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The dynamics of cortical cognitive maps developed by self–organization must include the aspects of long
and short–term memory. The behavior of the network is such characterized by an equation of neural
activity as a fast phenomenon and an equation of synaptic modification as a slow part of the neural
biologically relevant system.

We present new stability conditions for analyzing the dynamics of a biological relevant system with
different time scales based on the theory of flow invariance. We prove the existence and uniqueness of the
equilibrium, and give a quadratic–type Lyapunov function for the flow of a competitive neural system
with fast and slow dynamic variables and thus prove the global stability of the equilibrium point.

Keywords: Recurrent network; flow invariance; global asymptotic stability; time-varying weights.

1. Introduction: The Class of Neural

Networks with Different

Time-Scales

Dynamic neural networks which contain both feed-

forward and feedback connections between the

neural layers play an important role in visual

processing, pattern recognition, neural computing

and control. Moreover, biological networks possess

synapses whose synaptic weights vary in time. Thus,

competitive neural networks with a combined ac-

tivity and weight dynamics constitute an impor-

tant class of neural networks. Their capability

of storing desired patterns as stable equilibrium

points requires stability criteria which include the

mutual interference between neuron and learning

dynamics.

This paper investigates the dynamics of cortical

cognitive maps, modeled by a system of competi-

tive differential equations, from a rigorous analytic

standpoint. The networks under study model the

dynamics of both the neural activity levels, the

short-term memory (STM), and the dynamics of

unsupervised synaptic modifications, the long-term

memory (LTM). Such networks may be consid-

ered extensions of Grossberg’s shunting network5 or

Amari’s model for primitive neuronal competition.1

These earlier networks are modeled as a pool of mu-

tually inhibitory neurons with fixed synaptic connec-

tions. The present work extends the previous studies

to systems where synaptic weights can be modified

by external stimuli. In addition, the learning algo-

rithm is unsupervised.

Summarizing, we present a mathematical anal-

ysis of a revised version of the Willshaw-Malsburg

model13 of topographic formation, solving the equa-

tions of synaptic self-organization coupled with the

field equation of neural excitations. Specifically,

we study the dynamics of cortical cognitive maps
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developed by self-organization which can be found in

the nervous system.

Recently, several articles have discussed neu-

ral systems with time–varying weights. In Ref. 8

the dynamical behavior of discrete-time neural net-

works is studied using stable dynamic backpropaga-

tion algorithms. Two new stable learning concepts,

the multiplier and the constrained learning rate

methods, are employed. They describe supervised

learning algorithms, and evaluate an error func-

tion. Generalized dynamic neural networks de-

scribed in Ref. 4 are recurrent neural networks with

time-dependent weights. The algorithm for learning

continuous trajectories is based on a variational for-

mulation of the Pontryagin maximum principle, and

is also supervised. A robust local stability condition

has been presented in Ref. 12 for multilayer recur-

rent neural networks with two hidden layers. The

NLq theory was proposed as a stability theory for

multilayer recurrent neural networks with applica-

tion to neural control. These papers consider the su-

pervised learning dynamics for the lateral connection

matrices.

In this paper, we apply the theory of flow-

invariance to large-scale neural networks, which have

two types of state variables (LTM and STM) describ-

ing the slow unsupervised and the fast dynamics of

the system. We present the analytic conditions that

warrant bounded STM and LTM trajectories. The

design of our model is more general than that given

in Ref. 9 since it does not require the assumption of

high gain approximation and it does not treat the

two dynamics separately. In addition, it does not

require the excitatory region to comprise only one

neuron. We also give a quadratic-type Lyapunov

function for the neural multi-time scale system, show

the existence and uniqueness of the equilibrium and

prove global asymptotic stability for the equilibrium.

We consider a laterally inhibited networka with

a deterministic signal Hebbian learning law7 that is

similar to the spatiotemporal system of Amari.2 The

general neural network equations describing the tem-

poral evolution of the STM and LTM states for the

jth neuron of a N -neuron network are:

STM: εẋj = −ajxj +

N∑
i=1

Dijf(xi)

+Bj

p∑
i=1

mijyi (1)

LTM: ṁij = −mij + yif(xj) (2)

where xj is the current activity level, aj is the time

constant of the neuron, Bj is the contribution of the

external stimulus term, f(xi) is the neuron’s output,

yi is the external stimulus, and mij is the synaptic

efficiency. ε is the fast time-scale associated with

the STM state. Dij represents a synaptic connec-

tion parameter between the ith neuron and the jth

neuron. We assume here, that the recurrent neural

network consists of both feedforward and feedback

connections between the layers and neurons forming

complicated dynamics.

