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a b s t r a c t

In the presence of gratuitous inducers, the lac operon of Escherichia coli exhibits bistability. Most models

in the literature assume that the inducer enters the cell via the carrier (permease), and exits by a

diffusion-like process. The diffusive influx and carrier efflux are neglected. However, analysis of the data

shows that in non-induced cells, the diffusive influx is comparable to the carrier influx, and in induced

cells, the carrier efflux is comparable to the diffusive efflux. Since bistability entails the coexistence of

steady states corresponding to both non-induced and induced cells, neither one of these fluxes can be

ignored. We present a model accounting for both fluxes, and show that: (1) The thresholds (i.e., the

extracellular inducer levels at which transcription turns on or off) are profoundly affected by both

fluxes. The diffusive influx reduces the on threshold, and eliminates irreversible bistability, a

phenomenon that is inconsistent with data. The carrier efflux increases the off threshold, and abolishes

bistability at large permease activities, a conclusion that can be tested experimentally. (2) The

thresholds are well approximated by simple analytical expressions obtained by considering two limiting

cases (no carrier efflux and no diffusive influx). (3) The simulations are in good agreement with the data

for isopropyl thiogalactoside (IPTG), but somewhat discrepant with respect to the data for thiomethyl

galactoside (TMG). We discuss the potential sources of the discrepancy.

& 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Many of the early studies of the lac operon were concerned
with the kinetics of enzyme induction in the presence of
gratuitous inducers, such as thiomethyl galactoside (TMG) and
isopropyl thiogalactoside (IPTG), which cannot be hydrolyzed by
b-galactosidase. It turns out that lactose, the natural inducer of
the lac operon, stimulates not only the synthesis of the lactose
enzymes, but also their dilution by growth. Gratuitous inducers
were used because they allowed the kinetics of enzyme synthesis
to be separated from the masking effect of dilution. This was
achieved by growing the cells in a medium containing a gratuitous
inducer (which promotes lactose enzyme synthesis, but not
growth), and non-galactosidic carbon sources, such as succinate,
glycerol, or glucose (which support growth, but not lactose
enzyme synthesis).

These early studies showed that enzyme synthesis was
bistable: Pre-induced cells remained induced, and non-induced
cells remained non-induced (Cohn and Horibata, 1959; Novick and
ll rights reserved.
Weiner, 1957). Furthermore, bistability disappeared in (cryptic)
mutants lacking permease. It was proposed that bistability
occurred due to the destabilizing effect of the positive feedback
generated by lac permease: The permease catalyzes accumulation
of the inducer, which in turn stimulates the synthesis of even
more permease.

Recently, Ozbudak et al. (2004) performed detailed studies of
lac bistability during growth of Escherichia coli K12 MG1655 on
TMG and succinate/glucose. To this end, they inserted two
reporter operons into the bacterial chromosome:
�
 The reporter lac operon, placed under the control of the lac

promoter, coded for green fluorescent protein (GFP) instead of
the lac enzymes. Thus, the GFP intensity of a cell provided a
measure of the lac enzyme level.

�
 The reporter gat operon, placed under the control of the

constitutive gat promoter, coded for the red fluorescent protein
(RFP) instead of the gat enzymes. The RFP intensity of a cell
provided a measure of its CRP–cAMP level.

They observed that when the cells were grown in the presence of
succinate and various concentrations of TMG, they exhibited

www.sciencedirect.com/science/journal/yjtbi
www.elsevier.com/locate/yjtbi
dx.doi.org/10.1016/j.jtbi.2008.09.003
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Fig. 1. Bistability of the lac operon during growth of E. coli K12 MG1655 on succinate and succinateþ glucose (Ozbudak et al., 2004, Figs. 2b and c). (a) Bistability during

growth on succinate and various concentrations of extracellular TMG. The (normalized) green fluorescence provides a measure of the steady state activity of the lac operon.

The upper (resp., lower) panel shows the green fluorescence observed during exponential growth of induced (resp., non-induced) cells on a mixture of succinate and various

concentrations of extracellular TMG. Bistability occurs at extracellular TMG concentrations between the off and on thresholds at 3 and 30mM, respectively. (b) Bistability

persists even if glucose is added to the mixture of succinate and TMG. The lower (n) and upper (m) curves show the off and on thresholds observed at various glucose

concentrations. The dashed curves show the thresholds predicted by our model with the parameter values in Table 1.
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Fig. 2. During exponential growth of E. coli K12 MG1655 on succinate, TMG, and

various concentrations of glucose, the red fluorescence intensity decreases with

the concentration of glucose (Ozbudak et al., 2004, Fig. 3a). The curve shows the fit

to Eq. (28).
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bistability (Fig. 1a). Moreover, the bistability persisted even if
glucose was added to the mixture of succinate and TMG, but the
thresholds increased with the concentration of extracellular
glucose (Fig. 1b). Both observations were mirrored by the
bifurcation diagram for the equations

dx

dt
¼ rs � rx � rgx; rs � VsðGÞe

s

K1 þ s
; rx � kxx, (1)

de

dt
¼ rþe � r�e � rge; rþe � VeðGÞ

1þ K2
x x2

1þ aþ K2
x x2

; r�e � k�e e, (2)

where x; e denote the intracellular TMG and lac permease levels,
respectively, s;G denote the extracellular TMG and glucose levels,
respectively, rs; rx denote the rates of carrier influx and diffusive
efflux, respectively, VsðGÞ;VeðGÞ are decreasing functions of G

accounting for the inhibitory effects of glucose on inducer uptake
(inducer exclusion) and lac expression (cAMP-CRP mediated
repression), respectively, rg denotes the specific growth rate on
succinate/glucose, and rþe ; r

�
e denote the rates of permease

synthesis and degradation, respectively.
To quantify the variation of Ve with G, they measured the

average green and red fluorescence intensities of cells growing
exponentially in a medium containing a high concentration of
TMG, a fixed concentration of succinate, and various concentra-
tions of glucose. They found that the green and red fluorescence
intensities, scaled by the corresponding values observed in a
medium containing no glucose, were equal at all glucose
concentrations (Ozbudak et al., 2004, Fig. 3b). Moreover, the
scaled RFP intensity decreased 5-fold at saturating glucose
concentrations (Fig. 2). It was concluded that in the presence of
1 mM glucose, Ve decreases 5-fold due to cAMP-CRP mediated
repression. This is somewhat higher than the maximum possible
cAMP-mediated repression in E. coli K12 MG1655. Recently,
Kuhlman et al., found that during growth of this strain on 0.5%
glucose and 1 mM IPTG, variation of the extracellular cAMP level
from 0 to 10 mM produces no more than a 3-fold change in lac

expression (Kuhlman et al., 2007, Fig. 1B).
One of the goals of this work is to resolve the foregoing

discrepancy between the data obtained by Ozbudak et al. and
Kuhlman et al. More importantly, we wish to extend the above
model in three ways.
Induction kinetics: The above expression for the lac induction
rate, rþe , is based on a molecular model that is inconsistent with
the data. Specifically, it assumes that the lac operon contains one
operator, the lac repressor contains two inducer-binding sites, and
lac repression is entirely due to repressor–operator binding (Yagil
and Yagil, 1971). However, the data shows that the lac operon
contains two auxiliary operators, O2 and O3 (in addition to the
main operator, O1); the lac repressor is a tetramer containing four
inducer-binding sites (Lewis, 2005); and more than 95% of the
repression is due to the formation of DNA loops rather than
repressor-operator binding (Oehler et al., 1990, 1994).

