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In this paper we introduce a physiologically structured SIR epidemic model where the
individuals are distributed according to their immune status. An individual immune
status is assumed to increase during the infectious period and remain unchanged after
the recovery. Recovered individuals can become reinfected at a rate which is a decreasing
function of their immune status. We find that the possibility of reinfection of recovered
individuals results in subthreshold endemic equilibria. The differential immunity of the
infectious individuals leads to multiple nontrivial equilibria in the superthreshold case.
We present an example that has exactly three nontrivial equilibria. We also analyze the
local stability of equilibria.
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1. Introduction

Undoubtedly there is a close link between the within-host progression of an infec-
tion leading to certain associated immunity and the development of the disease on
epidemiological level. Traditionally, mathematical modeling of the immunological
response and the epidemiology of a disease have been separated. On the one hand,
a substantial amount of literature exists on the within-host immune response to a
pathogen (see Nowak and May1 and the references therein). On the other hand, a
number of articles discuss the spread of diseases on a population level (see Hethcote2

and the references therein). The immune status of the hosts, however, their level of
innate, naturally and/or artificially acquired immunity, has a significant impact on
the spread of an infectious disease in a population. In the classical epidemiological
approach, the variability of host parasite-specific immunity and cross-immunity is
incorporated in epidemic models by subdividing the entire population of hosts into
various subclasses corresponding to different levels of immune protection — naive
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or completely susceptible, completely or partially immune, vaccinated, etc. To cap-
ture a complex immune structure of the disease-affected individuals, some models
incorporate n recovered classes.3,4 Epidemic models of the intricate interdepen-
dence between the influenza virus and the host immune system involve multiple
strains and recovered classes that include individuals immune to various combina-
tions of the influenza strains.5,6 Although incorporating immunological concepts in
epidemic models is not new, it is often accomplished through incorporation of more
classes which increases the complexity of the model.

The immunological models describing the within-host dynamics of the pathogens
and the respective immune responses are typically “self-contained” and the inter-
dependence with the epidemiology of the disease, if it exists, is mostly implicit.7–10

These models typically describe the dynamics of a single infection where the ini-
tial pathogenic load and the immune status of the host are assigned somewhat
arbitrarily. Even when the immunological dynamics is linked to various epidemi-
ological parameters, most often transmission,11–17 there is no explicit account for
the immune memory developed through prior exposures to the pathogen. Such
phenomena as reinfection or superinfection can be factored into the dynamics via
resetting the pathogenic load at some specified time points, but these perturbations
do not depend on the population contact rate or the distribution of the infectious
individuals in the entire population of hosts.

Bridging the gap between immunology and epidemiology in theory and empir-
ical studies is at the heart of the emerging discipline of immunoepidemiology.18

Mathematical models at this interface have been formulated mostly in relation to
macroparasitic diseases. For instance, they have been used to address the question
whether different parasite load in helminth infection is a result of discrepancies in
the contact rates or of the acquired immunity19 or simply to account for the effect
of acquired immunity on the epidemiology of the disease.20

Immunoepidemiological models can provide a deeper understanding of the
coevolution of the pathogen and its host. They can naturally account for the selec-
tive pressure on the parasite exhibited by the host’s immune system21 that tends to
increase the parasites’ fitness by optimizing the reproduction number of the disease
on population level.14 This allows for a more general interpretation of the parasite
fitness compared to the traditional strictly within-host case.22 Epidemiological and
immunological models seem to have been first considered in parallel in Anderson.23

A nested approach where the epidemiology of the disease is modeled with
age-since-infection SIR model while the immunology on individual level is described
by a simple predator-prey type model for the pathogen and the immune
response cells is employed in Gilchrist and Sasaki.14 The dynamics at both
levels are linked through epidemiological parameters related to the within-host
variables.

Another interesting question in immunoepidemiology is to understand the rela-
tion between the dynamics of recurrent diseases and the dynamic variability of the
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acquired immunity to these diseases within the host population. In case of malaria,
the acquired immunity is exposure-dependent, i.e. malaria-specific immunity is
boosted upon each exposure and it gradually declines between the consecutive
bouts of the disease.24–26 Modeling the dynamics of the distribution of humans with
regard to their immune status becomes a critical step in controlling the prevalence of
malaria and designing appropriate vaccination strategies. Considering the immune
structure of the host population has a potential of explaining important epidemi-
ological patterns, such as multiple stable immunological patterns, and nontrivial
relations between the disease prevalence and the disease transmission levels.27,28

Bistable distributional patterns have been previously reported in a physiologically
structured model of cannibalistic fish.29 There the ecological mechanism responsi-
ble for this dynamical behavior is the energy gain from cannibalism. The authors
refer to it as the “Hensel and Gretel” effect. In the present report, we argue that
the host population structured with respect to the immune status may also exhibit
multistable distributional patterns.

