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Abstract

A chemostat limited by a single growth-limiting substrate displays a rich spectrum of dynamics. Depending on the flow rate and

feed concentration, the chemostat settles into a steady state or executes sustained oscillations. The transients in response to abrupt

increases in the flow rate or the feed concentration are also quite complex. For example, if the increase in the flow rate is small,

there is no perceptible change in the substrate concentration. If the increase in the flow rate is large, there is a large increase in the

substrate concentration lasting several hours or days before the culture adjusts to a new steady state. In the latter case, the substrate

concentration and cell density frequently undergo damped oscillations during their approach to the steady state. In this work,

we formulate a simple structured model containing the inducible transport enzyme as the key intracellular variable. The model

displays the foregoing dynamics under conditions similar to those employed in the experiments. The model suggests that long

recovery times (on the order of several hours to several days) can occur because the initial transport enzyme level is too small to cope

with the increased substrate supply. The substrate concentration, therefore, increases until the enzyme level is built up to a

sufficiently high level by the slow process of enzyme induction. Damped and sustained oscillations can occur because transport

enzyme synthesis is autocatalytic, and hence, destabilizing. At low dilution rates, the response of stabilizing processes, such as

enzyme dilution and substrate consumption, becomes very slow, leading to damped and sustained oscillations.

r 2003 Elsevier Science Ltd. All rights reserved.
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1. Introduction

Among the most pressing problems in bioengineering
is the dynamic response of a chemostat. To the
practicing engineer, the steady state represents a
theoretical construct rarely realized in practice. Indeed,
industrial bioreactors are inevitably insulted with flow
rate and feed concentration fluctuations. These un-
avoidable perturbations often result in large overshoots
of the substrate concentrations, causing regulatory
violations in wastewater treatment plants and product
deterioration in industrial fermenters. A mathematical
theory of chemostat dynamics is of utmost importance

for developing rational operating protocols and optimal
control strategies.

Models of microbial growth have been classified into
two categories. Experiments show that overshoots of
substrate concentration occur when cells in a starved
state are suddenly exposed to large substrate concentra-
tions by increasing the feed flow rate or concentration.
Two factors could contribute to this phenomenon.

1. Either the starved cells lack the enzyme that
transports the substrate from the medium into the
cell, and a considerable length of time is required to
synthesize the enzyme to a level that is high enough to
match the increased supply of substrate.

2. Or the starved cells lack the ribosomal machinery
required to convert the catabolic products derived
from the substrate into biomass, and the resultant
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accumulation of the catabolic products represses
substrate uptake by inhibiting the transport enzyme.
This repression persists until the ribosomal machin-
ery has been built to a level consistent with the
increased supply of substrate (Maaloe and Kjeld-
gaard, 1966).

Given the important role of these intracellular
variables, it is clear that unstructured models cannot
provide a satisfactory explanation of this phenomenon.
These models assume that the specific growth rate of the
cells is completely determined by the substrate concen-
tration, and hence, it adjusts instantaneously to changes
in the substrate concentration (Tsuchiya et al., 1966).
The data, on the other hand, shows that when the
chemostat is subjected to large perturbations, only
part of the adjustment occurs instantaneously. Part
of it occurs slowly because enzymes or/and ribosomes
must be synthesized to fully adjust to the new conditions
(Mateles et al., 1965). Structured models take due
account of the fact that the specific growth rate
depends on the substrate concentration and appropriate
intracellular variables, namely, enzymes or/and ribo-
somes.

Several structured models have been proposed in
order to capture single-substrate dynamics. These
include highly structured models accounting for main-
tenance, storage, and synthesis of ribosomes and various
enzymes (Baloo and Ramkrishna, 1990; Domach et al.,
1984). The goal of this work is to study the global
dynamics of single-substrate growth by considering a
simple structured model. We assume, in particular, that
there is no maintenance, and that ‘‘excess’’ ribosomes
are always available, so that the sluggish response of a
chemostat, whenever it occurs, is exclusively due to low
transport enzyme levels in the cells. This is not to deny
the roles of maintenance and ribosomal synthesis, but to
determine the extent to which enzyme synthesis alone
can account for the observed lags. Experiments show
that in Escherichia coli, the assumption of ‘‘excess’’
ribosomes is valid for dilution rates up to 0:4 1=h:

1. If the dilution rate is shifted up from 0.4 1/h to 0.8 1/
h, the specific growth rate increases almost instanta-
neously to 0:6 1=h (Mateles et al., 1965). This implies
that de novo synthesis of ribosomes is not required to
improve upon the prevailing specific growth rate of
0:4 1=h: Similar results have been obtained by others
(Harvey, 1970; Koch and Deppe, 1971).

2. The concentration of ribosomal RNA, the key
constituent of ribosomes, is constant for dilution
rates up to 0:4 1=h: Within this range of dilution
rates, the protein synthesis rate is improved by
increasing not the level of ribosomes, but the speed
with which ribosomes move along the messenger
RNA during protein synthesis (Neidhardt et al.,
1990, p. 421).

An approach similar to ours was followed in previous
studies. Powell assumed that the specific growth
rate was proportional to the concentration of an
unindentified intracellular entity called ‘‘Q-substance’’
which was synthesized autocatalytically at a rate
proportional to its concentration (Powell, 1969);
this model is formally similar to our model if the ‘‘Q-
substance’’ is identified as the transport enzyme. Powell
showed that his simulations were in good agreement
with the dilution rate shift-up data in ammonia-limited
cultures obtained by Mateles et al. (1965). In a more
stringent test of the model, Chi and Howell (1976)
compared the predictions of Powell’s model with
dilution rate and feed concentration shift-up data in
phenol-limited cultures (Chi and Howell, 1976).
Here again, the model predictions were in good
agreement with the data, except at large feed concentra-
tions when substrate inhibition became very pro-
nounced. In this work, we extend these studies in two
directions. First, we consider a model that takes due
account of the mechanism of enzyme synthesis. Speci-
fically, we replace the hyperbolic enzyme synthesis
kinetics assumed in our earlier study (Narang, 1998)
by sigmoidal kinetics. The sigmoidal kinetics obtain
from a careful consideration of the mechanism for
enzyme induction (Chung and Stephanopoulos, 1996;
Yagil and Yagil, 1971). As we show later, the assump-
tion of sigmoidal kinetics has a profound effect on the
dynamics. Second, we do a complete nonlinear analysis
of the model which allows us to establish a correspon-
dence between the experimental observations and the
relevant notions of dynamical systems theory. We show,
in particular, that the long lags occur because the orbits
reach the vicinity of a saddle point; damped and
sustained oscillations occur because a Hopf bifurcation
occurs at low dilution rates. By appealing to this
analysis, we are able to give simple physical explanations
of these dynamics.