A kinetic model taking due account of the three operators and
four inducer-binding sites yields

rþe � Ve
1

1þ a=ð1þ KxxÞ2 þ â=ð1þ KxxÞ4
, (3)

where Kx is the association constant for repressor-inducer
binding, and a; â are related to the repression stemming
from repressor–operator binding and DNA looping, respectively
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Fig. 3. The kinetics of induction and diffusive influx (Herzenberg, 1959, Figs. 1 and 4). (a) Variation of the scaled induction rate with extracellular TMG and IPTG levels

(measured with the cryptic mutant, E. coli ML3). The full curves show the fits to the data obtained with Eq. (3) and the parameter values a ¼ 40, â ¼ 1200, K�1
x ¼ 24mM for

IPTG, and K�1
x ¼ 470mM for TMG. (b) Variation of the ONPG hydrolysis rate with the extracellular ONPG concentration in cryptic ðlacY�Þ mutants and fully induced wild-

type (WT) cells of E. coli ML30. The rates were converted from mmol min�1 mgdw�1 to mM min�1 by assuming that there are 2.7 mL of cell water per gdw (Winkler and

Wilson, 1966).
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Fig. 4. Existence and quantification of the carrier efflux (Maloney and Wilson,

1973). When E. coli K12 CA8000, induced to various levels, is exposed to

chloramphenicol and 0.24 M extracellular TMG, the steady state intracellular

TMG level (�) increases hyperbolically with the scaled permease activity

(normalized by the activity of fully induced cells). The short- and long-dashed

curves show the intracellular TMG levels predicted by Eqs. (4) and (21),

respectively, which are based on models accounting for the carrier efflux. The

full line shows the intracellular TMG level predicted by Eq. (4) in the absence of the

carrier efflux.

1 ONPG diffuses into the cell roughly twice as fast as TMG: In lacY� strains of

E. coli ML30, the rate constants for diffusion of ONPG and TMG are 0:2 min�1

(Fig. 3b) and 0:14 min�1 (Section 2), respectively. The carrier influx of ONPG is also

�2 times the carrier influx of TMG (Maloney and Wilson, 1973, Fig. 1).
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(Narang, 2007). Kinetic analysis shows that the expression for rþe
shown in Eq. (2) cannot fit the data obtained at low inducer
concentrations (Narang, 2007, Figs. 10a and 14). In contrast, (3)
yields good fits to the entire induction curve obtained with
various gratuitous inducers (Fig. 3a) and wild-type or mutant
strains (Narang, 2007, Figs. 5, 11 and A.1).

Eq. (3) is based on the following assumptions: (1) The
repressor dimer binds to an operator only if it is inducer-free.
(2) Binding of the repressor to O1 or O3 blocks transcription
completely, whereas binding to O2 has no effect. (3) The affinity of
the repressor for O2 or O3 is small compared to its affinity for O1.
(4) All four inducer-binding sites of the repressor are identical and
independent. Based on similar assumptions, Kuhlman et al.
arrived at the very same expression by using the statistical
thermodynamic, rather than kinetic, approach (Kuhlman et al.,
2007). Recently, a more complex expression containing 76 terms
has been obtained by relaxing the first two assumptions (Saiz and
Vilar, 2008). Specifically, it is assumed that (a) even inducer-
bound dimers bind to the repressor, but with a relatively small
affinity, and (b) the binding of the repressor to O3 reduces the
transcription rate by 97% (rather than 100%).
Diffusive influx: It is well known that in addition to the carrier
influx, there is a diffusive influx. Fig. 3b shows that even cryptic
cells hydrolyze ONPG, and the hydrolysis rate increases linearly
with the extracellular ONPG concentration.1 It follows that
gratuitous inducers can enter the cells by a permease-indepen-
dent mechanism, and the influx rate can be formally described by
the first-order kinetics, kxs. The data also implies that over the
range of sugar concentrations used in the experiments ðt1 mMÞ,
the diffusive influx is �0:1% of the carrier influx in fully induced
cells. However, in non-induced cells, which contain only �0:1% of
the permease in induced cells (Maloney and Wilson, 1973), the
diffusive influx must be comparable to the carrier influx.

Carrier efflux: The existence of the carrier efflux was suggested
in early studies with gratuitous inducers (Koch, 1964). However,
Maloney and Wilson (1973) were the first to quantify its effect. To
this end, they measured the steady state intracellular TMG levels
in cells that were induced to various levels, and then exposed to
chloramphenicol plus 0.24 mM extracellular TMG (Fig. 4). The
data obtained cannot be reconciled with models that do not
account for the carrier efflux. Indeed, since enzyme synthesis is
blocked in the presence of chloramphenicol, and the dilution rate
of the inducer, rgx, is negligibly small, these models imply that x

increases linearly with the scaled enzyme activity (full line in
Fig. 4), whereas experiments show that x increases hyperbolically
(closed circles in Fig. 4).

To resolve the above discrepancy, Maloney and Wilson
proposed that the permease supports influx and efflux, and the
efflux rate is Vsex=ðK2 þ xÞ. The steady state intracellular TMG
level therefore satisfies the equation

0 ¼
dx

dt
¼ ðVse�Þ�

s

K1 þ s
�

x

K2 þ x

� �
� kxðx� sÞ; � �

e

e�
, (4)

where e� is the activity of the fully induced cells. They measured
kx (0:14 min�1), Vse� (106mmol min�1 mL�1), s (0.24 mM), K1

(0.8 mM), and showed that if K2 is chosen to be 84 mM, Eq. (4)
yields a good fit to the data (short-dashed curve in Fig. 4). This
modified model implies that in induced cells, 80% of the efflux is
due to the carrier (Maloney and Wilson, 1973, Fig. 6).

It is therefore clear that the carrier efflux cannot be ignored in
induced cells, and the diffusive influx cannot be neglected in non-
induced cells. Since bistability entails the coexistence of steady
states corresponding to both induced and non-induced cells,
neither the carrier efflux nor the diffusive influx can be neglected.
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Yet, most models in literature have ignored one of the fluxes
(Chung and Stephanopoulos, 1996; Tian and Burrage, 2005), or
both of them (Babloyantz and Sanglier, 1972; van Hoek and
Hogeweg, 2006; Narang and Pilyugin, 2008; Ozbudak et al., 2004;
Santillán et al., 2007; Savageau, 2001). Only one study accounted
for both fluxes (Vilar et al., 2003), but the effect of the fluxes on
bistability was not analyzed. The goal of this work is to analyze
this effect.

Recently, we studied the effect of DNA looping on the
bistability of lac operon (Narang and Pilyugin, 2008, Sections
3.1.1–3.1.2). It was shown therein that the steady states are
qualitatively and quantitatively different in the presence of DNA
looping. In particular, the bistable region is significantly larger if
the repression is primarily due to DNA looping. Here, we
formulate and analyze an extended model that accounts for
DNA looping as well as the diffusive influx and the carrier efflux.
We find that:
(1)
Fig.
the

gree

gat

glyce
The diffusive influx has no effect on the off threshold, but it
significantly reduces the on threshold. It also changes the
nature of the bistability. In the absence of the diffusive influx,
bistability is irreversible, a result that is inconsistent with the
data. This inconsistency disappears in the presence of the
diffusive influx.
(2)
 The carrier efflux has no effect on the on threshold, but it
significantly increases the off threshold. Moreover, its ex-
istence implies that there can be no bistability in cells
overexpressing the permease.
(3)
 The variation of the on and off thresholds with the
extracellular glucose concentration can be captured by simple
analytical expressions.
The extended model yields good agreement with the bistability
data for IPTG, but there is a discrepancy with respect to the data
for TMG. We discuss the potential sources of this discrepancy.
2. Model

Fig. 5 shows the kinetic scheme of the model. We assume that:
(1)
 The concentrations of the permease, intracellular inducer, GFP,
and RFP, denoted e, x, g, and r, respectively, are based on the
total volume of the cells ðmol L�1

Þ. The concentrations of the
extracellular inducer and glucose, denoted s and G, respec-
tively, are based on the volume of the culture ðmol L�1

Þ. The
rates of all the processes are based on the total volume of the
cells ðmol h�1 L�1

Þ.
S

SUC/GLY

GLUE
XS

GFP

RFP

5. Kinetic scheme of the model. Here, E denotes lac permease; S and X denote

extracellular and intracellular inducer, respectively; GFP and RFP denote the

n and red fluorescent protein synthesized by the reporter lac and constitutive

operons, respectively; and GLU, SUC, GLY denote glucose, succinate, and

rol.

