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Abstract

When bacteria are grown in a batch culture containing a mixture of two growth-limiting substrates, they exhibit a rich spectrum of

substrate consumption patterns including diauxic growth, simultaneous consumption, and bistable growth. In previous work, we showed

that a minimal model accounting only for enzyme induction and dilution captures all the substrate consumption patterns [Narang, A.,

1998a. The dynamical analogy between microbial growth on mixtures of substrates and population growth of competing species.

Biotechnol. Bioeng. 59, 116–121, Narang, A., 2006. Comparitive analysis of some models of gene regulation in mixed-substrate microbial

growth, J. Theor. Biol. 242, 489–501]. In this work, we construct the bifurcation diagram of the minimal model, which shows the

substrate consumption pattern at any given set of parameter values. The bifurcation diagram explains several general properties of

mixed-substrate growth. (1) In almost all the cases of diauxic growth, the ‘‘preferred’’ substrate is the one that, by itself, supports a higher

specific growth rate. In the literature, this property is often attributed to the optimality of regulatory mechanisms. Here, we show that the

minimal model, which accounts for induction and growth only, displays the property under fairly general conditions. This suggests that

the higher growth rate of the preferred substrate is an intrinsic property of the induction and dilution kinetics. It can be explained

mechanistically without appealing to optimality principles. (2) The model explains the phenotypes of various mutants containing lesions

in the regions encoding for the operator, repressor, and peripheral enzymes. A particularly striking phenotype is the ‘‘reversal of the

diauxie’’ in which the wild-type and mutant strains consume the very same two substrates in opposite order. This phenotype is difficult to

explain in terms of molecular mechanisms, such as inducer exclusion or CAP activation, but it turns out to be a natural consequence of

the model. We show furthermore that the model is robust. The key property of the model, namely, the competitive dynamics of the

enzymes, is preserved even if the model is modified to account for various regulatory mechanisms. Finally, the model has important

implications for the problem of size regulation in development. It suggests that protein dilution may be the mechanism coupling

patterning and growth.

r 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

When microbial cells are grown in a batch culture
containing a mixture of two carbon sources, they often
exhibit diauxic growth (Monod, 1947). This phenomenon is
characterized by the appearance of two exponential growth
phases separated by a lag phase called diauxic lag. The
most well-known example of the diauxie is the growth of
Escherichia coli on a mixture of glucose and lactose. Early
e front matter r 2006 Elsevier Ltd. All rights reserved.
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studies by Monod showed that in this case, the two
exponential growth phases reflect the sequential consump-
tion of glucose and lactose (Monod, 1942). Moreover, only
glucose is consumed in the first exponential growth phase
because the synthesis of the peripheral enzymes for lactose
is somehow abolished in the presence of glucose. These
enzymes include lactose permease (which catalyses the
transport of lactose into the cell), b-galactosidase (which
hydrolyses the intracellular lactose into products that feed
into the glycolytic pathway) and lactose transacetylase
(which is believed to metabolize toxic thiogalactosides
transported by lactose permease). During the period of
preferential growth on glucose, the peripheral enzymes for
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lactose are diluted to very small levels. The diauxic lag
reflects the time required to build up these enzymes to
sufficiently high levels. After the diauxic lag, one observes
the second exponential phase corresponding to consump-
tion of lactose.

It turns out that the peripheral enzymes for lactose are
synthesized only if lactose is present in the environment.
The mechanism for the synthesis or induction of these
enzymes in the presence of lactose and absence of glucose
was discovered by Monod and coworkers (Jacob and
Monod, 1961). It was shown that the genes corresponding
to these enzymes are contiguous on the DNA and
transcribed in tandem, an arrangement referred to as the
lac operon Fig. 1(a). In the absence of lactose, the lac

operon is not transcribed because a molecule called the lac

repressor is bound to a specific site on the lac operon called
the operator (Fig. 1b, bottom). This prevents RNA
polymerase from attaching to the operon and initiating
transcription. In the presence of lactose, transcription of
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Fig. 1. Molecular mechanism for induction and repression of the lac

operon in E. coli (Ptashne and Gann, 2002): (a) Structure of the lac

operon. The lacZ, lacY, and lacA genes code for b-galactosidase, lactose
permease, and lactose transacetylase, respectively. The operator, promoter,

and CAP site denote the DNA sequences which bind the repressor, RNA

polymerase, and CAP-cAMP, respectively. (b) The states of the lac operon

in the presence of glucose or/and lactose. The repressor and CAP-cAMP

complex are denoted rep and CAP, respectively.
lac is triggered because allolactose, a product of b-
galactosidase, binds to the repressor, and renders it
incapable of binding to the operator (Fig. 1b, middle).1

The occurrence of the glucose–lactose diauxie suggests
that transcription of lac is somehow repressed in the
presence of glucose. Two molecular mechanisms have been
proposed to explain this repression:
(1)
1A