We begin in Section 2 by recapitulating the main
features of the model. Single-substrate cultures are
generally subjected to one or more of the following
three perturbations

1. Dilution rate shifts wherein the dilution rate is shifted
at a fixed feed concentration.

2. Feed concentration shifts wherein the feed concen-
tration is shifted (without altering the identity of the
substrate).

3. Feed switches wherein the identity of the substrate in
the feed is altered.

In Section 3, we simulate the dynamics corresponding
to each of these perturbations, and compare our results
to the experimental data. Finally, the key conclusions
are summarized in Section 4.
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2. Model

The kinetic scheme is shown in Fig. 1. Here, S denotes
the substrate, E denotes the inducible enzyme or
‘‘lumped’’ system of inducible enzymes catalysing the
uptake and peripheral catabolism of S; X denotes the
inducer for E; P denotes the ‘‘lumped’’ pool of
biosynthetic precursors, and C� denotes all constituents
of cell mass except E; X ; and P: The entire cell
consisting of E; X ; P and C� is denoted by C: The
concentrations of these entities are denoted by the
corresponding lower-case letters s; c; e; x; p; and c�:
Here, s (g/l) and c (gdw/l) are based on the volume of the
chemostat, whereas x; e; p and c�(g/gdw) are based on
the dry weight of the biomass. Steady state and quasi-
steady state concentrations are denoted by overlaying
these letters with B and �; respectively (for instance, *x

and %x). The yield, denoted Y ; is the mass of P produced
per unit mass of X :

The following assumptions are made about the
kinetics of the various processes

1. The specific substrate uptake rate, denoted rs; satisfies
the kinetic law

rs � Vse
s

Ks þ s
:

2. The specific rate of breakdown of X into energy and
precursors P; denoted rx; is given by

rx � kxx:

3. The specific rate of formation of C� is given by

rp � kgp:

4. The specific rate of enzyme synthesis, denoted re; is

re � Ve

1þ K1x þ K2x2

K3 þ K1x þ K2x2
:

These kinetics obtain because the repressor can bind to
two inducer molecules (Yagil and Yagil, 1971). Thus,
K1 is the equilibrium constant for binding of a repressor
to one inducer molecule, K2 is the equilibrium constant
for binding of a repressor to two inducer molecules, and
K3 is proportional to the equilibrium constant for
binding of a repressor to an operator.

In what follows, we shall appeal to the following two
facts. First, since repressor-operator binding is not
perfectly tight, i.e. K3 is finite, the enzyme is
synthesized even in the absence of the inducer; this
phenomenon is referred to as constitutive enzyme
synthesis. Second, if K2bK2

1 ; as is the case for the
lac operon, binding of the first inducer molecule to a
repressor facilitates the binding of the second inducer
molecule, resulting in cooperative or sigmoidal kinetics.

5. The specific rate of enzyme degradation, denoted rd ;
follows first-order kinetics

rd � kde:

6. The yield, Y ; is a fixed ‘‘stoichiometric’’ coefficient.
That is, the rates of non-biosynthetic processes, such
as overflow metabolism, energy spillage, and main-
tenance, are proportional to the biosynthetic rate.

A mass balance on the state variables yields

ds

dt
¼ Dðsf � sÞ � rsc; ð1Þ

dx

dt
¼ rs � rx � D þ

1

c

dc

dt

� �
x; ð2Þ

dp

dt
¼ Yrx � re þ rd � rp � D þ

1

c

dc

dt

� �
p; ð3Þ

de

dt
¼ re � rd � D þ

1

c

dc

dt

� �
e; ð4Þ

dc�

dt
¼ rp � D þ

1

c

dc

dt

� �
c�; ð5Þ

where the last term in Eqs. (2)–(5) represents the dilution
of X ; P; E; and C�; respectively, by effluent flow and
growth, sf denotes the concentration of S in the feed,
and D denotes the dilution rate. It is shown in (Narang,
1998) that since

1. The mass fraction of all intracellular entities equals
unity

x þ p þ e þ c� ¼ 1 g=gdw:

2. The inducer and precursor concentrations rapidly
achieve quasi-steady state

dx

dt
¼

dp

dt
¼ 0 ) rxErs; rpEYrx

P CXS
E

C

Fig. 1. Kinetic scheme of the model. Here, S denotes the substrate, X

denotes the inducer, E denotes the inducible enzyme(s) catalysing the

uptake and peripheral catabolism of S; P denotes the biosynthetic

precursors derived from catabolism of X ; C� denotes the remaining

components of biomass, and C denotes the entire cell consisting of E;
X ; P and C�: The positive feedback loop represents the induction of

enzyme synthesis.
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Eqs. (1)–(5) are approximated by the equations

ds

dt
¼ Dðsf � sÞ � Vse

s

Ks þ s

� �
c; ð6Þ

de

dt
¼ Ve

1þ K1 %x þ K2 %x
2

K3 þ K1 %x þ K2 %x2
� YVse

s

Ks þ s
þ kd

� �
e; ð7Þ

dc

dt
¼ YVse

s

Ks þ s
� D

� �
c; ð8Þ

kx %x ¼ Vse
s

Ks þ s
; ð9Þ

kg %p ¼ YVse
s

Ks þ s
ð10Þ

for all but a negligibly small initial time interval.

3. Simulations and analysis

The simulations were done with the parameter values
for the lac operon (Table 1). Appendix A contains the
basis for order-of-magnitude estimates of these para-
meters. Appendix B contains a detailed comparison of
the model simulations and experimental observations
for various types of perturbations.

3.1. Steady states

Eqs. (6)–(10) admit two types of steady states,
namely, the persistence (*ca0) and the washout (*c ¼ 0)
steady states; we denote them by f1 and f0; respectively.