2

intra

a3; a
The choice of these units implies that if the concentration of
any intracellular component, Z, is z mol L�1, then the evolution
of z is given by

dz

dt
¼ rþz � r�z � rgz,

where rþz and r�z denote the rates of synthesis and degradation
of Z in mol h�1 L�1, and rg is the specific growth rate in h�1.
(2)
 The specific growth rate is given by

rg � fgðGÞrg0,

where rg0 is the specific growth rate in the absence of glucose
(i.e., in the presence of pure succinate), and fgðGÞ is an
increasing function of G such that fgð0Þ ¼ 1, which accounts
for the increase of the specific growth rate produced by
addition of glucose to a culture growing on succinate.
(3)
 The net carrier-mediated uptake rate of S is

rs � fsðGÞVs0e
s=K1 � x=K2

1þ s=K1
, (5)

where fsðGÞ is a decreasing function of G such that fsð0Þ ¼ 1,
which accounts for the inhibition of inducer uptake due to
inducer exclusion.
Eq. (5) is based on Kaback’s alternating access model for
permease-mediated transport (Fig. 6a). This model yields the
expression

rs ¼ fsðGÞe
a1s� a2x

a3 þ a4sþ a5xþ a6sx
, (6)

where ai; i ¼ 1;6 are functions of the rate constants,
kþi ; k

�

i ; i ¼ 1;4, shown in Fig. 6a (Segel, 1975, Chapter IX).
However, the data shows that over the range of galactoside
concentrations typically used in the experiments
ð0pst1 mMÞ, the carrier-mediated influx rate is essentially
independent of x: The initial uptake rate does not change even
if the cells are preloaded with intracellular galactoside
(Fig. 6b). It follows that under typical experimental condi-
tions, the terms, a5x and a6sx, are negligible.2 Thus, (6)
reduces to (5) with Vs ¼ a1=a4, K1 ¼ a3=a4, and K2 ¼

a1a3=ða2a4Þ. Eq. (5) implies that the initial efflux rate is
proportional to x. This is consistent with the data in several
studies (Kepes, 1969; Koch, 1964; Lancaster et al., 1975).
(4)
 The net rate of expulsion of X by diffusion follows the kinetics

rx � kxðx� sÞ.

We assume that kx ¼ 0:14 min�1. This is the value obtained by
Maloney and Wilson. We found that this value also provides a
good fit to the data for TMG uptake in the lacY� strain E. coli

ML3 (Kepes, 1960, Fig. 9).

(5)
 The intracellular inducer stimulates the transcription of the

native and reporter lac operons, resulting in the synthesis of
the lac enzymes and GFP, respectively.

(a) The synthesis rate of the permease, E, is

re � fe;lacðGÞVe0
1

1þ a=ð1þ KxxÞ2 þ â=ð1þ KxxÞ4
, (7)

where Ve0 is the synthesis rate in fully induced cells
growing on succinate ðG ¼ 0Þ, fe;lacðGÞ is a decreasing
function of G satisfying fe;lacð0Þ ¼ 1, which accounts for
the repression of lac expression due to reduction of
CRP–cAMP levels in the presence of glucose, Kx is the
Thi

cellu

4 are
s is probably due to the low value of k�3 , the rate constant for binding of

lar sugar to the permease, since a5; a6 are proportional to k�3 , whereas

independent of k�3 (Segel, 1975, Eq. (IX-45)).
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(Winkler and Wilson, 1966, Fig. 11) and TMG (Kepes, 1960, Fig. 1).
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association constant for repressor-inducer binding, and
a; â characterize the repression due to repressor–operator
binding and DNA looping, respectively.
The values of a and â are 20–50 and �1200, respectively,
which reflect the fact that more than 95% of the total
repression, 1þ aþ â, is due to the formation of DNA loops
(Oehler, 1990, 1994). The dissociation constant for repres-
sor-inducer binding, K�1

x , is 7230mM for IPTG (Narang,
2007, Table 1). It is 10 times higher for TMG, based on a
simple analysis of the data with Scatchard plots (Barkley
et al., 1975, Table 1). Similar estimates are obtained when
Eq. (3) is used to fit the data in Fig. 3a. Assuming a ¼ 40
and â ¼ 1200, the best fits are obtained when the
dissociation constants for IPTG and TMG are 24 and
470mM, respectively.

(b) The synthesis rate of GFP is

rGFP � Ve0fe;lacðGÞ
1

1þ a=ð1þ KxxÞ2 þ âG=ð1þ KxxÞ4
,

where âGoâ. This expression is obtained by assuming that
the promoters of the reporter and native lac operons are
identical, so that both operons have the same maximum
synthesis rates in the absence of glucose, and are subject
to the very regulation by CRP–cAMP and repressor–
operator binding. However, the two operons differ with
respect to regulation by DNA looping because the reporter
lac operon lacks the auxiliary operator, O2, which
precludes the formation of DNA loops by interaction
between O1 and O2.
Ozbudak et al. (2004) estimated the total repression of the
lac reporter, 1þ aþ âG, to be 170, which implies that
âG � 130.
(6)
 The synthesis rate of RFP follows the constitutive kinetics

rRFP � fe;gatðGÞVr0,

where Vr0 is the synthesis rate of RFP in the absence of
glucose and fe;gatðGÞ is a decreasing function of G such that
fe;gatð0Þ ¼ 1, which accounts for the CRP–cAMP effect exerted
in the presence of glucose.
(7)
 Degradation of lac enzymes and GFP is negligible.
Given these assumptions, the mass balances yield

dx s=K � x=K
dt
¼ fsVs0e 1 2

1þ s=K1
� kxðx� sÞ � fgrg0x, (8)

de

dt
¼ fe;lacVe0

1

1þ a=ð1þ KxxÞ2 þ â=ð1þ KxxÞ4
� fgrg0e, (9)

dg

dt
¼ fe;lacVe0

1

1þ a=ð1þ KxxÞ2 þ âG=ð1þ KxxÞ4
�fgrg0g, (10)

dr

dt
¼ fe;gatVr0 � rg0fgr. (11)

Ozbudak et al. scaled the GFP and RFP intensities by the
corresponding intensities observed during steady exponential
growth on succinate and excess TMG, but no glucose. Under these
conditions, Eqs. (9)–(11) imply that e, g, and r have the values
e� � Ve0=rg0, g� � Ve0=rg0, and r� � Vr0=rg0, respectively. Thus, we
are led to define the dimensionless variables

� �
e

e�
; g � g

g�
; r � r

r�
.

If we scale the remaining variables, x and t, as follows:

w � x

K�1
x

; t � t

r�1
g0

,

we arrive at the dimensionless equations

tx
dw
dt ¼ fsdm0�

s=k1 � w=k2

1þ s=k1
� ðw� sÞ � txfgw, (12)

d�
dt ¼ fe;lacf ðwÞ � fg�; f ðwÞ � 1

1þ a=ð1þ wÞ2 þ â=ð1þ wÞ4
, (13)

dg
dt ¼ fe;lachðwÞ � fgg; hðwÞ � 1

1þ a=ð1þ wÞ2 þ âG=ð1þ wÞ4
, (14)

dr
dt ¼ fe;gat � fgr, (15)
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with the dimensionless parameters,

s � s

K�1
x

; ki �
Ki

K�1
x

; tx �
rg0

kx
,

and

dm0 �
Vs0e�=kx

K�1
x

. (16)

Here, s is the extracellular inducer concentration, measured in
units of K�1

x , k1 is the saturation constant for carrier uptake,
measured in units of K�1

x , k1=k2 is the ratio of the carrier efflux
and influx rates, tx is the ratio of the time constants for diffusive
flux ðk�1

x Þ and growth on succinate (r�1
g0 ), and dm0 is the ratio of the

time constants for diffusive flux ðk�1
x Þ and carrier flux in the

absence of glucose ðK�1
x =ðVs0e�ÞÞ.