(Plu
Inducer exclusion (Postma et al., 1993): In the presence
of glucose, enzyme IIAglc, a peripheral enzyme for
glucose, is dephosphorylated. The dephosphorylated
IIAglc inhibits lactose uptake by binding to lactose
permease. This reduces the intracellular concentration
of allolactose, and hence, the transcription rate of the
lac operon.
Genetic evidence suggests that phosphorylated IIAglc

activates the enzyme, adenylate cyclase, which catalyses
the synthesis of cyclic AMP (cAMP). Since the total
concentration of IIAglc remains constant on the rapid
time scale of its dephosphorylation, exposure of the
cells to glucose causes a decrease in the level of
phosphorylated IIAglc, and hence, cAMP. This reduc-
tion of the cAMP level forms the basis of yet another
mechanism of lac repression.
(2)
 cAMP activation (Ptashne and Gann, 2002, Chapter 1):
It has been observed that RNA polymerase is not
recruited to the lac operon unless a protein called
catabolite activator protein (CAP) or cAMP receptor
protein (CRP) is bound to a specific site on the lac

operon (denoted ‘‘CAP site’’ in Fig. 1). Furthermore,
CAP, by itself, has a low affinity for the CAP site, but
when bound to cAMP, its affinity for the CAP site
increases dramatically. The inhibition of lac transcrip-
tion by glucose is then explained as follows.
In the presence of lactose alone (i.e. no glucose), the
cAMP level is high. Hence, CAP becomes cAMP-bound,
attaches to the CAP site, and promotes transcription by
recruiting RNA polymerase (Fig. 1b, middle). When
glucose is added to the culture, the cAMP level decreases
by the mechanism described above. Consequently, CAP,
being cAMP-free, fails to bind to the CAP site, and lac

transcription is abolished (Fig. 1b, top).
We show below that neither one of these two mechanisms
can fully explain the glucose-mediated repression of lac

transcription.
The following three observations contradict the cAMP

activation model.
(1)
 The intracellular cAMP levels during the first expo-
nential growth phase ð�2:5mMÞ are comparable, if not
higher, than those observed during the second expo-
nential growth phase ð�1:2522mMÞ (see Fig. 2(a)).
similar mechanism serves to induce the genes for glucose transport

mbridge, 2003, Fig. 4).
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Fig. 2. Repression of lac transcription in the presence of glucose is not due to reduced cAMP levels (Inada et al., 1996; Kimata et al., 1997). OD denotes

optical density, and Miller units are a measure of b-galactosidase activity. (a) Growth of the wild-type strain, E. coli W3110, on glucoseþ lactose. The

intracellular cAMP levels are comparable during the two exponential growth phases. (b) Growth of E. coli W3110 on glucoseþ lactose in the presence of

5mM cAMP. Despite the high cAMP concentration, b-galactosidase synthesis is repressed during the first exponential growth phase. (c, d) Growth of

E. coli ncya crp� and PR166 on glucoseþ lactose. The lac transcription rate in these strains is independent of the cAMP level, but b-galactosidase
synthesis is repressed during the first exponential growth phase.
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It follows that the repression of lac transcription in the
presence of glucose is not due to lower cAMP levels.2
(2)
 When the culture is exposed to large concentrations
(5mM) of exogenous cAMP, the diauxic lag vanishes,
but the lac operon still fails to be transcribed during the
first exponential growth phase (Fig. 2b).
The disappearance of the diauxic lag implies that an
elevated level of intracellular cAMP does stimulate the
lac transcription rate. However, it fails to relieve the
repression of lac transcription in the presence of
glucose.
(3)
 Diauxic growth persists in cells which transcribe the lac

operon at a rate that is independent of cAMP levels.
This has been demonstrated with two types of cells
(Fig. 2c,d). In E. coli ncya crp� mutants, crp, the gene
coding for CAP, is mutated such that CAP binds to the
CAP site even in the absence of cAMP. In E. coli

PR166, the lac promoter is mutated such that RNA
polymerase binds to the promoter even if there is no
xcess cAMP fails to relieve the repression of transcription during

th of E. coli on other pairs of substrates, such as glucoseþmelibiose

da et al., 1981, Fig. 4) and glucoseþ galactose (see Fig. 9a of this

).
CAP-cAMP at the CAP site. In both cases, transcrip-
tion of lac is independent of cAMP levels. Yet, b-
galactosidase synthesis is still repressed during the first
exponential growth phase.
These results show that higher cAMP levels do stimulate
the lac transcription rate. Indeed, the 5-fold increase in
cAMP levels at the end of the first exponential growth
phase in Fig. 2a is characteristic of cells exposed to low
concentrations (0.3mM) of glucose (Notley-McRobb et al.,
1997), and it is likely that this serves to reduce the length of
the diauxic lag. However, lac transcription is repressed in
the presence of glucose even if the ability of cAMP to
influence lac transcription is abolished.
The persistence of the glucose–lactose diauxie in cAMP-