The persistence steady state, f1; is unique, no matter
what the parameter values. At the persistence steady
state, the specific growth rate equals the dilution rate;
that is

YVs *e
*s

Ks þ *s
¼ D: ð11Þ

It immediately follows that

*xðDÞ ¼
D

Ykx

; ð12Þ

*pðDÞ ¼
D

kg

; ð13Þ

*eðDÞ ¼
1

D þ kd

Ve

1þ K1 *x þ K2 *x
2

K3 þ K1 *x þ K2 *x2

� �
; ð14Þ

*sðDÞ ¼ Ks

D

YVs *e � D
; ð15Þ

*cðD; sf Þ ¼ Y ðsf � *sÞ: ð16Þ

On the other hand, depending on the parameter values,
there can be up to three washout steady states. To see
this, observe that *s ¼ sf at a washout steady state. It
follows from Eq. (15) that washout dilution rates satisfy
the equation

*sðDÞ ¼ Ks

D

YVs *eðDÞ � D
¼ sf : ð17Þ

This equation typically admits one or three positive
solutions. For, if K2 is large, then *sðDÞ has two local
extrema (Fig. 2). Intuition suggests that *sðDÞ should be a
monotonically increasing function of D: That *sðDÞ
decreases with respect to D over a certain range of
dilution rates can be attributed to the fact that at large
K2; the kinetics of enzyme induction are sigmoidal.
Thus, there is a range of dilution rates over which *eðDÞ
increases as the square of the dilution rate (see Fig. 3). It
follows that from Eq. (11) that if *eðDÞ increases faster
than D; then *sðDÞ must necessarily decrease. The non-
monotonicity of *sðDÞ implies that there exist two
positive values s�f osþf such that any intermediate value
s�f osf osþf provides three solutions D1

woD2
woD3

w of
Eq. (17). On the contrary, if sf is small (sf os�f ) or if sf is
large (sf > sþf ) then Eq. (17) admits a unique washout
dilution rate Dw: If K2 is small, the kinetics of enzyme
synthesis are hyperbolic, so that *eðDÞ cannot increase
faster than D: Hence, *sðDÞ increases monotonically, and
any value of sf gives a unique washout dilution rate Dw:
For the parameter values in Table 1, *sðDÞ has the form
shown in Fig. 2 with s�f C0:002 g/l and sþf C0:02 g/l. If
sf ¼ 1:5 g/l, there is a unique washout dilution rate at
DwC0:8 1/h; if sf ¼ 0:01 g/l, there are three washout
dilution rates at D1

wC0:0005 1/h, D2
w ¼ 0:004 1/h, and

D3
w ¼ 0:50 1/h.

0.0001 0.001 0.01 0.1 1

D (1/hr)

0.005
0.01

0.05
0.1

0.5
1

s 
(g

/L
)

~

Fig. 2. The existence of multiple critical dilution rates at large K2:
Since the steady-state substrate concentration, *s; is a non–monotonic

function of the dilution rate, there can be three critical dilution rates

for 0:002 g=losf o0:02 g=l:

Table 1

Parameter values used in the simulations

Vs ¼ 104 g/g-h Ks ¼ 10�2 g/l Y ¼ 0:4 g/g

kx ¼ 900 g/g-h Ve ¼ 2� 10�4 g/gdw-h K1 ¼ 105 gdw/g

K2 ¼ 1011ðgdw=gÞ2 K3 ¼ 105 kd ¼ 10�2 1/h
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3.2. High feed concentrations

In this section, we summarize the experimental data
and simulate the model transients at large feed
concentrations (sf ¼ 1:5 g/l). Under these conditions,
there is a unique washout dilution rate at Dw ¼ 0:8 1/h,
and the bifurcation diagram is formally similar to the
bifurcation diagram for the Monod model (Fig. 3).
Below the (unique) washout dilution rate, the persis-
tence steady state is globally stable; above the washout
dilution rate, the washout steady state is globally stable.
At low feed concentrations, the bifurcation diagram and
dynamics of the model can be more complex; we defer
this discussion to Section 3.3.

3.2.1. Dilution rate shifts

In these experiments, at to0; the culture is in a steady
state at some dilution rate, say D0; and feed concentra-

tion, sf : At t ¼ 0; the dilution rate is shifted up to a new
value, D > D0; while the feed concentration, sf ; is held
fixed. In response to this perturbation, it is observed that
(Mateles et al., 1965)

1. Almost instantaneously, the substrate concentration
and specific growth rate increase, and the cell density
decreases.

2. If the shift-up, D � D0; is small, the higher specific
growth rate thus achieved equals the higher dilution
rate, D: In this case, the change in the substrate
concentration and cell density is imperceptibly small.

3. If the shift-up, D � D0; is large, the higher specific
growth rate achieved on the fast time-scale falls short
of the dilution rate, D: The rapid increase of the
specific growth rate is followed by a period of slow
increase during which s increases and c decreases.
After several hours or days (see, for instance,
Standing et al. (1972)), the specific growth rate of
the culture catches up with the increased dilution
rate. At this instant, s reaches a maximum and c

attains a minimum. Thereafter, the specific growth
rate is higher than D; during this period, s decreases
and c increases until the culture reaches a new steady
state consistent with the new dilution rate D:

We show below that all three features are mirrored by
the model.

It turns out that the dynamics in response to a
dilution rate shift are determined by a two-dimensional
system. To see this, it is convenient to replace the cell
density, c; by the potential cell density, cp � c þ Ys; this
may be viewed as the cell density that would be realized
if the residual substrate were also converted to biomass.
One then arrives at the equations

ds

dt
¼ Dðsf � sÞ � Vse

s

Ks þ s

� �
ðcp � YsÞ; ð18Þ

de

dt
¼ Ve

1þ K1 %x þ K2 %x
2

K3 þ K1 %x þ K2 %x2
� YVse

s

Ks þ s
þ kd

� �
e; ð19Þ

dcp

dt
¼ DðYsf � cpÞ; ð20Þ

where %x and %p are given by Eqs. (9) and (10),
respectively. Since the culture is in a steady state before
the dilution rate is shifted, cp ¼ Ysf at t ¼ 0: It follows
from Eq. (20) that cpðtÞ ¼ Ysf for all t > 0: Letting cp ¼
Ysf in Eq. (18), we arrive at the two-dimensional system

ds

dt
¼ D � YVse

s

Ks þ s

� �
ðsf � sÞ; ð21Þ

de

dt
¼ Ve

1þ K1 %x þ K2 %x
2

K3 þ K1 %x þ K2 %x2
� YVse

s

Ks þ s
þ kd

� �
e; ð22Þ

t ¼ 0 : s ¼ *sðD0Þ; e ¼ *eðD0Þ; ð23Þ

0.0001 0.001 0.01 0.1 1

0

0.1

0.2

0.3

0.4

0.5

0.6

c(
gd

w
/L

)
~

0.0001 0.001 0.01 0.1 1

0.001

0.01

0.1

e 
(m

g/
gd

w
)

~

0.0001 0.001 0.01 0.1 1
D (1/hr)

D (1/hr)

D (1/hr)

0.001

0.005
0.01

0.05
0.1

0.5
1

s 
(g

/L
)

~

Fig. 3. Variation of steady states with D at sf ¼ 1:5 g=l: The washout

bifurcation point is denoted by the symbol 	: Stable and unstable

steady states are denoted by full and dashed lines, respectively.
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where *sðD0Þ; *eðD0Þ denote the steady-state substrate
concentrations at the initial dilution rate D0:

Imagine a series of experiments in which the culture is
shifted from various initial dilution rates, D0; to a fixed
final dilution rate, D: Fig. 4 shows the dynamics
obtained when the culture is shifted from two different
initial dilution rates, D0 ¼ 0:03 1/h and D0 ¼ 0:3 1/h, to
the final dilution rate, D ¼ 0:6 1/h.