Since rg;0 ¼ 0:4 h�1, kx ¼ 8:4 h�1, and fgt2 (see Section 3.1),
we obtain txfgt0:1. It follows that the dilution term in Eq. (12),
txfgw, is negligibly small compared to the diffusive efflux, w.
Hence, the steady states satisfy the relations

0 ¼ fsdm0�
s=k1 � w=k2

1þ s=k1
� ðw� sÞ, (17)

� ¼
fe;lac

fg

f ðwÞ, (18)

g ¼
fe;lac

fg

hðwÞ, (19)

r ¼
fe;gat

fg

. (20)

We are concerned with the steady states observed in two types of
experiments.

If the experiments are performed under conditions that
prohibit enzyme synthesis (Fig. 4), the enzyme level is a fixed
parameter, and the corresponding steady state intracellular
concentration is given by Eq. (17). This equation provides a good
fit to the data. Indeed, if we rewrite (17) as

�ðxÞ ¼
1

fsðdm0K�1
x Þ

ðx� sÞð1þ s=K1Þ

s=K1 � x=K2
(21)

and choose Maloney and Wilson’s parameter values, fs ¼ 1,
s ¼ 0:24 mM, K1 ¼ 0:8 mM, K2 ¼ 84 mM,

dm0K�1
x ¼

Vs0e�
kx
¼

106mmol min�1mL�1

0:14 ðmin�1
Þ

¼ 760 mM, (22)

the parametric curve, f�ðxÞ; xg, shown as the long-dashed
curve in Fig. 4, is almost identical to one obtained by Maloney
and Wilson.3

If the experiments are performed under conditions that permit
enzyme synthesis (Fig. 1), the enzyme level is not a fixed
parameter. It responds to the prevailing intracellular inducer
concentration, and evolves toward the steady state given by (18).
The steady state intracellular inducer level is therefore obtained
by substituting (18) in (17), which yields

0 ¼ dmðGÞf ðwÞ
s=k1 � w=k2

1þ s=k1
� ðw� sÞ, (23)
3 Note that even though our expression for the net carrier-mediated influx rate

is different from the one used by Maloney and Wilson, we can use their value for

K1, since they estimated K1 from initial uptake rates, measured within 30 s of

exposure to various extracellular TMG concentrations. Under these conditions,

both expressions are identical since x � 0 during the course of the measurement.
where

dmðGÞ � fðGÞdm0; fðGÞ �
fsfe;lac

fg

. (24)

Thus, fðGÞp1 captures the cumulative effect of glucose due to
inducer exclusion, catabolite repression, and enzyme dilution, and
dmðGÞ is the ratio of the time constant for the diffusive flux relative
to the time constant for the carrier flux in the presence of glucose.
We are particularly interested in:
(1)
 The variation of the steady state enzyme activity with the
extracellular inducer concentration at any given glucose level
(for example, G ¼ 0, in Fig. 1a). Since this variation is
completely determined by (23), we shall refer to this equation
as the equilibrium condition.
(2)
 The variation of the thresholds with the extracellular glucose
concentration (Fig. 1b). These thresholds are the points at
which the steady state bifurcates (i.e., changes its stability or
multiplicity). It is shown in Appendix A that a steady state
bifurcates only if it satisfies the relation

1þ
dm

1þ s=k1

1

k2
ðf þ wf wÞ �

s
k1

f w

� �
¼ 0. (25)

We shall refer to this equation as the bifurcation condition.
Thus, the steady states are completely determined by the
equilibrium condition, whereas the thresholds must satisfy the
equilibrium and bifurcation conditions.
3. Results and discussion

3.1. The effect of dilution

To simulate the effect of the diffusion influx and the carrier
efflux, we need the function, fðGÞ � fsfe=fg . In the course of
estimating this function, we shall also resolve the discrepancy
between the magnitudes of the cAMP-mediated repression
reported by Ozbudak et al. and Kuhlman et al.

It follows from (19) and (20) that when the cells are grown in
the presence of excess TMG, the ratio of the steady state GFP and
RFP intensities is

g
r ¼

fe;lacðGÞ

fe;gatðGÞ
.

Since this ratio was observed to be 1 all glucose concentrations
(Ozbudak et al., 2004, Fig. 3b), the lac and gat operons respond
identically to CRP–cAMP, i.e.,

fe;lac ¼ fe;gat ¼ fe; say. (26)

Moreover, the steady state RFP and GFP intensities are given by
the equation

r ¼ g ¼ fe

fg

. (27)

It follows that the 5-fold decline of r at saturating glucose
concentrations, shown in Fig. 2, represents the combined effect of
reduced CRP–cAMP levels and enhanced dilution (as opposed to
the sole effect of reduced CRP–cAMP levels).

The effect of the reduced CRP–cAMP level, fe, cannot be estimated
unless the effect of enhanced dilution, fg , is known. Ozbudak et al.
did not report the specific growth rates at various glucose
concentrations, but experiments show that (Narang et al., 1997):
�
 When E. coli K12 is grown on saturating levels of
succinateþ glucose, the cells consume only glucose during
the first exponential growth phase.
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�
 The maximum specific growth rate on glucose ð0:74 h�1
Þ is

roughly 2 times that on succinate ð0:44 h�1
Þ.

It follows that at saturating glucose concentrations, fg � 2. Since
r � 1

5 under these conditions, (27) yields fe ¼ rfg ¼
2
5. Thus,

roughly half of the 5-fold decline in Fig. 2 is due to the enhanced
dilution rate at saturating glucose concentrations. Reduction of
the CRP–cAMP levels accounts for the remaining 2.5-fold decline,
which is consistent with the data obtained by Kuhlman et al.

In view of (27), we can assume that

fe

fg

¼ 1� 0:84
G

7:6þ G
, (28)

which represents the best fit obtained to the data in Fig. 2b.
It remains to specify the function, fs, which characterizes the

intensity of inducer exclusion. We assume that the saturation
constants for inducer exclusion and cAMP activation/dilution are
the same ð7:6mMÞ. Experiments show that the lactose uptake rate
decreases 2-fold in the presence of high glucose concentrations
(McGinnis and Paigen, 1969, Fig. 3). Thus, we are led to postulate
the expression,

fs ¼ 1� 0:5
G

7:6þ G
. (29)

We shall discuss the implications of the foregoing assumption
later on.

3.2. The effect of the diffusive influx and carrier efflux

All the parameters required to study the effect of the diffusive
influx and carrier efflux are now available (Table 1). Most of the
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Fig. 7. Variation of the steady states with the extracellular TMG level, s, at G ¼ 0 in the a

fluorescence intensity (dashed line). (b) Intracellular TMG level.

Table 1

Parameter values used in the simulations. All the parameter values, except K�1
x , are

assumed to be the same for TMG and IPTG

Parameter Value and reference

K1 0.8 mM (Maloney and Wilson, 1973)

K2 84 mM (Fig. 4)

K�1
x

0.47 mM for TMG (Fig. 3a), 0.007 mM for IPTG (Oehler et al., 2006)

a 40 (Oehler et al., 1994)

â 1200 (Oehler et al., 1994)

âG 130 (Ozbudak et al., 2004)

fe=fg Eq. (28)

fs Eq. (29)

dm0 760=K�1
x (Eq. (22))
simulations shown below were done with the parameter values
for TMG. However, at the end of this section, we shall show the
simulation for IPTG, and compare it with the experimental data.