independent cells has led to the hypothesis that inducer
exclusion alone is responsible for inhibiting lac transcrip-
tion (Inada et al., 1996; Kimata et al., 1997). However,
inducer exclusion exerts a relatively mild effect on lactose
uptake. In E. coli ML30, the activity of lactose permease is
inhibited no more than �40% at saturating concentrations
of glucose (Cohn and Horibata, 1959, Table 2). This partial

inhibition by inducer exclusion cannot explain the almost

complete inhibition of lac transcription.
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3It was found later that all the A-sugars are transported by the

phosphotransferase system (PTS) (Roseman and Meadow, 1990).
4The absence of the diauxic lag, observed in Monod’s earlier studies

with glucose–fructose mixtures, is due to rapid de novo synthesis of the

PTS enzymes for fructose (Clark and Holms, 1976, Figs. 4 and 5). Thus,

preferential consumption without a lag does not imply the existence of

new molecular mechanisms—it can be a consequence of rapid induction

kinetics.
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Thus, despite several decades of research, no molecular
mechanism has been found to fully explain the glucose–
lactose diauxie in E. coli. It is therefore particularly striking
that the minimal model described below predicts diauxic
growth, despite the absence of inducer exclusion and
cAMP activation.

In the meantime, microbial physiologists have accumu-
lated a vast body of work showing that diauxic growth is
ubiquitous. It has been observed in diverse microbial
species on many pairs of substitutable substrates (i.e.
substrates that satisfy the same nutrient requirements)
including pairs of carbon sources (Egli, 1995; Harder and
Dijkhuizen, 1982; Kovarova-Kovar and Egli, 1998),
nitrogen sources (Neidhardt and Magasanik, 1957),
phosphorus sources (Daughton et al., 1979), and electron
acceptors (Liu et al., 1998). These studies show that there is
no correlation between the chemical identity of a com-
pound and its ability to act as the preferred substrate. For
instance, during growth on a mixture of glucose and an
organic acid, enteric bacteria, such as E. coli, prefer
glucose, whereas soil bacteria, such as Pseudomonas and
Arthrobacter, prefer the organic acid (Harder and Dijkhui-
zen, 1976, 1982). However, there is a correlation between
the maximum specific growth rate on a compound and its
ability to act as a preferred substrate.

In most cases, although not invariably, the presence of a
substrate permitting a higher growth rate prevents the
utilization of a second, ‘poorer’, substrate in batch
culture (Harder and Dijkhuizen, 1982, p. 461).

This remarkable correlation, which is reminiscent of
anthropomorphic choice, is often rationalized by appealing
to teleological (design-oriented) arguments. Harder and
Dijkhuizen assert, for instance, that consumption of lactose
is abolished in the presence of glucose because this prevents
‘‘unnecessary synthesis of catabolic enzymes in cells that
already have available a carbon and energy source that
allows fast growth’’ (Harder and Dijkhuizen, 1982, p. 463).
However, there is no mechanistic explanation for this
correlation.

Although the diauxie dominates the literature on mixed-
substrate growth, there is ample evidence of non-diauxic
growth. In E. coli K12, several pairs of organic acids are
consumed simultaneously (Narang et al., 1997b), one
example of which is shown in Fig. 3a. The maximum
specific growth rates on these organic acids are in the range
0:2820:44 h�1, which are low compared to the largest
maximum specific growth rate sustained in a minimal
(synthetic) medium (0:74 h�1 on glucose). Similar behavior
has been observed in other species, leading Egli to conclude
that

Especially combinations of substrates that support
medium or low maximum specific growth rates are
utilized simultaneously (Egli, 1995, p. 325).

However, a closer look at data suggests that low or
medium growth rates are not necessary for simultaneous
consumption. This is evident from Monod’s early studies
with the so-called ‘‘A-sugars,’’ namely, glucose, fructose,
mannitol, mannose, and sucrose (Monod, 1942, 1947).3 He
found that in E. coli and B. subtilis, these sugars supported
comparable maximum specific growth rates, but there was
no diauxic lag during growth on a mixture of glucose and
any one of the other A-sugars. Subsequent studies have
confirmed that in some of these cases, both the substrates
are consumed simultaneously (Fig. 3b). Now, in all the
cases of simultaneous consumption described above, the
single-substrate growth rates were comparable. Thus, it is
conceivable that simultaneous consumption occurs when-
ever the ratio of the single-substrate growth rates is close to
1. It turns out that this condition may be necessary, but it is
certainly not sufficient. Although the growth rates of
Propionibacterium shermanii on glucose and lactate are
identical (0.141 and 0:142 h�1, respectively), lactate is
consumed preferentially (Lee et al., 1974). Similarly, the
growth rates of E. coli ML308 on glucose and fructose are
comparable (0.91 and 0:73 h�1, respectively), but glucose is
consumed preferentially (Clark and Holms, 1976).4 Thus,
current evidence suggests that the existence of comparable
single-substrate growth rates is, perhaps, necessary, but not
sufficient, for simultaneous consumption. It seems desir-
able to understand the mechanistic basis of this observa-
tion.
In addition to simultaneous substrate utilization, there is