The neural network is modeled by a system of de-

terministic equations with a time-dependent input

vector rather than a source emitting input signals

with a prescribed probability distribution.b By intro-

ducing the dynamic variable Sj = yTmj , we obtain

a state space representation of the LTM and STM

equations of the system:

εẋj = −ajxj +

N∑
i=1

Dijf(xi) +BjSj (3)

Ṡj = −Sj + |y|2f(xj) (4)

The input stimuli are assumed to be normalized

vectors of unit magnitude |y|2 = 1. In the next sec-

tion, we analyze this system and show that the STM

and LTM trajectories are bounded.

2. Flow Invariant Sets of Competitive

Neural Networks with Different

Time-Scales

In this section, we present the conditions for the

existence and uniqueness of the equilibrium.

aThe feedback connections in the output layer perform lateral inhibition, with each neuron tending to inhibit the neuron to which
it is laterally connected.6

bOur interest is to store patterns as equilibrium points in the N-dimensional space. In fact, in Ref. 1 is demonstrated the formation
of stable one-dimensional cortical maps under the aspect of topological correspondence and under the restriction of a constant
probability of the input signal.
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The theory of flow–invariance gives a qualitative

interpretation of the dynamics of a system, taking

into account the invariance of the flow of the sys-

tem. Frankly speaking, a trajectory is “trapped” in

an invariant set.

Before stating the stability results based on the

concept of flow–invariance, we define several impor-

tant notions of nonlinear analysis.

Definition 1

Let F : RN → RN be a Lipschitz continuous map

and let S be a subset of RN . We say that S is flow-

invariant with respect to the system of differential

equations

x′(t) = F (x(t)) , (5)

if any solution x(t) starting in S at t = 0 remains in

S for all t ≥ 0 as long as x(t) is defined. In dynamical

systems terminology, such sets are called positively

invariant under the flow generated by Eq. (5).

Definition 2

We say that the system (5) is dissipative in RN if

there exists a precompact (bounded) set U ⊂ RN

such that for any solution x(t) of (5) there exists

T ≥ 0 such that x(t) ∈ U for all t ≥ T . In other

words, all solutions of (5) enter this bounded set U

in finite time.

If Eq. (5) is dissipative then all solutions of (5)

are defined for t ≥ 0, and there exists a compact set

A ⊂ U which attracts all solutions of (5). The set A

is invariant under the flow of (5) and it is called the

global attractor of (5) in RN .

After we have introduced the definitions, we are

ready to state the stability results based on the con-

cept of flow–invariance.

Theorem 1

Consider the system of differential equations

x′i(t) = −aixi(t) +
N∑
j=1

Dijf(xj(t))

+BiSi(t), i = 1, . . . , N, (6)

S′i(t) = −Si(t) + f(xi(t)), i = 1, . . . , N, (7)

and suppose that ai > 0 for all i = 1, . . . , N . Also

suppose that f is locally Lipschitz and bounded,

that is, there exists a constant M > 0 such that

−M ≤ f(x) ≤M for all x ∈ R. Let

li =
M

ai

 N∑
j=1

|Dij |+ |Bi|

> 0,

i = 1, . . . , N. (8)

Then for any ε > 0 and for any initial condition

{xi(0), Si(0)} ∈ R2N there exists a T ≥ 0 such that

Si(t) ∈ [−M − ε,M + ε],

xi(t) ∈ [−li − ε, li + ε]

for all i = 1, . . . , N and all t ≥ T .

Corollary 1

The system (6–7) is dissipative in R2N and therefore

it has a compact global attractor

A ⊆ H =

N∏
i=1

[−li, li]×
N∏
i=1

[−M,M ] .

Corollary 2

It follows from the proof of Theorem 1 that the set H

is flow invariant under (6–7). In other words, H is a

positively invariant set of (6–7), that is, any solution

starting in H at t = 0 remains in H for all t ≥ 0.

Corollary 3

Since the set H can be contracted to a point and it is

flow-invariant with respect to (6–7), the Brower fixed

point theorem implies that there exists a point e ∈ H
which is fixed under the flow of (6–7). Consequently,

e ∈ H is an equilibrium of (6–7).