We shall begin by considering the base case of no diffusive
influx and no carrier efflux. To this base case, we shall add the
diffusive influx and the carrier efflux, one at a time, to examine
their effects on the steady states and the thresholds. Finally, we
shall show that the general model containing both fluxes is
essentially a composite of the two special cases accounting for
only one of the two fluxes.

3.2.1. Limiting case 1: no diffusive influx and no carrier influx

In the absence of the diffusive influx and the carrier efflux, the
equilibrium condition (23) becomes

w ¼ dmðGÞf ðwÞ
s

k1 þ s
, (30)

which can be solved for s to obtain

sðw;GÞ ¼ k1
w

dmðGÞf ðwÞ � w
. (31)

At any fixed G, the variation of the steady state �, g, and w with s is
therefore given by the parametric curves, fsðw;GÞ; �ðw;GÞg, fsðw;GÞ;
gðw;GÞg, and fsðw;GÞ;wg, respectively, where �ðw;GÞ, gðw;GÞ, and
sðw;GÞ are given by (18), (19), and (31), respectively.

Fig. 7a shows the variation of the steady state � and g with s at
G ¼ 0. The GFP intensity and enzyme activity of the induced cells
are identical ðg; � � 1Þ, but the GFP intensity of non-induced cells
is �7 times their enzyme activity. This can be understood in terms
of the variation of the intracellular TMG levels with s (Fig. 7b). In
non-induced cells, the intracellular TMG levels are so small
compared to K�1

x that the reporter and native lac operons are
transcribed at their basal rates. Since the basal transcription rate
of reporter lac, 1=ð1þ aþ âGÞ ¼

1
170, is �7 times that of native lac,

1=ð1þ aþ âÞ ¼ 1
1241, the GFP intensity of non-induced cells is �7

times their enzyme activity. In induced cells, on the other hand,
the intracellular TMG levels are saturating, and both operons are
transcribed at the very same (maximal) rates.

Although the steady state � and g have different magnitudes,
they have the very same thresholds. Thus, insofar as the thresh-
olds are concerned, it suffices to focus on either one of these
variables. Henceforth, we shall confine attention to the enzyme
activity.

We are particularly interested in the variation of the thresholds
with G. However, we shall begin by determining their dependence
on dm, since this immediately yields the variation with G. To this
end, observe that in the absence of the carrier efflux, the
0.01 0.02 0.05 0.1 0.2 0.5 1
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bsence of diffusive influx and carrier efflux. (a) Enzyme activity (full line) and green
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bifurcation condition (25) becomes

1� dmf w
s

k1 þ s
¼ 0. (32)

The thresholds satisfy (30) and (32), which imply that
w� f=f w ¼ 0. This equation has two positive roots, w1ow2, which
satisfy the relation, f wðw1Þof wðw2Þ (Appendix B). Hence, the loci of
the on and off thresholds are given by the equations

s ¼ k1

dmf wðw1Þ � 1
; s ¼ k1

dmf wðw2Þ � 1
, (33)

respectively, which define two decreasing curves on the dms-
plane (Fig. 8a). Moreover, the on and off thresholds are infinitely
large when dm approaches 1=f wðw1Þ ¼ 134 and 1=f wðw2Þ ¼ 13:4,
respectively, and decrease hyperbolically when dmb1=f wðw1Þ.

Fig. 8a implies that depending on the value of dm, there are
three different types of dynamics. If dm41=f wðw1Þ, there is
bistability with finite on and off thresholds (Fig. 7). If
dmo1=f wðw2Þ, there is no bistability (Fig. 8b). The bistability
disappears because at these dm, the intracellular TMG levels are so
small compared to K�1

x that re � fsf ð0Þ is essentially independent
of the inducer level, and positive feedback is abolished. If
1=f wðw2Þodmo1=f wðw1Þ, there is bistability with a finite off
threshold, but no on threshold (Fig. 8c). The disappearance of
the on threshold is an example of irreversible bistability (Laurent
and Kellershohn, 1999, p. 421): If enzyme synthesis is switched off
by decreasing the extracellular inducer concentration, it can never
be switched on by any gradual increase of the extracellular
inducer concentration. We shall return to this phenomenon
shortly.
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Fig. 8. Variation of the on and off thresholds in the absence of diffusive influx and carrie

full curve) with dm . The dashed vertical lines represent the values of dm at wh

dm ¼ 1=f wðw2Þ ¼ 13:4. The dotted vertical lines represent the values of dm at G ¼ 0 and

between 1=f wðw1Þ and 1=f wðw2Þ, there is bistability, but no on threshold. (d) Variation o

concentration, G. The parameter values in all the figures correspond to those for TMG
The variation of the off and on thresholds with the glucose
level, G, follows immediately from Fig. 8a. Indeed, as G increases
from 0 to 1000mM, dm decreases from dm0 to dm1 � dm0fjG¼1000

(dotted vertical lines in Fig. 8a). Consequently, the on and off
thresholds, and the ratio of the on to off threshold increase.
Furthermore, the off threshold exists for all 0pGp1000mM, but
the on threshold ceases to exist for some Go1000mM.

We can get explicit expressions for the variation of the
thresholds with G by letting dm ¼ dm0fðGÞ in (33). Since f
decreases with G, s increases with G. Thus, on the Gs-plane,
the thresholds are represented by two increasing curves
(Fig. 8d). As expected, these curves diverge with increasing
glucose levels, with the on threshold becoming unbounded at
G � 200mM.

3.2.2. Limiting case 2: diffusive influx, but no carrier efflux

Irreversible bistability is biologically implausible in the case of
the lac operon. Due to the existence of the diffusive influx, non-
induced (and in fact, even cryptic) cells can always be fully
induced by exposing them to sufficiently high extracellular
inducer levels (Fig. 3a). We show below that irreversible
bistability disappears in the presence of the diffusive influx.

In the absence of the carrier efflux, (23) becomes

w ¼ sþ dmðGÞf
s

k1 þ s
, (34)

which can be solved for s to obtain

sðw;GÞ ¼ 1

2
�ðk1 þ dmf � wÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk1 þ dmf � wÞ2 þ 4k1w

q� �
. (35)
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(see Table 1).



ARTICLE IN PRESS

0.01 0.02 0.05 0.1 0.2 0.5 1

σ

0.001

0.005
0.01

0.05
0.1

0.5
1

ε

0.01 0.02 0.05 0.1 0.2 0.5 1

σ

0.01

1

100

χ

Fig. 9. Comparison of the steady states at G ¼ 0 in the presence (full lines) and absence (dashed lines) of the diffusive influx. (a) Variation of the steady state permease

activity, �, with the extracellular TMG level, s. (b) Variation of the steady state intracellular TMG concentration, w, with the extracellular TMG level, s.
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Fig. 10. Comparison of the thresholds at various dm in the presence and absence of

the diffusive influx. The lower and upper full curves, defined by (36) and (37),

represent the off and on thresholds, respectively, in the presence of the diffusive

influx. The full circle shows the cusp at which the thresholds merge. The lower and

upper dashed curves, defined by (33), represent the off and on thresholds,

respectively, in the absence of the diffusive influx. The dotted vertical lines show

the values of dm � dm0fðGÞ at G ¼ 0 and 1000mM. The parameter values

correspond to those for TMG (see Table 1).
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The variation of the steady state �, g, and w with s is given by the
parametric curves, fsðw;GÞ; �ðw;GÞg and fsðw;GÞ;wÞg, respectively,
where �ðw;GÞ and sðw;GÞ are given by (18) and (35), respectively.

Fig. 9a compares the variation of the steady state permease
activities with s at G ¼ 0 in the presence (full curve) and absence
(dashed curve) of the diffusive flux. It is evident that the diffusive
flux has no effect on the off threshold, but significantly reduces
the on threshold. The physical reason for this is as follows. The off
threshold is a steady state associated with induced cells. These
cells contain such high permease levels that the diffusive influx
makes virtually no contribution to the accumulation of TMG (see
upper branches of the curves in Fig. 9b). In contrast, the on
threshold is a steady state associated with non-induced cells,
which contain such low enzyme levels that the diffusive influx
significantly improves the accumulation of TMG (see lower
branches of the curves in Fig. 9b). This enhanced accumulation
of TMG decreases the on threshold.

