxd 2 
d with 
d being a compact set.
Remark 1.1: In Assumption 1,b(x) is required to satisfyjb(x)j �

b0 > 0. This assumption poses a controllable condition on the system
(1) and it is made in many control schemes (Krsticet al.[5]; Sepulchre
et al. [6]). Without losing generality, we will assume thatb(x) � b0 >

0 as in [1], [7, Ch. 8], and [8]. However, the following analysis may
easily be modified for a system withb(x) < 0.
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