some evidence that the substrate utilization pattern can
depend on the history of the preculture. Hamilton and
Dawes were among the first to observe such behavior
during the growth of Pseudomonas aeruginosa on a mixture
of citrate and glucose (Hamilton and Dawes, 1959, 1960,
1961). Cells precultured on citrate showed diauxic growth
with citrate as the preferred substrate, whereas cells
precultured on glucose consumed both citrate and glucose.
We observed a similar substrate consumption pattern
during growth of E. coli K12 on glucose and pyruvate
(Narang et al., 1997b). An entirely different preculture-
dependent pattern was obtained during the growth of a
pseudomonad on glucose and phenol (Panikov, 1995,
Chapter 3, p. 181). When the cells were precultured on
glucose, there was preferential consumption of glucose.
Immediately after the exhaustion of phenol, when the cells
were fully adapted to phenol, the medium was supplemen-
ted with additional glucose and phenol. Once again, there
was diauxic growth, but phenol, rather than glucose, was
the preferred substrate. In earlier work, we have argued
that preculture-dependent growth patterns may be quite
common—the lack of such data reflects the fact that the
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Fig. 3. Simultaneous consumption of substrates in batch cultures: (a) simultaneous consumption of fumarate (FUM) and pyruvate (PYR) during batch

growth of E. coli K12 (c denotes the cell density in gms dry weight per liter). The single-substrate maximum specific growth rates on fumarate and pyruvate

are 0.41 and 0:28 h�1, respectively. This growth pattern is observed with several pairs of organic acids (Narang et al., 1997b). (b) Simultaneous

consumption of glucose and mannitol (MTL) during batch growth of E. coli strain 158 (Lengeler and Lin, 1972). There is significant uptake of mannitol

during the first 4 h even though the cells are precultured on glucose.
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effect of preculturing was not investigated in most studies
(Narang et al., 1997b). In order to facilitate their
identification, it seems appropriate to determine the
feasible preculture-dependent growth patterns.

The goal of this work is to seek mechanistic answers for
the following questions:
(1)
 In diauxic growth, why is the maximum specific growth
rate on the preferred substrate higher than that on the
less preferred substrate?
(2)
 Under what conditions are the substrates consumed
simultaneously?
(3)
 What types of preculture-dependent growth patterns
are feasible?
There are numerous mechanistic models of mixed-substrate
growth. Many of them are based on detailed mechanisms
uniquely associated with the glucose–lactose diauxie in E.

coli (Kremling et al., 2001; Santillan and Mackey, 2004;
van Dedem and Moo-Young, 1973; Wong et al., 1997).
These models cannot address the above questions, which
are concerned with the general properties of mixed-
substrate growth. Thus, one led to consider the more
general models accounting for only those processes that are
common to most systems of mixed-substrate growth
(Brandt et al., 2004; Narang et al., 1997a; Narang, 1998a;
Thattai and Shraiman, 2003). Recently, we have shown
that these general models are similar inasmuch as the
enzymes follow competitive dynamics in all the cases
(Narang, 2006). However, the model in Brandt et al.
cannot capture non-diauxic growth, and the model in
Thattai and Shraiman treats the specific growth rate as a
fixed (constant) parameter, an assumption that is not
appropriate for describing the growth of batch cultures.

In this work, we address the questions posed above by
appealing to the minimal model in Narang (1998a). This
model accounts for only enzyme induction and dilution,
the two processes that occur in almost all systems of mixed-
substrate growth. Yet, it captures all the batch growth
patterns described above, and its extension to continuous
cultures predicts all the steady states observed in chemo-
stats (Narang, 1998b). Here, we show that the minimal
model also provides mechanistic explanations for the
foregoing questions. Specifically, we find that
(1)
 if the induction kinetics are hyperbolic, the maximum
specific growth rate on the preferred substrate is always
higher than that on the less preferred substrate. The
manifestation of this correlation in a minimal model
containing only enzyme induction and dilution suggests
that its existence is not due to goal-oriented regulatory
mechanisms, an assumption that lies at the heart of
models based on optimality principles (Mahadevan et
al., 2002; Kompala et al., 1986; Ramakrishna et al.,
1996). It is an intrinsic property resulting from the
kinetics of enzyme induction and dilution. We also find
that the correlation can be violated when the induction
kinetics are sigmoidal, and that the dynamics of these
offending cases are consistent with the data in the
literature.
(2)
 the existence of comparable single-substrate growth
rates is not sufficient for simultaneous consumption.
This agrees with the data described above. However, we
find that this condition is not necessary either. This is
because the occurrence of simultaneous consumption
depends not only on the relative growth rates, but also
on the saturation constants for induction. If these
saturation constants are small, there is simultaneous
consumption, regardless of the relative growth rates.
We show, furthermore, that the classification of the
substrate consumption patterns predicted by the model
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explains the phenotypes of several mutants. The most
striking phenotype is the reversal of the diauxie, wherein
both the wild-type and the mutant strains display diauxic
growth, but consume the substrates in opposite order. This
phenotype cannot be explained in terms of the standard
molecular mechanisms, but turns out to be a natural
consequence of the minimal model.