Theorem 2

Suppose that f(x) is C1 with |f ′(x)| < k for all x

and

ai > k

 N∑
j=1

|Dij |+ |Bi|

 , i = 1, . . .N, (9)

then the equilibrium e is unique.
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3. Global Asymptotic Stability of

Competitive Neural Networks with

Different Time-Scales

After proving the existence and uniqueness of the

equilibrium point in the last section, we propose in

this section a Lyapunov function for the multi-time

scale neural network and prove global asymptotic

stability of the equilibrium point.

Consider a competitive neural system which is

described by the following system of nonlinear dif-

ferential equations:

εẋ = g(x,S, ε) (10)

Ṡ = f(x,S) (11)

where f : RN × RN → RN , g: RN × RN → RN are

continously differentiable and satisfy f(0,0) = 0 and

g(0,0) = 0. Equation (10) models the fast system

and Eq. (11) the slow system. Both equations are a

generalized representation of Eqs. (3) and (4).

This time-scale approach is asymptotic, that is

exact, in the limit as the ratio ε of the speeds of the

slow versus the fast dynamics tends to zero. When ε

is small, approximations are obtained from reduced-

order models in separate time-scales.

A reduced system is defined by setting ε = 0 in

Eqs. (10) and (11) to obtain

0 = g(x,S, 0) (12)

Ṡ = f(x,S) (13)

Assuming that Eq. (12) has a unique root x = h(S),

the reduced system is rewritten as

Ṡ = f(h(S),S) = fr(S) (14)

A boundary–layer system is defined as

∂x

∂τ
= g(x,S(τ), 0) (15)

where τ = t/ε is a stretching time scale and the vec-

tor S ∈ RN is treated as a fixed unknown parameter.

We are now able to to draw conclusions about the

behavior of the original system (10) and (11) based

upon a study of a simplified system Ṡ = fr(S) ob-

tained from (11) setting 0 = g(x,S, 0). In Ref. 11,

it is shown that a quadratic-type Lyapunov function

establishing asymptotic stability for a singularly per-

turbed system can be obtained as a weighted sum of

the lower-ordered reduced and boundary–layer sys-

tems, assuming that the perturbation factor is suffi-

ciently small. Theorem 311 states this formally:

Theorem 3

Suppose that there exist Lyapunov functions for the

reduced and the boundary layer system and that f

and g satisfy certain interaction conditions as shown

in Ref. 11. Then the origin (x = S = 0) is an asymp-

totically stable equilibrium point of the singularly

perturbed system (10) and (11) for all ε < ε∗(d).

Moreover, for every d ∈ (0, 1)

v(x,S) = (1− d)V (S) + dW (x,S) (16)

is a Lyapunov function for (10) and (11) for all

ε < ε∗(d), where V is the Lyapunov function for the

reduced order system and W of the boundary layer

system.

Appendix 3 gives the conditions on the interac-

tion of the fast and slow states, and also the upper

bound ε∗(d).

If the equilibrium under study is not the ori-

gin, one can always translate the coordinates on

R2N so that the equilibrium of interest becomes the

new origin. To apply Theorem 3 we must deter-

mine for our multi-time scale neural network (3) and

(4) two Lyapunov functions: one for the boundary–

layer system and one for the reduced-order

system.

In Ref. 3 is mentioned a global Lyapunov func-

tion for a competitive neural network (1) with only

an activation dynamics:

L(x) = −
n∑
i=1

∫ xi

0

Bi(ζi)f
′

i (ζi)dζi

+
1

2

n∑
j,k=1

mjkfj(xj)fk(xk) (17)

under the constraints: mij = mji, ai(xi) ≥ 0 and

fj(xj) ≥ 0. This Lyapunov–function can be adapted

to the boundary–layer system, if the LTM contri-

bution Si is treated as a fixed unknown parameter,
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yielding the Lyapunov–function:

W (x,S) =
N∑
j=1

∫ xj

0

aj(ζj)f
′

j(ζj)dζj

−
N∑
j=1

BjSj

∫ xj

0

f
′

j(ζj)dζj

− 1

2

N∑
j=1

Dijfj(xj)fk(xk) (18)

For the reduced-order system we can take the

Lyapunov–function:

V (S) =
1

2
STS =

N∑
i=1

S2
i (19)

As stated in Theorem 3, the Lyapunov–function for

the STM and LTM dynamics is the superposition of

the two previous Lyapunov–functions:

v(x,S) = (1 − d)V (S) + dW (x,S) (20)

4. Comparisons

In this section, we compare various stability theo-

rems on competitive neural networks with different

time scales.