We have shown that in the absence of glucose, the diffusive
influx has no effect on the off threshold, and decreases the on
threshold. This is true even in the presence of glucose. To see this,
consider Fig. 10, which compares the thresholds in the presence
(full curves) and absence (dashed curves) of the diffusive influx.
The full curves correspond to the parametric representation,
fdmðwÞ;sðwÞg, where

sðwÞ ¼ w� f

f w
, (36)

dmðwÞ ¼
1

f w
1þ

k1

sðwÞ

� �
(37)

are obtained by solving (32) and (34) for s and dm. It is evident
from the figure that over the range, dm1pdmpdm0, the off
thresholds in the presence of the diffusive influx (lower full
curve) coincide with the off thresholds in absence of the diffusive
influx (lower dashed curve). However, the on thresholds in the
presence of the diffusive influx (upper full curve) are significantly
smaller than the on thresholds in the absence of the diffusive flux
(upper dashed curve). Thus, as G increases to 021000mM, both
thresholds increase, but the ratio of the on to off threshold
decreases (in contrast to the increase observed in the absence of
diffusive flux).

When dm\2000, the diffusive influx has no effect on both
thresholds. Under these conditions, even the non-induced cells
have such high permease activities that the diffusive influx makes
no contribution to inducer accumulation.

When dmt50, the diffusive flux has a significant effect on both
thresholds. Under these conditions, even the induced cells have
low permease activities. Hence, the diffusive flux contributes
significantly to inducer accumulation in both non-induced and
induced cells. At sufficiently small dm, the inducer accumulates
almost entirely by diffusion, i.e., w � s. Since the intracellular
TMG level is independent of the enzyme level, there is no positive
feedback, and hence, no bistability (manifested in Fig. 10 by the
formation of a cusp at which the two thresholds merge).

The existence of the cusp implies that bistability is reversible
whenever it exists: Either both or none of the thresholds occur at
any given dm. Irreversible bistability, which is characterized by the
existence of only one of the thresholds, disappears in the presence
of the diffusive flux. This conclusion does not depend on the
precise parameter values or the functional form of f ðwÞ. The shape
of the curves in Fig. 10 is independent of these details, as long as
the induction kinetics are sigmoidal (Appendix C).
3.2.3. Limiting case 3: carrier efflux, but no diffusive influx

In this case, (23) becomes

w ¼ dmðGÞf
s=k1 � w=k2

1þ s=k1
, (38)
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which can be solved for s to obtain

sðw;GÞ ¼ k1
w½1=ðdmf Þ þ 1=k2	

1� w=ðdmf Þ
. (39)

The variation of the steady state � and w with s is given by the
parametric curves, fsðw;GÞ; �ðw;GÞg, and fsðw;GÞ;wÞg, respectively,
where �ðw;GÞ and sðw;GÞ are given by (18) and (39), respectively.

Fig. 11a shows the variation of the enzyme activity with s at
G ¼ 0 in the presence (full curve) and absence (dashed curve) of
the carrier influx. Evidently, the carrier efflux has no effect on the
on threshold, but it significantly increases the off threshold. This is
because in non-induced cells, the intracellular TMG levels are so
small compared to K2 that carrier efflux is negligible (Fig. 11b).
However, induced cells, characterized by relatively high intracel-
lular TMG levels, suffer from pronounced carrier efflux, which
increases their off threshold.

Fig. 12 compares the thresholds in the presence of carrier efflux
(full curves) with those obtained in its absence (dashed curves).
The full curves were obtained by plotting the parametric
representation, fdmðwÞ;sðwÞg, where

dmðwÞ ¼
1

f 2
½k2ðwf w � f Þ þ w2f w	, (40)

sðwÞ ¼ k1

k2

w2f w
wf w � f

(41)

are the solutions of (38) and (25). It is evident that over the range,
dm1pdmpdm0, the carrier efflux has no effect on the on threshold,
but significantly reduces the off threshold. Thus, the behavior
observed in the presence of glucose is identical to that observed in
the absence of glucose. When dm\104, both thresholds are
affected by the carrier efflux because the enzyme activity is so
large that even the non-induced cells experience carrier efflux. At
sufficiently large dm, the thresholds merge to form a cusp, beyond
which there is no bistability. The bistability disappears because
under these conditions, the intracellular TMG level is
w � ðk2=k2Þs, which is independent of the enzyme level. The
destabilizing effect of positive feedback therefore vanishes, and
the prospect of bistability is eliminated.

Once again, the qualitative variation of the thresholds with G

can be inferred from Fig. 12. As G increases, so do both thresholds
and the ratio of the on to off threshold. Furthermore, since
diffusive influx is absent, there is irreversible bistability: The off
threshold exists for all G, whereas the on threshold disappears at
some Go1000mM.
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Fig. 11. Comparison of the steady states at G ¼ 0 in the presence (full lines) and absence

with the extracellular TMG level. (b) Variation of the intracellular TMG concentration
We note finally that the geometry of the bifurcation curves in
Fig. 12 is independent of the parameter values, provided the
induction rate is sigmoidal (Appendix D).
3.2.4. General case: diffusive influx and carrier efflux

Intuition suggests that the behavior of the full model
can be inferred from the behavior of limiting cases 2 and 3. To
see this, it suffices to recall that the on threshold is a steady
state associated with non-induced cells. Since carrier efflux is
negligible in such cells, the on thresholds of the full model
will be identical to the on thresholds for limiting case 2 (no carrier
efflux). Likewise, the off threshold is associated with induced cells.
Since diffusive influx is negligible in such cells, the off thresholds
of the full model will be identical to the off thresholds for limiting
case 3 (no diffusive influx). We show below that this is indeed the
case.

Fig. 13 compares the steady state profiles at G ¼ 0 in the
presence of the diffusive influx and carrier efflux (full curves) with
those obtained in the presence of the diffusive influx only (short-
dashed curves) and the carrier efflux only (long-dashed curves).
The full curves were obtained from the parametric representation,
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(dashed lines) of the carrier efflux. (a) Variation of the steady state enzyme activity

with the extracellular TMG level.
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Fig. 13. Comparison of the steady states of the general model (full curves) with the steady states in the presence of diffusive flux (short-dashed curves) and carrier efflux

(long-dashed curves). (a) Variation of the enzyme activity with the extracellular TMG level. (b) Variation of the intracellular TMG concentration with the extracellular TMG

level.
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fsðw;GÞ; �ðw;GÞg and fsðw;GÞ;wÞg, where

sðw;GÞ ¼ k1

2
�pþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2 þ 4

w
k1

1þ
dmf

k2

� �s" #
; p � 1�

w
k1
þ
dmf

k1

(42)

is the positive solution of (23), and �ðw;GÞ is given by (18). It is
evident that the on (resp., off) threshold is well approximated by
the model accounting for only the diffusive flux (resp., carrier
efflux).

The above conclusion is true for all glucose concentrations.
Fig. 14a compares the thresholds thus obtained (full curves) with
the thresholds obtained in the presence of diffusive influx (short-
dashed curves) and carrier efflux (long-dashed curves). The full
curves were generated from the parametric representation,
fdmðwÞ;sðwÞg, where dmðwÞ;sðwÞ satisfy the relations

0 ¼ s2 þ s f

f w
� wþ k1

k2

f þ wf w
f w

 !" #
�
k1

k2
w2, (43)

dm ¼
1þ s=k1

f ws=k1 � ðwf w þ f Þ=k2
, (44)

obtained from (23) and (25). Unlike the cases discussed above, the
thresholds exist only on a finite interval—they terminate in a cusp
at both small and large dm. Moreover, over the range,
dm1pdmpdm0, the on (resp., off) thresholds are well approxi-
mated by the on (resp., off) thresholds in the presence of only the
diffusive flux (resp., carrier efflux).