* The dotted line is the locus of all initial (persistence)
steady states. It is given by the parametric curve

½*sðD0Þ; *eðD0Þ�; 0oD0oDw;

where *s and *e are given by Eqs. (14) and (15),
respectively, and Dw denotes the unique washout
dilution rate. As D0 increases from 0 to Dw; the curve
is traversed from the left to the right.

* The full circles denote the persistence steady state at
the final dilution rate, D; and the washout steady
state.

* The dashed curve is the locus of points at which the
specific growth rate, rg; equals the final dilution rate

rg � YVse
s

Ks þ s
¼ D:

Above this dashed curve, rg > D; below the curve,
rgoD:

* The full lines represent orbits originating from initial
dilution rates D0 ¼ 0:03; 0:3 1/h.

Note that the initial motion of the orbit is parallel to
the s-axis. This represents the rapid initial increase of the
substrate concentration and the specific growth rate.

The subsequent motion varies depending on the initial
dilution rate, D0:

If D0 is comparable to D (see orbit for D0 ¼ 0:3 1/h),
the orbit reaches the dashed line at the end of the rapid
initial motion, and then glides on it toward the
persistence steady state. That is, the specific growth rate
becomes equal to D almost instantaneously, and
remains so subsequently. In terms of the model, this
motion has the following interpretation. If D0 is large,
the initial enzyme level is so high that synthesis of new
enzyme is not required in order to make the specific
growth rate equal to the new dilution rate; equality is
ensured by nothing more than the rapid increase of the
substrate concentration. The specific growth rate
remains equal to the dilution rate throughout the
subsequent slow motion of the enzyme level to its
final steady state value. The slow motion on the dashed
line can be described by the quasi-steady state approx-
imation

de

dt
¼ Ve

1þ K1 %x þ K2 %x
2

K3 þ K1 %x þ K2 %x2
� YVse

%s

Ks þ %s
þ kd

� �
e;

0 ¼ D � YVse
%s

Ks þ %s
;

t ¼ 0 : e ¼ *eðD0Þ;

where %s denotes the quasi-steady-state substrate con-
centration. This can be solved to yield

eðtÞ ¼ *eðDÞ þ ½*eðD0Þ � *eðDÞ� exp½�ðD þ kdÞt�:

In short, the rapid initial increase of the substrate
concentration is followed by a slow process during
which the transport enzyme approaches its steady state
exponentially fast.

If D0 is small compared to D (see orbit for D0 ¼ 0:03
1/h), the initial enzyme level is so small that the specific
growth rate cannot match the new dilution rate even
after the substrate concentration has reached super-
saturating levels (sbKs). In Fig. 4, the orbit lies below
the dashed line despite the rapid increase of the
substrate concentration. To mitigate this growth rate
deficit, the cells begin the slow process of enzyme
synthesis under supersaturating substrate concentra-
tions. During this period, which lasts several hours
(see Fig. 5), s increases and c decreases. This continues
until the specific growth rate becomes equal to D: In
Fig. 4, this instant corresponds to the point at which the
orbit intersects the dashed curve; at this instant, s is
maximal and c is minimal. The orbit then enters the
region in which the specific growth rate exceeds D; and
begins its final approach to the steady state. During this
period, e continues to grow, but s decreases until the
steady state is achieved.

The dynamics depend on the relative magnitude of D0

and D: Shifting the dilution rate from D0 ¼ 0:03 1/h to
D ¼ 0:6 1/h results in large and prolonged substrate

0.0001 0.001 0.01 0.1 1
s (g/L)

0

0.00005

0.0001

0.00015

0.0002

0.00025

e 
(g

/g
dw

)

Fig. 4. Orbits for dilution rate shifts to the final dilution rate D ¼
0:6 1=h from initial dilution rates D0 ¼ 0:03 1=h (lower full line) and

D0 ¼ 0:3 1=h (upper full line); the feed concentration, sf ; is held fixed

at 1:5 g/l.
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excursions (Figs. 4 and 5). But if the dilution rate is
shifted from D0 ¼ 0:03 1/h, to a lower dilution rate, D ¼
0:1 1/h, the specific growth rate instantly equals the
dilution rate, and the overshoot of the substrate
concentration is imperceptibly small (Fig. 6). This is
because the rapid increase of the specific growth rate
resulting from an increase of the substrate concentration
cannot match the dilution rate when D ¼ 0:6 1/h, but it
is sufficient when D ¼ 0:1 1/h.

3.2.2. Feed concentration shifts

In these experiments, at to0; the culture is in a steady
state at some dilution rate, D; and feed concentration,
sf ;0: At t ¼ 0; the feed concentration is abruptly
increased to some value, sf > sf ;0; while the dilution rate
is held fixed. The key features of the transient response
are as follows (Harrison and Topiwala, 1974)

1. The substrate concentration passes through a max-
imum before returning to its pre-stimulus value; the
cell density, on the other hand, increases monotoni-
cally to its new steady state value (Chi and Howell,
1976).

2. The cells accommodate immediately to small changes
in substrate concentration, but a lag period is
characteristic of a large increase.

3. If the change in substrate concentration is large, the
nature of the response depends on the dilution rate at
which the feed concentration is increased (Harvey,
1970). For cells growing at high dilution rates, there
is no change in the specific growth for some hours
after the feed concentration is increased. For cells

growing at low dilution rates, the specific growth rate
accelerates immediately.

Now consider the dynamics of the model. Since the feed
concentration has been increased, the initial value of the
potential cell density is less than its final value; that is

cpð0Þ ¼ Ysf ;0oYsf ¼ *cp:

It follows that the relation, cpðtÞ ¼ Ysf ; which was valid
for dilution rate shifts, is no longer tenable, and the full
system consisting of Eqs. (6)–(8) must be considered.