In Ref. 9 the convergence to point attractors is

proved based on the condition of high gain approxi-

mation which means that the output nonlinearity is

approximated by a step function. It is also assumed

that the synaptic connection parameter Dij is given

by

Dij =

{
α, i = j ,

−β, i 6= j,

In this paper, we also employ the concept of flow in-

variance but are able to prove the uniqueness and ex-

istence of the equilibrium by only imposing that the

output nonlinearity is bounded in R. Furthermore,

we present a quadratic-type Lyapunov function and

use it to prove global asymptotic stability.

In this work, we prove the existence of an invari-

ant set being a compact global attractor, while in

Ref. 10 local stability based on the theory of sin-

gular perturbation is shown. This approach treats

both fast and slow dynamics separately, and requires

certain growth conditions to be satisfied. Four dis-

tinct inequalities, which are too difficult to test, have

to be fullfilled at the same time to ensure that the

system matrices of the slow and fast system are Hur-

witz. Our approach requires only a simple inequality

to hold, and requires that the first derivative of the

output nonlinearity to be bounded.

A direct comparison between the results obtained

in this paper with those in Refs. 4, 8 and 12 cannot

be made. The main difference lies in the learning

mechanism. We use an unsupervised Hebbian learn-

ing law for the feedforward synapses, while the others

employ a supervised learning law of the lateral con-

nection matrices such as dynamic backpropagation

algorithm8,12 or an optimal control problem.4 The

cited papers assume that the target output signal

(trajectory) is known, while we do not use or require

this knowledge. Besides the supervised learning algo-

rithms, which does not pertain to cortical cognitive

maps, there are also minor dissimilarities in the neu-

ral network architecture: in the mentioned papers

the nonlinearity is applied to the product between

the current activity level vector and the feedback ma-

trix, while we apply the nonlinearity directly to the

current activity level vector and then multiply by the

feedback matrix.

5. Conclusions

In this paper we presented new stability conditions

for analyzing the dynamics of solutions of compet-

itive neural networks with fast and slow dynamics.

Based on the flow invariance technique we can show

that the LTM and STM trajectories are bounded,

being at the same time less restrictive than with

K–monotone theory, or for systems with supervised

LTM trajectories. Our method provides a lower

bound for the neural time-constant, proves that flow

invariance requires a bounded nonlinearity, and guar-

antees bounded solutions on a closed set. Besides

showing the existence and uniqueness of the equi-

librium, we also propose a quadratic-type Lyapunov

function and based on it we prove global asymptotic

stability of the equilibrium point.

Appendix 1: Proof of Theorem 1

Proof

Since f is locally Lipschitz, system (6–7) enjoys local

existence and uniqueness of solutions. Moreover,
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since f is uniformly bounded, there exist constants

K1, . . . ,K5 > 0 such that

|x′i(t)| ≤ K1 +K2|xi(t)|+K3|Si(t)| ,

|S′i(t)| ≤ K4 +K5|Si(t)| ,

thus all solutions are defined globally (for all t ≥ 0).

Given ε > 0, we define

δi =

min

(
aiε

2|Bi|
, ε

)
, Bi 6 = 0 ,

ε, Bi = 0 ,

for i = 1, . . . , N . It follows that δi > 0 and

−|Bi|δi + aiε ≥ aiε
2 for all i = 1, . . . , N . Then for

t ≥ 0 and for Si(t) ≤ −M − δi the following inequal-

ity holds:

S′i(t) ≥ −(−M − δi) + f(xi(t))

= δi + (f(xi(t)) +M) ≥ δi > 0 .

Similarly, for t ≥ 0 and for Si(t) ≥ M + δi we have

that

S′i(t) ≤ −(M + δi) + f(xi(t))

= −δi + (f(xi(t))−M) ≤ −δi < 0 .

Therefore, for any i ∈ {1, . . . , N} there exists a

T si ≥ 0 such that

Si(t) ∈ [−M − δi,M + δi] ⊆ [−M − ε,M + ε] (21)

for all t ≥ T si . Let T s = maxi T
s
i , then Eq. (21)

holds for all i ∈ {1, . . . , N} and for all t ≥ T s.
Now we consider t ≥ T s. For xi(t) ≤ −li − ε,

Eqs. (6) and (21) imply that

x′i(t) ≥ ai(li + ε) +

N∑
j=1

Dijf(xj) +Bi(−M − δi) .