In this paper we use a mathematical model of physiologically structured type
to provide the link between the epidemiology of the disease and the immune status
of the individuals in the population. Our model is in the form of partial differential
equation as opposed to the integral equation approach developed.30,31 Physiologi-
cally structured models have been used to model size-structured populations32–34

and metapopulations.35

This paper is organized as follows. In the next section we introduce an SIR-type
epidemic model structured by the immune status of the individuals. In Sec. 3, we
investigate the equilibria of the model. We establish criteria for subthreshold exis-
tence of nontrivial equilibria. We also show that in some cases multiple superthresh-
old equilibria exist. In Sec. 4, we investigate the local stability of equilibria. In Sec. 5,
we present the dynamics of the unstructured model which is an SIR model where
the recovered individuals can get reinfected. In Sec. 6, we summarize our findings
and give conclusions.

2. Model Formulation

We consider a model which takes into account the immune status of the individuals.
Individuals who are healthy, have not been previously exposed to the infection,
and have no immunity to the disease form the susceptible class. The number of
individuals in the susceptible class at time t is given by S(t). A typical within-host
dynamics of an acute infection consists of three major phases: (1) a rapid pathogen
growth followed by the rise of the specific immunity, (2) control of the pathogen by
immunity, and (3) clearance of the pathogen and generation of immune memory.36

For the purpose of this paper, we assume that individuals who are infected mount a
specific immune response and simultaneously start developing a long-term infection-
specific immune memory. We will denote by x the level of protective immunity
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which is positively correlated with the numbera of memory T cells specific to a
given antigen that an individual has. We will refer to x as the immune status of a
given individual. The density of infected individuals with immune status x at time
t is given by i(x, t). According to our assumptions, the immune status x increases
over the course of infection. We model the rate of increase of the immune status by
introducing a function g(x) such that the immune status of any given individual
satisfies the following ordinary differential equation

x′ = g(x)

where the initial status is some given quantity x(0) = x0. We have that g(x) > 0
for all x ≥ 0 which reflects our assumption that the immune status increases. This
assumption is acceptable in mathematical modeling and has been used on several
occasions before.11,14

We denote (see Table 1) by β the contact rate for susceptible individuals and
with h(x) the probability density that transmission of the disease occurs given
a contact between a susceptible and an infective of immune status x. Thus, the
infectivity of infected individuals is a certain function of their immune status and
we denote this function by βh(x) ≥ 0. The function h(x) is assumed bounded and
integrable. A susceptible individual can be infected by an infectious individual with
any immune status at a rate

β
S(t)
N(t)

∫ ∞

0

h(x)i(x, t) dx,

where N(t) is the total number of individuals in the population. We will use the
notation

H(t) =
∫ ∞

0

h(x)i(x, t) dx

Table 1. List of parameters.

Notation Meaning

Λ Birth/recruitment rate into the population
µ Per capita natural death rate
β Contact rate for susceptible individuals

h(x) Infectiousness of infective individuals with immune status x
ρ(x) Reinfection rate
γ(x) Recovery rate of infectious individuals
ν(x) Disease-induced mortality
g(x) Rate of increase of immune status during infection
d(x) Rate of decrease of immune status while recovered

aWe should point out that the total number of antigen-specific immune cells, or simply the immune
memory load, need not be exactly the same as the immune status. For instance, in a biologically
plausible scenario, the immune memory load can be a saturating function of the immune status
reflecting the fact that above a certain threshold, the number of memory cells may provide a
complete protection against subsequent infections with the same pathogen.
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to denote the total infectiousness of all infectious individuals with any immune
status. With this notation the force of infection is given by βH(t)/N(t). We note
that the force of infection is of proportionate mixing type which some authors
believe is most appropriate for modeling the spread of STDs.37 Upon infection, a
susceptible individual enters the infectious class with zero immune status (x̄ = 0).
Infectious individuals recover at a rate γ(x) and move to the recovery class r(x, t).
The immune status in recovered individuals may decline at a rate d(x) according
to the law

x′ = −d(x).

Recovered individuals can be reinfected at a rate ρ(x) which depends on their
immune status x. Finally, we assume that ρ(x) is a decreasing function of x with
ρ(x) < βh(x). Upon reinfection, individuals return to the infectious class and enter
it at the same immune status level as they had in the recovered class. We arrive at
the following model (see Fig. 1).

S′(t) = Λ − β
H(t)
N(t)

S − µS + d(0)r(0, t)

it(x, t) + (g(x)i(x, t))x = ρ(x)
H(t)
N(t)

r(x, t) − (γ(x) + µ + ν(x))i(x, t)

g(0)i(0, t) = β
H(t)
N(t)

S(t)

rt − (d(x)r(x, t))x = −ρ(x)
H(t)
N(t)

r(x, t) + γ(x)i(x, t) − µr(x, t)

(2.1)

where the total population size N is the sum of the susceptible (S) total infectious
(I) and total recovered (R) populations: N(t) = S(t) + I(t) + R(t), where

I(t) =
∫ ∞

0

i(x, t) dx R(t) =
∫ ∞

0

r(x, t) dx.