2. The model

Fig. 4 shows the kinetic scheme of the minimal model.
Here, Si denotes the ith exogenous substrate, Ei denotes
the transport enzyme for Si, X i denotes internalized Si, and
C� denotes all intracellular components except Ei and X i

(thus, it includes precursors, free amino acids, and
macromolecules).

In this work, attention will be confined to growth in
batch cultures. We assume that
(1)
S2

S1
The concentrations of the intracellular components,
denoted ei, xi, and c�, are based on the dry weight of
the cells (g per g dry weight of cells, i.e. g gdw�1). The
concentrations of the exogenous substrate and cells,
denoted si and c, are based on the volume of the reactor
(g/L and gdw/L, respectively). The rates of all the
processes are based on the dry weight of the cells
ðg gdw�1 h�1Þ. We shall use the term specific rate to
emphasize this point.
The choice of these units implies that if the concentra-
tion of any intracellular component, Z, is z g gdw�1,
then the evolution of z in batch cultures is given by

dz

dt
¼ rþz � r�z �

1

c

dc

dt

� �
z,

where rþz and r�z denote the specific rates of synthesis
and degradation of Z in g gdw�1 h�1.
(2)
 The transport and peripheral catabolism of Si is
catalysed by the ‘‘lumped’’ system of peripheral
enzymes, Ei. The specific uptake rate of Si, denoted
C−

X2

X1

CO2

CO2

E1

E2

Fig. 4. Kinetic scheme of the minimal model (Narang, 1998a).

5T

sour

are

such
rs;i, follows the modified Michaelis–Menten kinetics,
rs;i � V s;ieisi=ðKs;i þ siÞ.
(3)
 Part of the internalized substrate, denoted X i, is
converted to C�. The remainder is oxidized to CO2 in
order to generate energy.

(a) The conversion of X i to C� and CO2 follows first-
order kinetics, i.e. rx;i � kx;ixi.

(b) The fraction of X i converted to C� is a constant
(parameter), denoted Y i. Thus, the specific rate of
synthesis of C� from X i is Y irx;i.

5

he s

ces,

parti

sub
(4)
 The internalized substrate also induces the synthesis of
Ei.
(a) The specific synthesis rate of Ei follows Hill

kinetics, i.e. re;i � V e;ix
ni

i =ðK
ni

e;i þ xni

i Þ, where ni ¼ 1
or 2. Kinetic analysis of the data shows that enzyme
induction can be hyperbolic ðni ¼ 1Þ or sigmoidal
(ni ¼ 2) (Yagil and Yagil, 1971).
By appealing to a molecular model of induction, we
can express ni, V e;i, and Ke;i in terms of the
parameters associated with repressor–operator
and repressor–inducer binding. It is shown in
Appendix A that the Yagil and Yagil model of
induction implies that ni is the number of inducer
molecules that bind to 1 repressor molecule.
Furthermore, if the enzyme is inducible,

V e;i ¼ ne;iot;i; Kni

e;i ¼
Kx;i

Ko;i
rt;i, (1)

where ne;i is the enzyme synthesis rate per unit mass
of operator; ot;i; rt;i are the total concentrations of
the operator and repressor ðg gdw�1), respectively;
and Kx;i;Ko;i are the dissociation constants for
repressor–inducer and repressor–operator binding,
respectively.

(b) The synthesis of the enzymes occurs at the expense
of the biosynthetic constituents, C�.

(c) Enzyme degradation is negligibly small.
Given these assumptions, the mass balances yield the
equations

dsi

dt
¼ �rs;ic; rs;i � V s;iei

si

Ks;i þ si

, (2)

dxi

dt
¼ rs;i � rx;i �

1

c

dc

dt

� �
xi; rx;i � kx;ixi, (3)

dei

dt
¼ re;i �

1

c

dc

dt

� �
ei; re;i � V e;i

xni

Kni

e;i þ xni
, (4)

dc�

dt
¼ ðY 1rx;1 þ Y 2rx;2Þ � ðre;1 þ re;2Þ �

1

c

dc

dt

� �
c�. (5)
o-called conservative substrates, such as nitrogen and phosphorus

are completely assimilated (as opposed to carbon sources, which

ally oxidized to generate energy). During growth on mixtures of

strates, Y i ¼ 1 for both the substrates.
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It is shown in Appendix B that since x1 þ x2 þ e1þ

e2 þ c� ¼ 1, Eqs. (3)–(5) implicitly define the specific
growth rate, denoted rg, and the evolution of the cell
density via the relations

dc

dt
¼ rgc; rg �

X2
i¼1

rs;i �
X2
i¼1

ð1� Y iÞrx;i. (6)