It follows from Fig. 14a that as G increases, both thresholds
increase, but the ratio of on to off thresholds can increase,
decrease, or pass through a maximum. For the parameter values in
Table 1, dm0 and dm1 are such that the ratio passes through a
maximum. The precise variation of the thresholds with G is given
by the parametric curve, fGðwÞ;sðwÞg, where

GðwÞ ¼ f�1 1

dm0

1þ s=k1

f ws=k1 � ðwf w þ f Þ=k2

" #
.

As expected, this parametric curve consists of two increasing
curves that diverge at low glucose concentrations and converge at
high glucose concentrations (Fig. 14b).

3.2.5. Comparison of simulations with the data for TMG

Comparison of the model simulations (dashed lines in Fig. 1b)
with the data shows that the simulated off thresholds are higher,
and the simulated on thresholds are lower, than the correspond-
ing thresholds observed experimentally. Moreover, the off thresh-
old is most discrepant at low glucose concentrations, whereas the
on threshold deviates at high glucose concentrations.
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Part of the discrepancy is due to uncertainties in the parameter
values. Indeed, the value of K2 is based on a fit of the data rather
than a direct measurement. Moreover, even the measured values
in Table 1 were obtained with different strains of E. coli, and there
is considerable variation depending on the strain. The value of K1,
for instance, is 0.43 mM in E. coli ML30 (Cohen and Monod, 1957,
Fig. 2), and 0.8 mM in E. coli K12 CA6008 (Maloney and Wilson,
1973). However, there may be two additional sources of the
discrepancy.

Dependence of fs on the enzyme activity: The model assumes
that the effect of inducer exclusion, characterized by the function
fs, is completely determined by the extracellular glucose level.
However, the data in Fig. 15 implies that fs also depends on the
activity of the permease. Inducer exclusion is significant in cells
containing low enzyme levels, but disappears in fully induced
cells presumably because enzyme IIAglc binds to only a small
fraction of the abundant permease (Mitchell et al., 1982).

The model, which ignores the dependence of fs on the
permease level, yields a good fit to the data obtained in the
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Fig. 15. Comparison of the observed and simulated effects of inducer exclusion in

S. typhimurium SB3939 transfected with a plasmid encoding the lac operon

(Mitchell et al., 1982, Fig. 5A). The open triangles show the steady state

intracellular TMG level in cells induced to various levels, and exposed to a

carbon-free medium containing 1 mM TMG. The full triangles show the

intracellular TMG level attained in a carbon-free medium containing 1 mM TMG

and 10 mM a-methylglucoside, a non-metabolizable analog of glucose. The full

curve shows the fit to the data obtained with Eq. (21) and the parameter values,

dm0K�1
x ¼ 760 mM, fsjG¼0 ¼ 1, kx ¼ 0:14 min�1, s ¼ 1 mM, K1 ¼ 0:8 mM, and

K2 ¼ 35 mM. The dashed curve shows the fit to the data with the same equation

and parameter values, the only difference being that fsjG¼10 mM ¼ 0:5.
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Fig. 16. Variation of the specific growth rate due to induction of lac. (a) During growth

the specific growth rate by�30% (Novick and Weiner, 1957, Table 2). (b) During growth o

specific growth rate by only �5% (Dekel and Alon, 2005, Fig. 2a).
absence of a-methylglucoside (full line in Fig. 15). However, in the
presence of a-methylglucose, it fits the data well only if the
enzyme levels are high—it underestimates the inducer exclusion
effect at low enzyme levels (dashed line in Fig. 15). The observed
on threshold is therefore expected to be higher than the on
threshold predicted by the model.

The dependence of fs on the enzyme activity can explain the
discrepancy of the on threshold, which is most pronounced at
large glucose concentrations. However, it cannot account for the
discrepancy in the off threshold, which is largest at low glucose
concentrations. As we show below, this discrepancy can be
resolved by a process that is significant even in the absence of
glucose.

Dependence of rg;0 on the enzyme activity: The model assumes
that in the absence of glucose, the specific growth rate is a fixed
constant, rg;0. However, the data shows that the specific growth
rate varies significantly with the enzyme level of the cells
(Fig. 16a). When the cells are exposed to 0.5 mM TMG, the specific
growth rate is �30% lower than that of non-induced cells, and the
graph suggests that the specific growth rate declines further at
higher extracellular TMG levels. The reduced specific growth rate
of the induced cells serves to decrease the off threshold because
the lower the specific growth rate, the higher the enzyme and
intracellular TMG levels.

In earlier work, we studied the dynamics of growth on
lactose (Narang and Pilyugin, 2008). There, we showed that
bistability is suppressed during growth on lactose because the
specific growth rate increases with the enzyme level,
thus enhancing the stabilizing effect of dilution. Since the
specific growth rate decreases with the enzyme level during
growth on TMG, it is plausible to expect that in this case, the
stabilizing effect of dilution is depressed, and the bistable regime
is enlarged.
3.2.6. Comparison of simulations with the data for IPTG

The above arguments suggest that the discrepancy between
the data and the simulations would be reduced if the experiment
was performed in the absence of glucose with a gratuitous inducer
that does not result in a significant reduction of the specific
growth rate. This conclusion seems to be consistent with the data.

It turns out that when the cells are grown in the presence of
IPTG, the specific growth rate of the induced cells is only �5%
smaller than the specific growth rate of the non-induced cells
(Fig. 16b). Recently, Laurent et al. measured the variation of the
enzyme activity with the extracellular IPTG levels in the absence
of glucose (Fig. 17). They found that the mean activity does not
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Fig. 17. Comparison of the data and model simulation for bistability of E. coli K12

at various extracellular IPTG levels and G ¼ 0. The open and closed triangles show

the steady state b-galactosidase activities of non-induced and induced cells,

respectively (Laurent et al., 2005, Fig. 7). The full curve shows the model

simulation with K�1
x ¼ 7mM. All other parameter values are the same as those

used for simulating the experiments with TMG (see Table 1).
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display the discrete all-or-none response observed by Ozbudak
et al. (presumably due to the physiological heterogeneity
of the cells and the inherent stochasticity of the induction
process). However, there is clear evidence of bistability in
the 5-fold range, 0:321:5mM, which is significantly smaller than
the 10-fold range shown in Fig. 1a. The off and on thresholds are
also smaller than those observed by Ozbudak et al. (0.3 and
1:5mM compared to 3 and 30mM in Fig. 1a). This is because
the affinity of IPTG for the repressor is an order of magnitude
higher than that for TMG. Simulation of the model with K�1

x ¼

7mM yields results that are in reasonable agreement with the data
(Fig. 17).