Λ

x’=d(x)

x’=g(x)

individual
immune status  x

µ

ρ 
   

Η
(x
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x)

µ

(naive)
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r(x,t)recovered/immune

i(x,t)infected

d(0)

(x)
βΗ
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Fig. 1. The flow diagram of the model. Any individual lacking immunity against the infection is
considered susceptible (or naive). The immune status of infected individuals increases with time
spent in the infected class at the rate x′ = g(x) > 0. Infected individuals with immune status x
recover at the rate r(x) and enter the recovered class. The immune status of recovered individuals
declines with time at the rate x′ = −d(x) ≤ 0. Recovered individuals with immune status x ≤ 0
are treated as susceptible (or naive). The rate of infection is denoted as βH and the rate of
reinfection is denoted as ρ(x)H. The terms Λ, µ, and ν(x) represent the rates of birth, natural
mortality, and disease-associated mortality.
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The total population satisfies the differential equation which is obtained by
adding all equations in (2.1)

N ′(t) = Λ − µN −
∫ ∞

0

ν(x)i(x, t)dx.

The second equation in (2.2) governs the dynamics of the distribution of infected
individuals with respect to their immune status. Neglecting the interior sources and
removal of individuals from the infected class, the number of infected individuals
with immune statuses anywhere between x1 and x2 (0 ≤ x1 < x2) changes according
to the equation

d

dt

∫ x2

x1

i(x, t) dx = g(x1)i(x1, t) − g(x2)i(x2, t),

where the term g(x)i(x, t) represents the flux through the boundary into the infected
class. Using the Fundamental Theorem of Calculus and the fact that x1 and x2 are
arbitrary, the above equation can be rewritten in the transport form it(x, t) +
(g(x)i(x, t))x = 0, which is the left-hand side of the equation for the density of
infectives in (2.2). The right-hand side of the same equation represents the sum of
all the sources and the sinks. The boundary condition relates the influx g(0)i(0, t) to
the rate at which susceptible individuals become infected. The equation governing
the dynamics in the recovered class is derived similarly.

In the remainder of this article, we will consider as a starting point only the
case when the immune status remains constant after recovery, i.e. we will assume
that d(x) = 0. We will also take ν(x) = 0. The case when ν(x) �= 0 leads to the
same conclusions as the case ν = 0 but with more complex formulas. With these
assumptions, the model that we consider is:

S′(t) = Λ − β
H(t)
N(t)

S − µS

it(x, t) + (g(x)i(x, t))x = ρ(x)
H(t)
N(t)

r(x, t) − (γ(x) + µ)i(x, t)

g(0)i(0, t) = β
H(t)
N(t)

S(t)

rt = −ρ(x)
H(t)
N(t)

r(x, t) + γ(x)i(x, t) − µr(x, t).

(2.2)

In the case when the disease-induced mortality is zero ν = 0, the total population
is asymptotically constant N(t) → Λ

µ . That allows us to reduce the system (2.2) to
the invariant set N = N∗ = Λ

µ , to obtain

s′(t) = µ − βJ(t)s(t) − µs(t)

jt(x, t) + (g(x)j(x, t))x = ρ(x)J(t)u(x, t) − (γ(x) + µ)j(x, t)

g(0)j(0, t) = βJ(t)s(t)

ut(x, t) = −ρ(x)J(t)u(x, t) + γ(x)j(x, t) − µu(x, t),

(2.3)
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where

s(t) =
S(t)
N∗ j(x, t) =

i(x, t)
N∗ u(x, t) =

r(x, t)
N∗

are the proportions of susceptible, infectious and recovered individuals, and J(t) =
H(t)
N∗ =

∫∞
0

h(x)j(x, t) dx.
The model (2.2) is a classical SIR model which allows for further infection of

recovered individuals. It models adequately all diseases where individuals recover
but can be infected repeatedly, such as influenza (if we take a macro-viewpoint of it
and consider all strains indistinguishable), tuberculosis, gastroenteritis or “stomach
flu,” some STDs and others.

3. Equilibria

The long-term behavior of solutions is determined in part by the equilibria that
are time-independent solutions of the system (2.2). Let s, j(x) and u(x) be the
proportions of susceptible, infectious and recovered individuals at equilibrium, and
J = H

N∗ =
∫∞
0

h(x)j(x) dx. Replacing all time derivatives in (2.2) by zeroes, and
dividing through by N∗ we find that the equilibria satisfy the equations:

0 = µ − βJs − µs

(g(x)j)x = ρ(x)Ju(x) − (γ(x) + µ)j(x)

g(0)j(0) = βJs

0 = −ρ(x)Ju(x) + γ(x)j(x) − µu(x).