Using the definition of li given by Eq. (8), we find

that for t ≥ T s and xi(t) ≤ −li − ε,

x′i(t) ≥ aili + aiε−M

 N∑
j=1

|Dij |+ |Bi|

− |Bi|δi
= −|Bi|δi + aiε ≥

aiε

2
> 0 .

Similarly, for t ≥ T s and for xj(t) ≥ li + ε, Eqs. (6)

and (21) imply that

x′i(t) ≤ −ai(li + ε) +

N∑
j=1

Dijf(xj) +Bi(M + δi) .

Using Eq. (8) again, we find that for t ≥ T s and

xi(t) ≥ li + ε,

x′i(t) ≤ −aili − aiε +M

 N∑
j=1

|Dij |+ |Bi|

+ |Bi|δi

= −aiε+ |Bi|δi ≤ −
aiε

2
< 0 .

Consequently, for any i ∈ {1, . . . , N} there exists a

T xi ≥ T s ≥ 0 such that

xi(t) ∈ [li − ε, li + ε] (22)

for all t ≥ T xi . Let T = maxi T
x
i , then both

Eqs. (21) and (22) hold for all i ∈ {1, . . . , N} and all

t ≥ T . �

Appendix 2: Proof of Theorem 2

Proof

At the equilibrium, Si = f(xi) from (7). Substitut-

ing these expressions into (6), we obtain the system

0 = −aixi +

N∑
j=1

Dijf(xj) +Bif(xi), i = 1, . . .N .

Since ai > 0, we can express xi as

xi =
1

ai

 N∑
j=1

Dijf(xj) +Bif(xi)


= Fi(x1, . . . , xN ) .

The inequality (9) implies that

‖F (x′)− F (x′′‖ < ‖x′ − x′′‖ ,

where F = (F1, . . . , FN ) and x = (x1, . . . , xN ) so

that F is a contracting map in the sup norm in RN .

Consequently, there exists a unique fixed point of F .

The xi-coordinates of this fixed point uniquely de-

termine the Si-coordinates of the equilibrium e via

Si = f(xi). We conclude that the equilibrium e is

unique. �

Appendix 3: Conditions on the Interaction

of the Fast and Slow States

The following assumptions have to be made:11
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1. The reduced system (14) has a Lyapunov func-

tion V : Rn → R+ such that for all S ∈ BS

(∇SV (S))T fr(S) ≤ −α1ψ
2(S), α1 > 0 (23)

where ψ(S) is a scalar-valued function of S

that vanishes at S = 0 and is different from

zero for all other S ∈ BS.

This condition guarantees that S = 0 is an

asymptotically stable equlibrium point of the

reduced system (14).

2. The boundary–layer system (15) has a Lya-

punov function W (S,x): Rn × Rm → R+

such that for all S ∈ BS and x ∈ Bx

(∇xW (S,x))Tg(S,x, 0)

≤ −α2φ
2(x− h(S)), α2 > 0 (24)

where φ(x − h(S)) is a scalar-valued function

(S − h(S)) ∈ Rm that vanishes at x = h(S)

and is different from zero for all other x ∈ BS

and x ∈ Bx.

This condition guarantees that x = h(S) is an

asymptotically stable equlibrium point of the

boundary–layer system (15).

3. The following three inequalities hold ∀S ∈ BS

and ∀x ∈ Bx:

(a)

∇SW (S,x))T f(S,x) ≤ c1φ2(x− h(S))

+ c2ψ(S)φ(x − h(S)) (25)

(b)

(∇SV (S))T [f(S,x)− f(S,h(S))]

≤ β1ψ(S)φ(x − h(S)) (26)

(c)

(∇xW (S,x))T [g(S,x, ε)− g(S,x, 0)]

≤ εK1φ
2(x− h(S))

+ εK2ψ(S)φ(x − h(S)) (27)

The constants c1, c2, β1, K1 and K2 are nonnegative.

The inequalities above determine the permissi-

ble interaction between the slow and fast variables.

They are basically smoothness requirements of f

and g.

The upper bound ε∗(d) is a positive number and

is given by

ε∗(d) =
α1α2

α1γ + [β1(1− d) + β2d]2/4d(1− d)
(28)

where β2 = K2 + c2, γ = K1 + c1.
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