Fig. 7 shows the dynamics obtained when the system
is shifted from two initial feed concentrations, sf ;0 ¼
0:1; 1:0 g/l, to the final feed concentration, sf ¼ 1:5 g/l.
In this figure

1. The line perpendicular to the s; e-plane represents the
locus of all possible initial steady states. It is defined
parametrically by

½*sðDÞ; *eðDÞ; *cðD; sf ;0Þ�; 0osf ;0osf :

The line is perpendicular to the s; e-plane because *s

and *e are independent of the feed concentration. As
sf ;0 increases, it is traversed upwards from the plane
*c ¼ 0 to the plane *c ¼ Ysf :

2. The full circles denote the washout and persistence
steady states.

3. The full lines are the orbits corresponding to shifts
from initial feed concentrations, sf ;0 ¼ 0:1; 1:0 g/l, to
the final feed concentration, sf ¼ 1:5 g/l.

The evolution of the orbits in Fig. 7 is consistent with
the experiments. In response to a small shift-up in
the feed concentration (sf ;0 ¼ 1:0 g=l; sf ¼ 1:5 g=l), the
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change in the substrate concentration is imperceptibly
small. This is also evident in Fig. 8, which shows the
solutions as functions of time. In contrast, the large
substrate concentration shift from sf ;0 ¼ 0:1 g/l to sf ¼
1:5 g/l induces a pronounced and prolonged overshoot
of the substrate concentration lasting several hours. At
such large substrate concentrations, s=ðKs þ sÞC1; so
that the enzyme evolves without ‘‘seeing’’ the changes
in the substrate concentration. This motion satisfies

the equation

de

dt
¼ Ve

1þ %K1e þ %K2e2

K3 þ %K1e þ %K2e2
� ðYVse þ kd Þe;

where %Ki � KiðVs=kxÞ
i: In the face of this quasi-constant

environment, the enzyme reaches a quasi-steady-state
level, say %e; and the cells grow exponentially in
accordance with the equation

dc

dt
¼ ðYVs %e � DÞc:

Now, the quasi-steady-state enzyme level, %e; is identical
to the enzyme level that would be achieved in a batch
culture of cells growing exponentially in the presence of
excess substrate. But the maximum specific growth rate
of a batch culture growing under substrate-excess
conditions, YVs %e; is very nearly equal to the washout
dilution rate, Dw; of a culture growing at high substrate
feed concentration (Narang, 1998). The specific rate of
increase of the cell density, dðln cÞ=dt; therefore, equals
ðDw � DÞ: The exponential growth phase persists until s

becomes comparable to Ks: Finally, there begins a slow
approach to the final steady state.

In the preceding simulations, the feed concentration
was shifted up while the culture was maintained at a
high dilution rate (D ¼ 0:6 1=h). The next simulation
(Fig. 9) shows the transients in response to a large
increase in the feed concentration (sf ;0 ¼ 0:1 g/l, sf ¼ 1:5
g/l) while the culture is maintained at a low dilution rate
(D ¼ 0:1 1=h). It is evident that the substrate concen-
tration overshoot is smaller and the recovery is faster
(Fig. 9). This is partly because a feed concentration
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shift-up at a lower dilution rate imposes a smaller
burden on the chemostat—the lower the dilution rate at
which the feed concentration is increased, the smaller
the increment in the influx of substrate into the
chemostat. But, more importantly, at high dilution
rates, the substrate and inducer are initially at, or close
to, supersaturating concentrations. Hence, there is little
improvement in the specific substrate uptake rate,
Vses=ðKs þ sÞ; despite the rapid rise in the substrate
and inducer concentrations. On the other hand, at low
dilution rates, both the substrate and the inducer are
initially at subsaturating concentrations; the specific
substrate uptake rate and the specific enzyme synthesis
rate increase instantaneously in response to a feed
concentration shift-up.

3.2.3. Feed switches

In these experiments, at time to0; the culture is
allowed to reach a steady state. At time t ¼ 0; the
identity of the growth-limiting substrate is changed
while holding the dilution rate and the feed concentra-
tion fixed at their original values. Under such perturba-
tions, it is observed that (Standing et al., 1972; Bally and
Egli, 1996; Lendenmann and Egli, 1995).

1. The substrate concentration immediately increases,
and the cell density rapidly decreases.

2. The magnitude of the response depends on the
nature of the substrate and the dilution rate at
which the identity of the substrate is switched.
(a) If the new substrate supports a relatively

large constitutive enzyme synthesis rate, the
culture recovers rapidly and there is no
observable substrate overshoot; if the new
substrate supports a relatively small constitu-
tive enzyme synthesis rate, there is a very
pronounced lag before the excursion of the
substrate concentration can be contained.

(b) The larger the dilution rate, the longer the
length of the lag.

Now consider the dynamics of the model. In general,
the yields on various substrates are quite different, so
that cpðtÞaYsf for all t: It follows that the full system
consisting of Eqs. (6)–(8) must be considered along with
the initial conditions

sð0Þ ¼ 0; eð0Þ ¼ e0 ¼
Ve

K3

1

D þ kd

; cð0Þ ¼ c0:

Here, e0 is the steady-state enzyme level in cells growing
at a dilution rate, D; in the absence of the substrate, and
c0 is the cell density of the culture on the previous
substrate. The larger the value of K3; the smaller the
initial enzyme level, since the tightness of repressor-
operator binding retards constitutive enzyme synthesis.

Simulations show that the time required for the
chemostat to achieve the new steady state depends very

strongly on K3: When K3 ¼ 105; it takes 1000 h for the
substrate concentration to reach values comparable to
Ks: Such long lags have, and will, never be observed;
therefore, we assumed that K3B104: When K3 ¼ 104;
the recovery time is on the order of 10 h (Fig. 10); when
K3 ¼ 5� 104; the recovery time increases by an order of
magnitude (Fig. 11). Both figures also show that the
recovery time depends on the dilution rate at which the
identity of the substrate is switched. In terms of our
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model, this phenomenon has a simple explanation. At
large dilution rates, the mass flow rate of the new
substrate is higher and the initial enzyme level is lower;
that is, a higher substrate burden is imposed upon cells
that are even less capable of consuming the substrate.

3.3. Low feed concentrations

Fig. 12 shows the bifurcation diagram obtained under
conditions that yield three washout bifurcation points.
There are two bifurcation points in addition to the three
washout dilution rates. We denote these two bifurcation
points by D1

h and D2
h; respectively.

The five bifurcation points decompose the D-axis into
six subintervals. Fig. 14 shows the phase portraits
corresponding to dilution rates in each of these intervals.