(3.1)

From the last equation in (3.1), we have

u(x) =
γ(x)j(x)
ρ(x)J + µ

. (3.2)

Substituting (3.2) in the second equation of (3.1) and integrating, we obtain

g(x)j(x) = βJse−µ
R

x
0

γ(σ)
g(σ)[ρ(σ)J+µ)] dσe−µ

R
x
0

1
g(σ) dσ (3.3)

where from the first equation we have the value of s in terms of J :

s =
µ

βJ + µ
. (3.4)

From the equation above it is clear that s ≤ 1 and it is defined for every J ≥ 0.
The expressions for j(x) and u(x) are also well defined and it is easy to see that∫∞
0

j(x) dx ≤ 1 and
∫∞
0

u(x) dx ≤ 1, since

s +
∫ ∞

0

j(x) dx +
∫ ∞

0

u(x) dx = 1.

The system (2.2) always admits the unique disease-free equilibrium

E0 = (1, 0, 0)
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where the entire population consists of susceptibles. Nontrivial equilibria are
obtained if a value of J > 0 is known and substituted in expressions (3.2)–(3.4) for
s, j(x) and u(x). The equilibrium values for J are positive roots of the equation
which is obtained by substituting the right-hand side of (3.3) into the formula for
J and dividing both sides by J :

βµ

βJ + µ
η(J) = 1 (3.5)

where η(J) denotes the integral

η(J) =
∫ ∞

0

h(x)
g(x)

e−µ
R x
0

γ(σ)
g(σ)[ρ(σ)J+µ)] dσe−µ

R x
0

1
g(σ) dσ dx. (3.6)

The left-hand side of Eq. (3.5) is a function of J . We denote that function by R(J)
and we plot it in Fig. 2. Equilibrium values for J are given by the points where this
function crosses the horizontal axis — there are three of them in Fig. 2.

Each positive root J∗ of Eq. (3.5) corresponds to a nontrivial equilibrium
E∗ = (s∗, j∗(x), u∗(x)). The number of roots of Eq. (3.5) gives the number of
nontrivial equilibria of the system (2.2). The number of equilibria is determined by
the specific immune status structure and the reproduction number of the disease.
The reproduction number is given by

R0 = β

∫ ∞

0

h(x)
g(x)

e−
R x
0

γ(σ)
g(σ) dσe−µ

R x
0

1
g(σ) dσdx.

The reproduction number gives the number of secondary infections one infectious
individual will produce while being infectious in an entirely susceptible population.
The term e−µ

R
x
0

1
g(σ) gives the probability of surviving to immune status x, the

term e−
R

x
0

γ(σ)
g(σ) dσ gives the probability of still being infective, and βh(x) gives the

secondary infections produced at immune status x. The integral accumulates all
those quantities for all immune statuses. We note that R0 = βη(0) does not depend

2 4 6 8
J

1.05

1.1

1.15

1.2

R(J)

Fig. 2. The graph of the function R(J) is given with h(x) = hx where h = 2. The values of the
remaining constant parameters are β = 15, g = 5.5, µ = 0.5, γ = 5.5, ρ = 1. The value of the
reproduction number in this case is R0 = 4.58333. The graph shows that the equation R(J) = 1
has three positive solutions.
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on the reinfection rate ρ since reinfection does not lead to infections of susceptible
individuals. In what follows, we order the nontrivial equilibria according to the
corresponding values of J . In particular, we will say that E∗ ≤ E∗∗ if J∗ ≤ J∗∗.
Considering the number of equilibria, first we notice that since η(J) is an increasing
function of J while 1

βJ+µ is a decreasing function, the left-hand side of Eq. (3.5)
may be increasing or decreasing which allows the possibility for multiple nontrivial
equilibria. We can determine the number of endemic equilibria if they are all simple.
We call an equilibrium E∗ simple if J is a simple root of Eq. (3.5), otherwise we call
E∗ an equilibrium of high multiplicity. It can be shown that for almost all values
of the reproduction number all roots are simple. Thus for the number of nontrivial
equilibria we have the following general result.

Proposition 3.1. (a) If R0 < 1 the system (2.2) might or might not have non-
trivial equilibria. If all nontrivial equilibria are simple, then their number is even.

(b) If R0 > 1 then there exists at least one nontrivial equilibrium. If all nontrivial
equilibria are simple, then their number is odd.

Proof. To show part (a), we use the notation R(J) for the left-hand side of (3.5).
We note that

lim
J→∞

η(J) =
∫ ∞

0

h(x)
g(x)

e−µ
R x
0

1
g(σ) dσ dx < ∞.

Hence, limJ→∞ R(J) = 0. Since R(0) = R0 < 1, the total number of roots of
R(J) = 1 counting their multiplicity must be even.b If all roots are simple, their
number is even. To show (b), we notice that R(0) = R0 > 1. Thus, R(J) = 1 has at
least one positive root. If there is more than one — there should be an odd number
of them since all solutions are simple — that is, all common points are a result of
intersection. This completes the proof.

Subthreshold endemic equilibria in the case R0 < 1 are typically obtained
through backward bifurcation. If the backward bifurcation occurs, there is a range
of the reproduction numbers R∗ < R0 < 1 for which there are at least two non-
trivial equilibria. To derive a necessary and sufficient condition for the backward
bifurcation to occur, we treat β as a bifurcation parameter and use (3.5) to express
β as a function of J at equilibrium:

β(J) =
µ

µη(J) − J
.