It is important to note that even though the modifications
mentioned above may be necessary to resolve the quantitative
discrepancy, they will have no effect on the key phenomenon
predicted by the model, namely, the disappearance of bistability
at low and high values of the permease activity. Indeed, the mere
existence of diffusive influx and carrier influx implies that at
sufficiently low and high permease activities, the intracellular
inducer level becomes independent of the permease activity, thus
eliminating positive feedback and bistability. This prediction can
be tested by studying the enzyme distribution in (a) wild-type
cells exposed to specific permease inhibitors such as p-chlor-
omercuribenzene sulfonate (Booth and Hamilton, 1980), or
mutants with impaired lac induction (Maloney and Wilson,
1973) and (b) recombinant cells overexpressing the permease
(Kimata et al., 1997).
4. Conclusions

Analysis of the experimental data shows that the diffusive
influx and carrier efflux have a profound effect on inducer
accumulation in non-induced and induced cells, respectively.
Since bistability entails the coexistence of steady states corre-
sponding to both non-induced and induced cells, neither one of
these fluxes can be neglected. We analyzed a model of lac

bistability taking due account of the diffusive influx and carrier
efflux. We find that:
(1)
 The 5-fold CRP–cAMP mediated repression reported by
Ozbudak et al. is almost 2 times the repression observed by
others. This discrepancy can be resolved by accounting for the
enhanced dilution effect in the presence of glucose. Our
analysis shows that half of the 5-fold repression reported by
Ozbudak et al. is due to dilution.
(2)
 The diffusive influx decreases the on threshold, and
eliminates irreversible bistability, a phenomenon that is
inconsistent with experiments. The carrier efflux increases
the off threshold, and abolishes the prospect of bistability at
large permease levels. Thus, the model predicts the disap-
pearance of bistability at both small and large permease
levels.
(3)
 Over a wide range of permease activities, the diffusive influx
has no effect on the off threshold, and the carrier efflux
has no effect on the on threshold. Since each of these
fluxes influences only one of the thresholds, the thresholds
in the presence of both fluxes can be approximated by
simple analytical expressions corresponding to two
limiting cases, namely, no diffusive influx and no carrier
efflux.
(4)
 Simulations of the model show good agreement with the data
for IPTG. They are discrepant with respect to the data for TMG.
The discrepancy is probably due to uncertainties in the
parameter values, or the absence of certain features in the
model, such as the dependence of the inducer exclusion effect
and the specific growth rate on the prevailing lactose enzyme
levels.
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Appendix A. Necessary condition for a bifurcation

The Jacobian of Eqs. (12)–(15) at any steady state is

�
1

tx

fsdm0ðfs=fgÞf

k2ð1þ s=k1Þ
þ 1þ txfg
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fsdm0

tx

s=k1 � w=k2
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Evidently, two of the eigenvalues are �fg . Hence, the steady state
is stable if and only if the remaining two eigenvalues correspond-
ing to the submatrix
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þ 1þ txfg
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have negative real parts. Since the trace is always negative,
stability results whenever the determinant is positive. Hence, the
necessary condition for a bifurcation is that the determinant be
zero, i.e.,
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Since txfg51, this condition can be approximated by the relation
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�
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¼ 0; dm �
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which immediately reduces to Eq. (25).
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Appendix B. The positive roots of the equation w� f =f w ¼ 0

We wish to show that qðwÞ � w� f=f w has exactly two positive
roots, w1ow2, and is positive if and only if w1owow2. This
assertion has a simple geometric interpretation. Since f ðwÞ is a
sigmoidal function for sufficiently large a and â, there are only
two lines passing through the origin that touch the graph of f, and
they do so at the two points, w1 and w2 (Fig. B1). Furthermore, for
any w1owow2, the slope of the line passing through ð0;0Þ and
ðw; f ðwÞÞ is smaller than f w.

The formal proof is obtained by observing that
qð0Þ ¼ �f ð0Þ=f wð0Þo0, and at large w,

qðwÞ ¼ w� 1þ w
2

1þ a=ð1þ wÞ2 þ â=ð1þ wÞ4

a=ð1þ wÞ2 þ 2â=ð1þ wÞ4
� w� w

2

1

a=w2
o0.

It follows that qðwÞ has at least two positive roots. In fact, it has
exactly two positive roots because it has only one extremum on
½0;1Þ. Indeed,

dq

dw
¼ 1�

f wwf � f 2
w

f 2
w

¼
f wwf

f 2
w

,

which is zero if and only if f ww ¼ 0, i.e., w ¼ w�, where ðw�; f ðw�ÞÞ is
the unique inflection point of the sigmoidal function, f.
Appendix C. Bifurcation diagram for diffusive influx

We wish to show that regardless of the parameter values, the
functions, sðwÞ and dmðwÞ, defined by (36) and (37), respectively,
have the geometry shown in Fig. C1. It follows that as w increases
from w1, s increases and dm decreases until a cusp forms at the
point w ¼ w� where ds=dw ¼ ddm=dw ¼ 0. Beyond w ¼ w�, s
decreases and dm increases until they approach 0 and 1,
respectively. Thus, the variation of the thresholds on the dms-
plane has the geometry shown in Fig. 10a, regardless of the
parameter values.

Now, the geometry of sðwÞ is identical to that of qðwÞ, which
was analyzed in Appendix B. Hence, it suffices to show that dmðwÞ
has the geometry shown in Fig. C1. To this end, observe that (37)
implies limw!wþ
1
;w�

2
dmðwÞ ¼ 1. Moreover, since

ddm

dw ¼ �
k1

s2f w

ds
dw � 1þ

k1

s

	 
 f ww

f 2
w

¼ �
ds
dw

k1

s2f w
þ 1þ

k1

s

	 
1

f

" #
,

ddm=dw and ds=dw have opposite signs at all w1owow2, except
when w ¼ w�, at which point ddm=dw ¼ ds=dw ¼ 0.
Appendix D. Bifurcation diagram for carrier influx

In this case, the equilibrium and bifurcation conditions have
the form

w 1þ
s
k1

� �
� dmf

s
k1
¼ 0, (D.1)

1þ
s
k1
� dm

1

k2
ðf þ wf wÞ �

s
k1

f w

� �
¼ 0. (D.2)

Differentiating (D.1) and using (D.2), we find that

1

k1
ðdmf � wÞds

dw
þ f

s
k1
�

w
k2

� �
ddm

dw
¼ 0, (D.3)

where the coefficients of ds=dw and ddm=dw are positive because
(D.1) implies that

dmf � w ¼ wk1

s
40,

and (D.2) yields

s
k1
�

w
k2
¼

1þ
s
k1
þ
dmf

k2

dmf w
40.

We conclude that either ds=dw and ddm=dw have opposite signs or
they are both simultaneously equal to zero. Thus, the parametric
curve described by (D.1) and (D.2) is piece-wise smooth, and
consists of several cusps connected by graphs of monotonically
decreasing functions in the dm;s-plane.

It turns out that the parametric curve has only one cusp.
Indeed, sðwÞ and dmðwÞ are given by Eqs. (40) and (41),
respectively. We will show that sðwÞ admits a unique minimum
on the interval ½w1;w2	 where it is positive. For convenience,
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we rewrite the expression for sðwÞ as

sðwÞ ¼ k1

k2

w2f w
wf w � f

¼
k1

k2

w2f w=f 2

wf w=f 2
� 1=f

¼
k1

k2

w2gw
wgw þ g

,

where

gðwÞ ¼ 1

f ðwÞ ¼ 1þ
a

ð1þ wÞ2
þ

â
ð1þ wÞ4

.

Differentiating with respect to w and simplifying, we find that

ds
dw
¼
k1

k2

2wggw þ w2ggww

ðwgw þ gÞ2
¼

k1wg

k2ðwgw þ gÞ2
ð2gw þ wgwwÞ.

Hence the sign of ds=dw is determined by the sign of
hðwÞ � 2gw þ wgww. Letting z ¼ 1þ w, we find that

hðzÞ ¼ �
4a
z3
�

8â
z5
þ ðz� 1Þ

6a
z4
þ

20â
z6

� �

¼
2az3 � 6az2 þ 12âz� 20â

z6
. (D.4)

The numerator of this expression is negative when z ¼ 1 (w ¼ 0),
and positive when z!þ1 (w!þ1). To show that the sign
changes exactly once, we differentiate the numerator in (D.4) and
obtain the quadratic

6az2 � 12azþ 12â.

The discriminant of this quadratic, 144aða� 2âÞ, is negative
provided â4a=2, a condition that clearly holds in our case since
a � 40 and â � 1200. Therefore, the numerator in (D.4) is an
increasing function of z and as such, it changes sign from negative
to positive exactly once. We conclude that sðwÞ admits a unique
minimum on the interval ½w1;w2	 where it is positive.
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