Note that the phase portraits contain only two variables,
namely, s and e: This is because the phase portraits
correspond to Eqs. (21)–(22) obtained by letting cpðtÞ ¼
Ysf ; a simplification that is valid only if cpð0Þ ¼ Ysf :
However, because cp approaches Ysf exponentially fast,
the theory of asymptotically autonomous systems
assures us that even if cpð0ÞaYsf ; the phase portraits
are qualitatively similar to the phase portraits obtained
by letting cp ¼ Ysf (Thieme, 1992). It can be seen that

1. If 0oDoD1
w; all three washout steady states, f1

0; f2
0

and f3
0; are unstable, and the persistence steady state,

f1; is globally stable.
2. If D1

woDoD2
w; then f1 ceases to exist, and the

washout steady state, f1
0 becomes globally stable.

3. If D2
woDoD1

h; then f1 exists, but it is an unstable
focus. All orbits continue to approach the globally
stable washout steady state, f1

0:
4. If D1

hoDoD2
h; then f1 is an unstable focus, but

orbits emanating from it approach a stable limit
cycle. Indeed, most orbits approach the limit cycle;
the washout steady state, f1

0; although locally stable,
has a relatively small basin of attraction consisting of
initial conditions with very low enzyme levels.

5. If D2
hoDoD3

w; then both f1 and f1
0 are stable, each

with its own basin of attraction. Here, f0
1 is a stable

node over the entire range, whereas f1 is a stable
node only at large D: At small D; f1 is a stable focus;
a shift-up to such dilution rates results in an
oscillatory approach to the persistent steady state
(Fig. 13) (see also Fig. 14).

6. If D > D3
w; both washout steady states, f1

0 and f3
0 are

stable nodes, each with its own basin of attraction.
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Appendix C contains the stability analyses that form the
basis of this classification. Here, we wish to explain
the physics underlying these dynamics. In Section 3.1,
we argued that sigmoidal enzyme synthesis kinetics led
to washout at low dilution rates. We show below that
washout at low dilution rates, in turn, implies the onset
of damped and sustained oscillations. To see this,
consider a chemostat operating at a persistence steady
state. The stability of this steady state is determined by
interactions between the following five processes:
Enzyme synthesis, enzyme dilution, enzyme degrada-
tion, substrate efflux, and substrate consumption. One

of these processes, namely, enzyme synthesis, is desta-
bilizing; if the enzyme level increases, so does the rate of
enzyme synthesis, resulting in even higher enzyme levels.
The remaining four processes are stabilizing; if the
enzyme level or substrate concentration increase, so do
the rates of enzyme dilution, enzyme degradation,
substrate consumption, and substrate efflux, thus
restoring the chemostat to the original steady state.
Now, suppose the chemostat is perturbed from away
persistence steady state so that the intracellular enzyme
level increases slightly. If this perturbation is imposed on
a chemostat operating at a large dilution rate, the rates
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of both enzyme dilution and substrate consumption
increase rapidly, and restore the chemostat to the
original steady state. If the same perturbation is
imposed on a chemostat operating at a low dilution
rate, the enzyme dilution rate is negligibly small, so that
the burden of restoring the chemostat to the original
steady state rests solely on the process of substrate
consumption. However, when the chemostat is operated
near a low washout dilution rate, the cell density is
small, and this erodes the stabilizing effect of what is
now the last line of defence, namely, substrate con-
sumption. The stabilizing effect of substrate consump-
tion now occurs with a significant time lag; the smaller
the prevailing cell density, the longer the lag. At
moderately small cell densities, the chemostat returns
to the persistence steady state, but the motion is
oscillatory, thus resulting in damped oscillations. At
still smaller cell densities, the corrective effect of
substrate consumption is somewhat late in coming,
resulting in sustained oscillations; at the smallest cell
densities, substrate consumption is so slow that the
culture washes out before substrate consumption can
exert its stabilizing effect. This explains the onset of
damped oscillations, sustained oscillations, and washout
at progressively smaller dilution rates. It is interesting,
however, that the persistence steady-state regains
stability at very low dilution rates. Under these
conditions, enzyme synthesis, being essentially constitu-
tive, occurs at a constant rate, and loses its ability to
destabilize the chemostat.

We can make the foregoing intuitive argument more
precise by considering the equation that describes the
dynamics of the substrate concentration in the neigh-
borhood of the persistence steady state. It can be shown
that the deviation of the substrate concentration from its
steady-state value, s � s � *s; satisfies the equation

d2s
dt2

þ ð�tr JÞ
ds
dt

þ ðdet JÞs ¼ 0; ð24Þ

where tr J and det J are the trace and determinant of the
variational matrix, J; about the persistence steady state,
and are given by (see Appendix C)

tr J ¼
@re

@e
� *c

@rs

@s
þ 2D þ kd

� �
;

det J ¼ *c
@rs

@s
ðD þ kdÞ:

Eq. (24) describes the motion of a damped oscillator of
unit mass, with friction coefficient, �tr J; and spring
constant, det J: Now

* The stability of the steady state is completely
determined by tr J: If tr Jo0; the friction coefficient
is positive, and the substrate concentration ultimately
approaches the persistence steady state; the approach
is monotonic if jtr J j is large, and oscillatory if jtr J j is

small. If tr J > 0; the friction coefficient is negative,
and the substrate concentration blows up.

* The terms in tr J are related to the response times of
the various processes (Reinhart and Schuster, 1996,
p. 112). Thus, @re=@e; *c@rs=@s; and kd are the
reciprocals of the response times for enzyme synth-
esis, substrate consumption, and enzyme degrada-
tion, respectively; the term, 2D; is the sum of the
reciprocals of the response times for enzyme dilution
and substrate efflux (both processes have the response
time, 1=D).

It follows that the stability of the steady state is
determined by the response times of the various
processes. At high dilution rates, the rate of enzyme
synthesis saturates, so that @re=@e; is small; thus, the
destabilizing process of enzyme synthesis is slow,
whereas the stabilizing processes of enzyme dilution
and substrate efflux are fast. Under these conditions,
tr Jo0; and the steady state is stable. At low dilution
rates close to washout, @re=@e > 0 is large, but D and
*c@rs=@s are small; thus, the enzyme tends to grow
rapidly, but enzyme dilution, substrate efflux, and
substrate consumption respond slowly. Under these
conditions, tr J becomes positive, and the persistence
steady state is unstable; any perturbation away from it
leads to a limit cycle or a washout steady state.