The bifurcation at the critical value R0 = 1 is backward if and only if β′(0) < 0. The
last condition is equivalent to the condition µη′(0) > 1. Consequently, we have the
following criterion.

bSince the function R(J) is analytic in some neighborhood of any positive root of R(J) = 1, any
such root has a finite multiplicity.
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Proposition 3.2. The bifurcation is backward if and only if

µη′(0) > 1. (3.7)

When the bifurcation is backward, the system (2.2) has subthreshold endemic equi-
libria in some range R∗ < R0 < 1.

We note that the quantity η′(0) is given by

η′(0) =
1
µ

∫ ∞

0

h(x)
g(x)

(∫ x

0

γ(σ)ρ(σ)
g(σ)

dσ

)
e−

R x
0

γ(σ)
g(σ) dσe−µ

R x
0

1
g(σ) dσdx.

It is easy to see that inequality (3.7) is nontrivial, i.e., there are parameter values
for which it holds. In particular, it holds for sufficiently large values of ρ. We recall
that the reproduction number R0 does not depend on ρ and, consequently, all
other parameters can be held fixed so that R0 < 1. The inequality (3.7) will hold
even if all parameters are constants. Thus the corresponding ODE model, obtained
from (2.2) by taking h(x) = h, γ(x) = γ, ρ(x) = ρ independent of x, also has
subthreshold equilibria. The necessary and sufficient condition (3.7) is clearly not
satisfied if ρ(x) = 0 or if γ(x) = 0 for all x. Hence, the mechanisms responsible for
the backward bifurcation are reinfection and recovery. From a mathematical point
of view inequality (3.7) will not hold if h(x) = 0 for all x but in this case there will
be no infection at all. Thus, the corresponding scenario is rather trivial.

The stability of both trivial and nontrivial equilibria will be investigated in the
next section. Here we note that generally speaking there are two kinds of equilibria.
We rewrite Eq. (3.5) in the form

βµη(J) − βJ − µ = 0.

We recall that the equilibria are numbered in increasing order of J and we assume
that they are all simple. Each equilibrium corresponds to a root of βµη(J) − βJ −
µ = 0. If R0 > 1 then at J = 0 we have that βµη(0) − µ > 0 and at the first
intersection and every other intersection the function βµη(J) − βJ − µ changes
sign from positive to negative. Thus, at the odd numbered equilibria its slope is
negative, that is µη′(J∗) < 1 which is equivalent to R′(J∗) < 0. Similarly, with the
even number equilibria the function βµη(J) − βJ − µ changes sign from negative
to positive. Thus, at the even numbered equilibria it is increasing and its slope is
positive, µη′(J) > 1. This last inequality is equivalent to R′(J∗) > 0. The situation
is reversed when the inequality R0 < 1 holds since βµη(0)−µ < 0. Consequently, we
have the following result that characterizes the two types of equilibria (see Fig. 2 for
the case of multiple equilibria when R0 > 1 where for the first and third intersection
of the curve with the horizontal axis the slope of the curve at the intersection is
negative while at the second intersection the slope of the curve is positive).

Proposition 3.3. Assume all equilibria are simple and ordered in increasing order
of J . If R0 > 1 then at every odd numbered equilibrium we have µη′(J) < 1
(R′(J∗) < 0) while at every even numbered equilibrium we have µη′(J) > 1
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(R′(J∗) > 0). If R0 < 1 then at every odd numbered equilibrium we have µη′(J) > 1
(R′(J∗) > 0) while at every even numbered equilibrium we have µη′(J) < 1
(R′(J∗) < 0).

The immune status structure has significant impact on the number of equilibria.
In particular, if there is no immune status structure in the model, i.e. if all coeffi-
cients are constant, h(x) = h, ρ(x) = ρ, γ(x) = γ and g(x) = g, then the Eq. (3.5)
takes the form

R(J) =
βh

βJ + µ

ρJ + µ

ρJ + µ + γ
= 1.

This equation is clearly equivalent to a quadratic equation and hence it has at most
two positive solutions. We note that with the following values of the parameters
β = 1, h = 1.85, µ = 1, γ = 1, ρ = 5 which satisfy condition (3.7) the equation
above has the following two positive solutions: J∗

1 = 0.0813859 and J∗
2 = 0.368614.

In general in the constant coefficient case, Proposition 3.1 leads to the result.

Corollary 3.1. Suppose that h(x) = h, ρ(x) = ρ, γ(x) = γ and g(x) = g are all
constant. If R0 < 1 and there are subthreshold nontrivial equilibria then there are
two of them. If R0 > 1 then there is always a unique endemic equilibrium.

The number of endemic equilibria can change significantly when there is an
essential dependence on the immune status x. To illustrate this point, we consider
a special case in which all parameters are constant except h(x). We allow the
infectiousness of infected individuals to vary linearly with their immune status. In
particular, we take h(x) = hx where h is a constant. This simple dependence leads
to another relatively simple form of the equation for J , namely (3.5) becomes

R(J) =
βhg

µ(βJ + µ)

(
ρJ + µ

ρJ + µ + γ

)2

= 1.