Furthermore, since xi is small, it attains quasisteady state
on a time scale of seconds, thus resulting in the simplified
equations

dsi

dt
¼ �rs;ic, (7)

xi �
Vs;ieisi=ðKs;i þ siÞ

kx;i
, (8)

dei

dt
¼ re;i � rgei; re;i � V e;i

½eisi=ðKs;i þ siÞ�
ni

K̄
ni

e;i þ ½eisi=ðKs;i þ siÞ�
ni
,

K̄e;i � Ke;i
kx;i

V s;i
, ð9Þ

dc

dt
¼ rgc; rg � Y 1rs;1 þ Y 2rs;2, (10)

c� ¼ 1� x1 � x2 � e1 � e2, (11)

where (8) is obtained from the quasisteady state relation,
i.e. 0 � rs;i � rx;i.

We are particularly interested in the dynamics of the
peripheral enzymes during the first exponential growth
phase, since it is these finite-time dynamics that determine
the substrate utilization pattern. If the peripheral enzymes
for one of the substrates vanish during this period, there is
diauxic growth; if the peripheral enzymes for both
substrates persist, there is simultaneous substrate utiliza-
tion.

It turns out that the motion of the enzymes during the
first exponential growth phase is governed by only two
equations. To see this, observe that during the first
exponential growth phase, both substrates are in excess,
i.e. sibKs;i. Hence, even though the exogenous substrate
concentrations are decreasing, the transport enzymes see a
quasiconstant environment ðsi=ðKs;i þ siÞ � 1Þ, and ap-
proach the quasisteady state levels corresponding to
exponential (balanced) growth. This motion is approxi-
mated by the equations

de1

dt
¼ Ve;1

en1
1

K̄
n1
e;1 þ en1

1

� ðY 1Vs;1e1 þ Y 2V s;2e2Þe1, (12)

de2

dt
¼ Ve;2

en2
2

K̄
n2
e;2 þ en2

2

� ðY 1Vs;1e1 þ Y 2V s;2e2Þe2, (13)

obtained from (9) by replacing si=ðKs;i þ siÞ with 1. We
shall refer to these as the reduced equations. It should be
emphasized that the steady states of the reduced equations
are quasisteady states of the full system of equations (see
Narang et al., 1997a for a rigorous derivation of the
reduced equations).
The reduced equations are formally similar to the

equations of the standard Lotka–Volterra model for two
competing species, namely,

dN1

dt
¼ r1N1ð1� a11N1 � a12N2Þ, (14)

dN2

dt
¼ r2N2ð1� a21N1 � a22N2Þ, (15)

where Ni is the population density of the ith species, ri is
the (unrestricted) specific growth rate of the ith species in
the absence of any competition, and ai1; ai2 are parameters
that quantify the reduction of the unrestricted specific
growth rate due to intra- and inter-specific competition
(Murray, 1989). Thus, enzyme induction is the correlate of
unrestricted growth, and the two dilution terms are the
correlates of intra- and inter-specific competition. In what
follows, we shall constantly appeal to this dynamical
analogy.
The dynamics of the standard Lotka–Volterra model are

well understood. Indeed, the bifurcation diagram of the
model is completely determined by the two dimensionless
parameters, b21 � a21=a11 and b12 � a12=a22 (Fig. 5). These
parameters characterize the extent to which each species
inhibits the other species relative to the extent to which it
inhibits itself. Both species coexist precisely when they
inhibit themselves more than they inhibit the other species,
i.e. b21; b12o1. Under all other conditions, coexistence is
impossible. If the interaction between the species is
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6The nullclines for �i refer to the locus of points on the �1�2-plane at

which d�i=dt ¼ 0. In the case of the reduced equations, the nullclines for �i
consist of two curves. One of these curves is the trivial nullcline, �i ¼ 0; the

other curve is called the non-trivial nullcline.

A. Narang, S.S. Pilyugin / Journal of Theoretical Biology 244 (2007) 326–348 333
asymmetric (b21o1; b1241 or b2141; b12o1), one of them
is rendered extinct (species 1 and 2, respectively). If both
species inhibit the other species more than they inhibit
themselves, i.e. b21; b1241, the outcome depends on the
initial population densities.

Given the formal similarity of the reduced equations to
the Lotka–Volterra model, we expect them to display
‘‘extinction’’ and ‘‘coexistence’’ dynamics. Importantly,
these dynamics have simple biological interpretations.
Extinction of one of the enzymes corresponds to diauxic
growth, and coexistence of both enzymes corresponds to
simultaneous consumption. It is therefore clear that the
bifurcation diagram for the reduced equations is a useful
analytical tool. It furnishes a classification of the substrate
consumption patterns, which can then be used to system-
atically address the questions posed in the Introduction.
Our first goal is to construct this bifurcation diagram.