One might argue that the occurrence of sustained and
damped oscillations are an artefact of our simple model.
The physics underlying these dynamics suggests that this
is not the case. For, the onset of oscillatory solutions
hinges crucially upon a marked attenuation of the cell
density at low dilution rates. In the model, this occurs
because enzyme synthesis is sigmoidal, so that enzyme
levels increase faster than the dilution rate. But there is a
well-established process, maintenance, which has the
very same effect of reducing the cell density at low
dilution rates. A more realistic model taking due
account of maintenance also displays oscillatory dy-
namics, and it does so at all feed concentrations
(manuscript in preparation).

We note finally that while the existence of three
washout steady states is sufficient for the existence of a
Hopf bifurcation at low dilution rates (see Appendix C
for a proof of this proposition), it is by no means
necessary. For the parameter values in Table 1, the Hopf
bifurcation point persists at substrate concentrations as
high as sf ¼ 0:1 g=l: This is because the necessary
condition for the Hopf bifurcation is that tr J become
zero. To satisfy this condition at small dilution rates, it
is only necessary that the cell density be sufficiently
small; it does not require that the cell density be zero.

The foregoing model predictions are consistent with
the experimental data.

* In dilution rate shift-up experiments, the cell density
and substrate concentrations approach their new
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steady state values monotonically whenever the final
dilution rate is large. However, if the final dilution
rate is small, the steady state is approached via
damped oscillations (Lee et al., 1976; Mor and
Fiechter, 1968).

* The smaller the final dilution rate, the larger the
amplitude and the period of the oscillations (Lee
et al., 1976). In terms of our model, this occurs
because the smaller the final dilution rate, the smaller
the prevailing cell density and the larger the response
time of substrate consumption. It follows that at
small dilution rates, the excursions are large and
prolonged before they can be contained.

* At very low dilution rates, microbial cultures are
unable to grow, resulting in washout. In a number of
experimental systems, this ‘‘minimum growth rate’’ is
observed to be about 5% of the maximum specific
growth rate (see Pirt, 1972 and references cited therein).

4. Conclusions

The goal of this work is to advance our understanding
of dynamics of a chemostat in response to sudden
changes in the flow rate, feed concentration, or identity
of a single growth-limiting substrate. To this end, we
have analysed a simple model accounting for induction
and dilution of the transport enzyme. The parameter
values of the model are based on the lac operon. Despite
the simplicity of the model, the results are promising.
We show that

* At high feed concentrations (sf B1 g=l), the simula-
tions agree qualitatively with known experimental
data for three types of perturbations, namely, abrupt
increases in flow rate, feed concentration, and
identity of the substrate. We find that in all three
cases, the substrate concentration increases for
several hours before it can be contained. According
to our model, this occurs because the initial transport
enzyme levels are too small to cope with the increased
substrate supply. The magnitude of the substrate
excursion is most striking when one changes the
identity of the substrate feeding into the chemostat.
In this case, the initial enzyme level is at its smallest
since there is no prior adaptation to the new
substrate; the resulting lags are on the order of
several days.

* At low concentrations (sf B0:1 g=l), the model pre-
dicts the onset of damped and sustained oscillations
at sufficiently small dilution rates. According to our
model, this occurs because of the destabilizing effect
of autocatalytic enzyme synthesis. At large dilution
rates, enzyme dilution and substrate consumption
respond rapidly, thus annihilating the destabilizing
tendency of enzyme synthesis. However, at low

dilution rates, both these stabilizing processes become
extremely slow, leading to damped and sustained
oscillations, and eventually to washout.

More data is needed to test quantitative predictions of
the model. We have shown that our model yields
results that agree quantitatively with the data, provided
the parameter values for are suitably chosen (see
Appendix B). However, to rigorously test the quantita-
tive predictions of the model, it will be necessary to
obtain transient data for a substrate such as lactose
whose enzyme induction kinetics are independently
measurable. Work to this effect is currently in progress
in our laboratory.
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Appendix A. Orders of magnitude of the parameters

The orders of magnitude of the parameters are based
on kinetic properties of the lac operon.

1. The maximum velocity of lactose transport is 60,000
molecules per minute per permease molecule (Chung
and Stephanopoulos, 1996). Since the molecular
weights of lactose and permease are 342 and 46,504
(Neidhardt et al., 1987a, p. 1446), respectively

VsB104 g=gdw-h:

2. The saturation constant for lactose transport is 5�
10�4 mol=l (Chung and Stephanopoulos, 1996)

KsB10�2 g=l:

3. The inducer and precursor concentrations are 10�3 g/
gdw (Chung and Stephanopoulos, 1996) and 10�2 g/
gdw (Neidhardt et al., 1987b), respectively. Since
DB0:1 1/h and YB0:1 gdw/g, Eqs. (12)–(13) imply
that

kxB103 g=gdw-h; kgB10 g=gdw-h:

4. The maximum velocity of permease synthesis is
10�8 mol=min-l (Chung and Stephanopoulos, 1996).
Since each liter of cell volume contains roughly
400 gdw

VeB10�4 g=gdw-h:

5. The equilibrium constants K1 and K2 are 105 mol/l
and 1011 ðmoles=lÞ2; respectively (Yagil and Yagil,
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1971). Since the molecular weight of the repressor
(B105 g/mol) is much larger than the molecular
weight of the inducer (B102 g/mol)

K1B105 gdw=g; K2B1011ðgdw=gÞ2:

K3 is on the order of 105 (Chung and Stephanopou-
los, 1996).

6. The enzyme degradation rate is on the order 0:01 1=h
(Neidhardt et al., 1987a, Chapter 44)

kdB10�2 g=gdw-h:

Appendix B. Comparison of model simulations with

experimental data

The model provides good fits to the experimental data
for a suitable choice of parameter values. We fixed the

parameters, Y and Ks: The remaining parameters were
determined with the software package MODFIT
which selects values that minimize the square of the
difference between model predictions and experimental
measurements (Schittkowski, 1994). Unfortunately,
experimental data on the transient response of the
same microbial species to all three types of perturbations
is not available. Thus, for dilution and feed concentra-
tion shift-ups, we appealed to the data obtained by Chi
and Howell (1976). They measured the response of a
phenol-limited culture to both dilution rate and feed
concentration shift-ups. Since wall growth plays a
significant role in this system, we considered the equations

ds

dt
¼ Dðsf � sÞ � Vse

s

Ks þ s

� �
ðc þ cwÞ;

de

dt
¼ Ve

1þ K1 %x þ K2 %x
2

K3 þ K1 %x þ K2 %x2
� YVse

s

Ks þ s
þ kd

� �
e;

dc

dt
¼ YVse

s

Ks þ s
ðc þ cwÞ � Dc;

kx %x ¼ Vse
s

Ks þ s
;

kg %p ¼ YVse
s

Ks þ s
;

where cw denotes the effective volumetric cell density
due to the cells attached to the wall. The optimal set of