This function is plotted in Fig. 2 for some specific values of the constant parameters
as given in the figure caption. It is clear from this graph that in the case R0 > 1
the equation R(J) = 1 has three positive solutions J1 < J2 < J3 corresponding to
three nontrivial equilibria of the system (2.2). We surmise that a more complicated
dependence of the parameters on the immune status can potentially lead to more
nontrivial equilibria.

4. Local Stability of Equilibria

We denote the first variation of s by ξ, of i(·) by y(·) and of r(·) by z(·), respectively.
In addition, the first variation of H(t) is denoted by χ(t). Linearizing the system
(2.3) around an equilibrium, we obtain a system for the time-dependent variations.
To find the eigenvalues λ of the linearized system, we consider first variations of
the form ξ(t) = eλtξ̄, y(x, t) = eλtȳ(x) and z(x, t) = eλtz̄(x). Substituting these in
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the linearized system of (2.3) we obtain the following linear eigenvalue problem for
ξ̄, ȳ(x) and z̄(x). In the system below we have omitted the bars for simplicity.

λξ = −βs∗χ − βJ∗ξ − µξ

(g(x)y)x = −λy + ρ(x)J∗z(x) + ρ(x)u(x)χ − (γ(x) + µ)y(x)

g(0)y(0) = βs∗χ + βJ∗ξ

λz(x) = −ρ(x)J∗z(x) − ρ(x)u(x)χ + γ(x)y(x) − µz(x),

(4.1)

where J∗ = H∗
N∗ =

∫∞
0 h(x)j(x)dx. We also have that

χ =
∫ ∞

0

h(x)y(x)dx. (4.2)

At the disease-free equilibrium, s∗ = 1, u(x) = 0, and J∗ = 0, and the system (4.1)
simplifies significantly.

Solving the differential equation and substituting the solution into the formula
for χ (4.2) we obtain and equation for the eigenvalues λ called the characteristic
equation of the disease-free equilibrium. This equation is of the form G(λ) = 1
where

G(λ) = β

∫ ∞

0

h(x)
g(x)

e−(λ+µ)
R

x
0

1
g(σ) dσe−

R
x
0

γ(σ)
g(σ) dσdx.

If all solutions (real and complex) of this equation have negative real parts, then the
disease-free equilibrium is locally asymptotically stable, meaning that every solution
starting sufficiently close to that equilibrium will approach it in forward time.

To see the location of the solutions of the characteristic equation G(λ) = 1
we observe that G(0) = R0 and, in addition, for real values of λ, G(λ) → 0 as
λ → ∞. We illustrate the possibilities in Fig. 3. Thus, if R0 > 1 then the equation
G(λ) = 1 has a positive real solution. Consequently, the disease-free equilibrium is
unstable. If, on the other hand, R0 < 1 then from Fig. 3 one can see that there
are no nonnegative real roots to the characteristic equation. Furthermore, for any

no positive roots
Case G(0)<1

one positive root
Case G(0)>1

λλ

λλ G(  )G(  )

11

Fig. 3. The graph of the function G(λ) is given with λ being a real variable. The left figure shows
the case when G(0) = R0 > 1. Then there is a unique positive real root to the equation G(λ) = 1.
The figure on the right shows the case when G(0) = R0 < 1. Then there are no real nonnegative
roots to the equation G(λ) = 1.
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complex λ with �λ ≥ 0 we have that |G(λ)| ≤ G(�λ) ≤ G(0) = R0 < 1. Therefore,
the equation G(λ) = 1 has no solutions with nonnegative real part. This leads to
the following traditional result.

Proposition 4.1. If R0 < 1 then the disease-free equilibrium is locally asymptot-
ically stable. If R0 > 1 then the disease-free equilibrium is unstable.

To derive the characteristic equation of an endemic equilibrium we consider the
full system (4.1). From the last equation we express z(x) in terms of χ and y(x)
and substitute it in the equation for y(x). Expressing ξ from the first equation
and substituting it in the initial condition for y(x) it depends on χ and λ only.
Solving the differential equation with its initial condition and replacing y(x) in
(4.2) we obtain the characteristic equation Q(λ, J∗) = 1 where Q(λ, J∗) depends in
a complex way on the parameters of the model (2.2) and on a particular solution
of the Eq. (3.5) which is denoted by J∗.

In the previous section we showed that when multiple equilibria are present
there are two types of them — equilibria for which µη′(J∗) > 1, i.e. R′(J∗) > 0,
and equilibria for which µη′(J) < 1, i.e. R′(J∗) < 0 (see Fig. 2 for the case R0 > 1).
Now we consider the key element that relates the type of the equilibrium to its
stability (see also Fig. 4).