To minimize the number of parameters in the bifurcation
diagram, we rescale the reduced equations by defining the
dimensionless variables

�i �
eiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Ve;i=ðY iV s;iÞ
p ; t � t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;1Y 1V s;1

p
.

The choice of the reference variables in this scaling is
suggested by the following fact:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;i=ðY iVs;iÞ

p
andffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V e;iY iV s;i

p
are upper bounds for the enzyme level and

maximum specific growth rate attained during single-
substrate exponential growth on saturating concentrations
of Si. Indeed, under these conditions, the mass balance for
Ei becomes

0 ¼ V e;i
eni

i

K̄
ni

e;i þ eni

i

� Y iV s;ie
2
i .

Hence, eio
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;i=ðY iVs;iÞ

p
, and the maximum specific

growth rate on Si, denoted rmax
g;i , satisfies the relation

rmax
g;i � Y iVs;ieioY iV s;i

ffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;i

Y iVs;i

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y iVs;iV e;i

p
.

The above scaling yields the dimensionless reduced
equations

d�1
dt
¼

�n1
1

kn1
1 þ �

n1
1

� ð�1 þ a�2Þ�1, (16)

d�2
dt
¼ a

�n2
2

kn2
2 þ �

n2
2

� ð�1 þ a�2Þ�2, (17)

with dimensionless parameters

ki �
K̄e;iffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

V e;i=ðY iVs;iÞ
p ¼ Ke;ikx;i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Y i

V s;iVe;i

s

¼ kx;i
Kx;irt;i

Ko;i

� �1=ni
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Y i

Vs;iV e;i

s
, ð18Þ

a �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;2Y 2Vs;2

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e;1Y 1Vs;1

p . (19)
These dimensionless parameters have simple biological
interpretations. We can view ki as a dimensionless
saturation constant for induction, and a as a measure of
the maximum specific growth rate on S2 relative to that
on S1.

3. Results

We wish to construct the bifurcation diagram for
Eqs. (16)–(17). Since limit cycles are impossible in
Lotka–Volterra models for competing species (Hirsch and
Smale, 1974), it suffices to determine the steady states and
their stability.
Eqs. (16)–(17) admit at most four types of steady states:

the trivial steady state ð�1 ¼ �2 ¼ 0Þ, the semitrivial steady
states (�140; �2 ¼ 0 and �1 ¼ 0; �240), and the non-trivial
steady state, �1; �240. We denote these steady states by E00,
E10, E01, and E11, respectively.
We shall consider two cases: n1 ¼ n2 ¼ 1 and n1 ¼ 2,

n2 ¼ 1. The second case will serve to show the
qualitative changes engendered by sigmoidal induction
kinetics.

3.1. Case 1 ðn1 ¼ n2 ¼ 1Þ

In this case, the scaled equations are

d�1
dt
¼

�1
k1 þ �1

� ð�1 þ a�2Þ�1,

d�2
dt
¼ a

�2
k2 þ �2

� ð�1 þ a�2Þ�2.

The bifurcation diagrams for these equations are shown in
Fig. 6. They were inferred from the following facts derived
in Appendix C:
(1)
 The trivial steady, E00, always exists (for all
a;k1;k240), but it is always unstable (as a node).
(2)
 The semitrivial steady state, E10, always exists. It is
(uniquely) given by

�1 ¼
�k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
2

; �2 ¼ 0,

and is stable (as a node) precisely if �1jE10
exceeds a=k2,

the �1-intercept of the non-trivial nullcline for �2.
6 i.e.

�1jE10
4

a
k2

3aoa�ðk1; k2Þ �
k2ð�k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
Þ

2
.

(20)
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(3)
 The steady state, E01, always exists. It is given by

�1 ¼ 0; �2 ¼
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
2

,

and it is stable (as a node) precisely if �2jE01
exceeds

1=ðak1Þ, the �2-intercept of the non-trivial nullcline for
�1, i.e.

�2jE01
4

1

ak1
3a4a�ðk1;k2Þ �

2

k1 �k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q� � .
(21)
(4)
 The surface of a�ðk1;k2Þ lies below the surface of
a�ðk1; k2Þ, i.e.

a�ðk1; k2Þoa�ðk1;k2Þ (22)

for all k1; k240. The notation was chosen to reflect this
fact: The functions, a�ðk1; k2Þ and a�ðk1;k2Þ, represent
the lower and upper surfaces of the bifurcation
diagram.
(5)
 The steady state, E11, exists if and only if both E10 and
E01 are unstable, i.e.

a�ðk1; k2Þoaoa�ðk1;k2Þ. (23)

It is unique and stable whenever it exists.
The bifurcation diagrams imply the following classification
of the substrate utilization patterns:
(1)
 If aoa�ðk1;k2Þ, only E10 is stable, which corresponds to
preferential consumption of S1.
7
(2)