Table 2

Parameter values used to simulate dilution rate and feed concentration

shift-ups in phenol-limited cultures (Figs. 15 and 16)

Vs ¼ 5� 103 g/g-h Ks ¼ 6� 10�3 g/l Y ¼ 0:5 g/g
kx ¼ 900 g/g-h Ve ¼ 5:4� 10�5 g/gdw-h K1 ¼ 1:2� 106 gdw/g
K2 ¼ 3� 1011 ðgdw=gÞ2 K3 ¼ 7:3� 104 kd ¼ 10�2 1/h
cw ¼ 0:05 gdw/g
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Fig. 15. Transient response of a phenol-limited culture to a dilution rate shift-up from D ¼ 0:11 1/h to D ¼ 0:244 1/h at a fixed feed concentration,

sf ¼ 0:7 g/l (data from Chi and Howell, 1976). The full lines show the model simulations: (a) substrate concentration; (b) cell density; (c) specific

growth rate.
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Fig. 16. Transient response of a phenol-limited culture to a feed concentration shift-up from sf ¼ 0:3 g/l to sf ¼ 0:5 g/l at a fixed dilution rate

D ¼ 0:244 1/h (data from (Chi and Howell, 1976)). The full lines show the model simulations: (a) substrate concentration; (b) cell density; (c) specific

growth rate.
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parameters shown in Table 2 were determined in order
to fit the transients observed in substrate-excess batch
cultures (rg ¼ 0:37 1/h) and a dilution rate shift-up
experiment (Fig. 15). The very same set of parameters
were used to simulate the feed concentration shift-up
experiment (Fig. 16).

For substrate switches, we appealed to the data
obtained by Bally and Egli (1996). They measured
the transients obtained in C. heintzii cultures when
the growth-limiting substrate is switched from glucose
to nitrilotriacetic acid. The optimal set of para-
meters is shown in Table 3 and the fit to the data is
shown in Fig. 17. The very same parameters also fit
the data in batch cultures of nitrilotriacetic acid
(rg ¼ 0:17 1/h).

Appendix C. Global dynamics in the presence of multiple

washout dilution rates

To study the asymptotic behavior of the model
equations (6)–(8), it suffices to study Eqs. (21) and
(22). This is because the model equations are equivalent
to Eqs. (18)–(20). Now, Eqs. (20) shows that as t

increases, cpðtÞ converges to the steady state value Ysf

exponentially fast. It follows from the theory of
asymptotically autonomous systems that the asymptotic
behavior of Eqs. (18)–(20) is identical to the asymptotic
behavior of Eqs. (21) and (22) (Thieme, 1992). Hence,
we can restrict the analysis to the dynamics generated by
Eqs. (21) and (22).

A.1. Washout steady states

Linear stability analysis about washout steady
states shows that the eigenvalues of the variational
matrix are

l1 ¼ Di
w � D;

l2 ¼
@

@e
½reðs; eÞ � fYrsðs; eÞ þ kd Þeg�

����
ðsf ;ei

wÞ
;

where *ei
w � *eðDi

wÞ denotes the enzyme level at the
washout dilution rate Di

w: The eigenvector belonging
to l2 is ½0; 1� which corresponds to the invariant line
s ¼ sf : It follows that

l2 ¼
d

de
gðeÞ

����
ei

w

; gðeÞ � reðsf ; eÞ � fYrsðsf ; eÞ þ kdge:

Fig. 18 shows that l2 is negative for f1
0 and f3

0; and
positive for f2

0: It follows that

* f1
0 is a saddle point for DoD1

w; and a stable node for
D > D1

w:
* f2

0 is an unstable node for DoD2
w; and a saddle point

for D > D2
w:

* f3
0 is a saddle point for DoD3

w; and a stable node for
D > D3

w:

Table 3

Parameter values used to simulate a substrate switch from glucose to

nitrilotriacetic acid in C. heintzii cultures (Fig. 17)

Vs ¼ 2� 102 g/g-h Ks ¼ 10�2 g/l Y ¼ 0:2 g/g

kx ¼ 900 g/g-h Ve ¼ 3:8� 10�4

g/gdw-h

K1 ¼ 1:5� 105

gdw/g

K2 ¼ 2:2� 1014 ðgdw=gÞ2 K3 ¼ 102 kd ¼ 10�2 1/h
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Fig. 17. Transient response of C. heintzii to a switch in the identity of the substrate from glucose (sf ¼ 2:0 g/l) to nitrilotriacetic acid (sf ¼ 1:87 g/l) at

a fixed dilution rate D ¼ 0:06 1/h (data from (Bally and Egli, 1996)). The full lines show the model simulations: (a) substrate concentration; (b) cell

density; (c) scaled enzyme level.
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Fig. 18. Dynamics on the invariant line s ¼ sf : The plot has been

truncated at gðeÞ ¼ 5� 10�8 in order to capture the intersection of gðeÞ
with the e-axis.
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C.2. Persistence steady state

Linear stability analysis about the persistence steady
state, f1; shows that the variational matrix, J; satisfies

tr J ¼ l1 þ l2 ¼
@re

@e
� *c

@rs

@s
þ 2D þ kd

� �
; ðC:1Þ

det J ¼ l1l2 ¼ *c
@rs

@s
ðD þ kdÞ: ðC:2Þ

This implies the existence of a Hopf bifurcation at some
dilution rate in the interval ðD2

w;D
3
wÞ: To see this, observe that

* As D-D2
w; f1 approaches f2

0; hence, at D ¼ D2
w; the

trace for f1 equals the trace for f2
0 (which is positive).

Similarly, as D-D3
w; f1 approaches f3

0; so that at
D ¼ D3

w; the trace for f1 for equals the trace for f3
0

(which is negative). Since the trace for f1 varies
continuously as D varies from D2

w to D3
w; there must a

dilution rate in the interval ðD2
w;D

3
wÞ at which the

trace for f1 equals zero.
* The trace for f1 can be zero in two possible ways.

Either the eigenvalues are real, equal in magnitude,
and opposite in sign; or the eigenvalues are complex
conjugates and pure imaginary (we exclude the
degenerate case of two zero eigenvalues). Since
det J > 0; real eigenvalues cannot have opposite signs.
Hence, the eigenvalues are pure imaginary, and there
is a Hopf bifurcation at the corresponding dilution
rate. We denote this dilution rate by D2

h:

Stable limit cycles occur for D slightly lower than D2
h;

and damped oscillations occur for D higher than D2
h:
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