Proposition 4.2. Let J∗ be a solution of the Eq. (3.5). Then

(1) Q(0, J∗) < 1 if and only if µη′(J∗) < 1(R′(J∗) < 0).
(2) Q(0, J∗) = 1 if and only if µη′(J∗) = 1(R′(J∗) = 0).
(3) Q(0, J∗) > 1 if and only if µη′(J∗) > 1(R′(J∗) > 0).

* * *
1 2 3

R

R

1

JJ

0

0

US S U S

superthreshold case subthreshold case
R  >1 R  <10 0

J*
1 J*

2

1 1

R(J) R(J)

J J J

Fig. 4. The graph of the function R(J) is given. Each intersection of this graph with the horizontal
line y = 1 gives one nontrivial equilibrium. The slope of the tangent at the intersection point is
directly related to the stability of the corresponding equilibrium. In the superthreshold case R0 > 1
we have R′(J∗

1 ) < 0, R′(J∗
2 ) > 0 and R′(J∗

3 ) < 0. The equilibrium corresponding to J∗
2 is unstable.

The remaining are expected to be locally asymptotically stable, at least for most parameter values.
In the subthreshold case R′(J∗

1 ) > 0 and therefore the corresponding equilibrium is unstable. In
this case we also have R′(J∗

2 ) < 0 and the corresponding equilibrium is expected to be locally
asymptotically stable.
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Proof. This proof is technical and it is omitted.

The proposition below gives the instability of equilibria for which µη′(J∗) > 1.

Proposition 4.3. Assume the system (2.2) has equilibria which are all simple
and ordered in increasing order of J . If R0 < 1 and the system (2.2) has nontrivial
equilibria every other one is unstable with the first one being unstable. If R0 > 1 then
every other nontrivial equilibrium is unstable with the second one being unstable.

Proof. First we observe that if λ is a real variable, then Q(λ; J∗) → 0 as λ → ∞
independently of the value of J∗. This property is similar to the behavior of G(λ)
(see Fig. 3) in the case of the disease-free equilibrium. Suppose that R0 < 1. Then if
there are nontrivial equilibria Proposition 3.3 implies that at every odd numbered
equilibrium we have µη′(J∗) > 1 (R′(J∗) > 0). Consequently, Proposition 4.2
implies that Q(0, J∗) > 1.

Now suppose that R0 > 1. Then Proposition 3.3 implies that at every even num-
bered equilibrium we have µη′(J∗) > 1 (R′(J∗) > 0). Consequently, Proposition 4.2
implies again that Q(0, J∗) > 1.

Thus, in both cases we have Q(0, J∗) > 1. Hence, the equation Q(λ, J∗) = 1
has a real positive solution and the corresponding equilibrium is unstable. This
completes the proof.

For the remaining equilibria we have Q(0, J∗) < 1. However, unlike the case of
the disease-free equilibrium this does not guarantee us that |Q(λ, J∗)| < 1 for all λ.
In fact, that may not be true even for real λ only (see Fig. 5). Consequently, if for
some parameter values it happens that |Q(λ, J∗)| < 1 for all λ with �λ ≥ 0, then the
corresponding equilibrium is locally asymptotically stable. But for other parameter
values it may be possible that equilibrium loses stability, perhaps through Hopf
bifurcation.

two positive rootsno positive roots
Q(0,J)<1 Q(0,J)<1

λQ(  ,J)λQ(  ,J)

λλ

11

Fig. 5. The graph of the function Q(λ, J∗) is given with λ being a real variable for some J∗.
Both figures show the case when Q(0, J∗) = R0 < 1. In the left figure there are no nonnegative
real roots to the equation Q(λ, J∗) = 1. The figure on the right shows the case when there are
real positive roots of the equation Q(λ, J∗) = 1. We have not ruled out any of these cases.
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As we show in the next section, in some cases the stability criteria for endemic
equilibria given by Proposition 4.3 are exact in the sense that stable and unstable
endemic equilibria alternate as the value of J increases.

5. Dynamics of the Unstructured Model

In this section, we analyze the behavior of solutions in the unstructured case, i.e.
when the functions ρ, h, and γ are constant. The function g need not be constant.
Integrating over x ∈ [0, +∞) in the last two equations of (2.3), we find that the
proportions of susceptible, infected and recovered individuals satisfy the following
system

s′(t) = µ − βh j(t)s(t) − µs(t),

j′(t) = βh j(t)s(t) + ρh j(t)r(t) − (γ + µ)j(t), (5.1)

r′(t) = −ρh j(t)r(t) + γj(t) − µr(t),

where s(t)+j(t)+r(t) = 1. Hence, we can remove the variable r via the substitution
r = 1 − s − j and analyze the reduced limiting system

s′(t) = µ − bj(t)s(t) − µs(t),
j′(t) = j(t)

(
bs(t) + b̃(1 − j(t) − s(t)) − γ − µ

)
,

(5.2)

where b = βh and b̃ = ρh. The global dynamics of (5.2) in the invariant region
{j > 0} is very simple due to the Bendixson criterion. Indeed, choosing w = 1/j,
we immediately find that

∂

∂s
(ws′) +

∂

∂j
(wj′) = −µ

j
− b − b̃ < 0,

hence (5.2) admits no periodic solutions; specifically, all positive solutions converge
to an equilibrium.

At any endemic equilibrium, we have s = µ
bj+µ and if we denote by

Φ(j) = (b − b̃)
µ

bj + µ
+ b̃(1 − j) (5.3)

endemic equilibria ĵ satisfy the equation Φ(ĵ) = γ + µ. Observe that Φ(0) = b

and the differences Φ(0) − (γ + µ) and R0 − 1 have identical signs. In addition,
Φ(1) < µ < γ +µ. Since equation Φ(j) = γ +µ is at most quadratic in j, there exist
no more than two roots 0 < j1 < j2 < 1. Therefore, in case of a single root j = j2,
we have that Φ′(j2) < 0, and in case of two roots we have that Φ′(j1) > 0 > Φ′(j2).
The variational matrix of (5.2) at an endemic equilibrium is given by

A =

(−µ − bj −bs

(b − b̃)j −b̃j

)
. (5.4)

The trace of A is always negative and the determinant can be expressed as

detA = −j(µ + bj)
(
−b̃ − (b − b̃)

bµ

(µ + bj)2

)
= −j(µ + bj)Φ′(j).
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We conclude that the endemic equilibrium corresponding to the smaller root j = j1
is unstable (a saddle), while the endemic equilibrium corresponding to the greater
root j = j2 is asymptotically stable. Finally, existence of two endemic equilibria
implies that Φ(0) < γ+µ and R0 < 1. In this case, both the disease-free equilibrium
(1, 0) and the endemic equilibrium (1 − j2, j2) are asymptotically stable, and the
systems (5.1) and (5.2) are bistable.

6. Concluding Remarks

Linking immunology with epidemiology in mathematical models is relatively recent.
Most of the models in the literature are geared towards macroparasitic infections.
Despite their simplicity, some of these models have been found to exhibit complex
dynamical behavior.38 More recently, a general theoretic immunoepidemiological
model of microparasitic infection has been built as an attempt to link the param-
eters values of a simple immunological model with a classical SIR epidemiological
model.14 The approach in Gilchrist and Sasaki14 allows for a unique infection and
does not trace the acquired immunity of individuals after their recovery. It also
does not allow for repeated infections with the same pathogen.

In this article, we introduce a physiological model that structures the individuals
by their immune status. The main assumption of our model is that the immune sta-
tus increases during the infection and remains constant after the individual recovers.
This approach allows to track the immune status of the host during the infection as
well as after recovery. Therefore, we are able to account for a more vigorous response
of the immune system that was previously exposed to the pathogen. Our model is of
SIR type but permits the recovered individuals to be reinfected. If we interpret the
immune status as the number of pathogen-specific immune cells, then the growth
curve of the immune status g(x) can be evaluated explicitly from the system of the
immune response in Gilchrist and Sasaki.14 In particular, combining the notation
of this report with the notation used in Gilchrist and Sasaki,14 we have x′ = axP

where P denotes the pathogenic load. The pathogenic load can be expressed in
terms of the immune cell load of the host as P (x) = 1

a (r ln x − x + 1) + 1 where
the units are chosen so that the initial conditions are equal to one. Consequently, a
reasonable choice for g(x) at least in the case when we consider an immune load of
the susceptible individuals x̄ different from zero will be g(x) = x(r ln x−x+1)+ax.
This function is positive only for some interval of immune cell load x̄ < x < xmax.
Thus, it cannot be used for x → ∞. This contradiction may be resolved if the
model (2.2) is set up in such a way that at each reinfection the ODE system for the
pathogenic load and the immune status x is considered with different (appropriate
for the individual being infected) initial conditions for the immune status.

We compute the epidemic reproduction number and study the equilibria. Rein-
fection may lead to backward bifurcation and produce multiple endemic equilibria
when the reproduction number is below one.39 Reinfection is the main mechanism
that leads to backward bifurcation in our case too. Epidemiological mechanisms
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such as reinfection and vaccination lead to backward bifurcation because they create
several classes with different susceptibilities to the disease.40 We establish necessary
and sufficient conditions for backward bifurcation to occur and observe that there
can be at most two subthreshold equilibria with alternating stability (the lower
one is unstable) if the immune status of the hosts is not taken into account. The
absence of the immune status structure allows for a unique endemic equilibrium
when the epidemic reproduction number is above one. This endemic equilibrium is
globally stable. However, the variability of the hosts’ immune status can lead to
multiple equilibria. We present a specific case when there are three endemic equi-
libria. We show that every other one is unstable with the even numbered being
unstable. We surmise that the remaining equilibria are locally stable at least for
some parameter values. In particular, in the case of three superthreshold endemic
equilibria the ones corresponding to J1 and J3 are locally stable while the one corre-
sponding to J2 is unstable. This implies that the differential immunity of the hosts
is a potential biological mechanism that may lead to bistability of two nontrivial
infectious distributions on the epidemic level.
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