An analogous classification is also obtained when the model is

extended to continuous cultures (Narang, 1998b, Fig. 10). However, the
If a�ðk1;k2Þoaoa�ðk1; k2Þ, only E11 is stable, and there
is simultaneous consumption of S1 and S2.
control parameters consist of the dilution rate and feed concentrations
(3)

(rather than the physiological parameters, a, k1, and k2).
If a4a�ðk1; k2Þ, only E01 is stable, which corresponds
to preferential consumption of S2.
Thus, the surfaces of a�ðk1;k2Þ and a�ðk1; k2Þ delineate the
boundaries of the substrate consumption patterns.7

If the point, ðk1;k2; aÞ, crosses either one of these
boundaries, there is an abrupt transition in the substrate
consumption pattern due to a transcritical bifurcation. This
becomes evident if a is increased at any fixed k1;k240
(Fig. 7). At a ¼ a�ðk1;k2Þ, the substrate consumption
pattern switches from preferential consumption of S1 to
simultaneous consumption of S1 and S2 through a
transcritical bifurcation in which E10 (red curve) yields its
stability to E11 (black curve). As a is increased further, there
is another transition at a ¼ a�ðk1;k2Þ wherein simultaneous
consumption switches to preferential consumption of S2 via
a transcritical bifurcation involving the transfer of stability
from E11 (black curve) to E01 (blue curve).
We gain intuitive insight into the bifurcation diagram by

considering two limiting cases. Fig. 6 shows that if k1 or k2
are large, the curves for a� and a� converge, and
simultaneous consumption is virtually impossible. In
contrast, if both k1 and k2 are small, there is simultaneous
consumption for almost all a. To understand these limiting
cases, observe that when k1;k2 are large, Eqs. (16)–(17) are
approximated by the equations

d�1
dt
�

1

k1
�1ð1� k1�1 � ak1�2Þ�1,

d�2
dt
�

a
k2
�2 1�

k2
a
�1 � k2�2

� �
�2,

which are formally identical to the standard Lotka–Vol-
terra model with a11 ¼ k1, a12 ¼ ak1, a21 ¼ k2=a, and
a22 ¼ k2. However, there is an important difference. The
parameters, b21 � a21=a11; b12 � a12=a22, are not indepen-
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dent since b21 ¼ k2=ðak1Þ ¼ 1=b12. But if b12 and b21 are
restricted to the curve b21b12 ¼ 1, Fig. 5 implies that
coexistence (i.e. simultaneous consumption) is impossible:
E1 becomes extinct if b21o1, and E2 becomes extinct if
b2141. On the other hand, if k1;k2 are small, the enzyme
synthesis rate is essentially constant (quasiconstitutive).
The enzymes therefore resist extinction, and coexist for
almost all a.

3.1.1. Dependence of substrate consumption pattern on

genotype

In the experimental literature, the influence of the
physiological parameters is often studied by altering the
genetic make-up (genotype) of the cells, and observing the
resultant change in the substrate consumption pattern
(phenotype) of the cells. We show below that the
bifurcation diagrams are consistent with the phenotypic
changes observed in response to various genotypic altera-
tions.

Before doing so, however, it is useful to note that in all
the experiments described below, the phenotype of the
wild-type strain is preferential consumption of a substrate
(glucose, in most cases). Since Eqs. (16) and (17) are
formally the same, there is no loss of generality in assuming
that the preferred substrate is S2, and the parameters,
k1;k2; a, for the wild-type strain lie in the region, a4a�

(above the red curve in Fig. 6).
We begin by considering the cases in which the genetic

perturbation transforms the substrate consumption pattern
from preferential to simultaneous consumption.

In wild-type E. coli, transcription of lac is abolished in
the presence of glucose. However, mutants with lesions in
the lac operator synthesize b-galactosidase even in the
presence of glucose (Jacob and Monod, 1961). Thus, the
mutation transforms the substrate consumption pattern
from preferential consumption of glucose to simultaneous
consumption of glucose and lactose. The very same
phenotypic change is also observed in mutants with a
defective lacI, the gene encoding the lac repressor (Jacob
and Monod, 1961). To explain these phenotypic changes in
terms of the model, observe that mutations in the lac

operator or lacI impair the lac repressor–operator binding,
i.e. they increase the dissociation constant, Ko;1. It follows
from Eqs. (18)–(19) that k1 decreases at fixed k2 and a.
Inspection of Fig. 6a shows that such a change can shift the
substrate consumption pattern from preferential consump-
tion of S2 to simultaneous consumption.
If lacY, the gene encoding lactose permease, is over-

expressed in E. coli PR166, synthesis of b-galactosidase
persists in the presence of glucose (Fig. 8a). Now, in the
model, overexpression of lacY corresponds to higher Ve;1.
It follows from Eqs. (18)–(19) that k1; a decrease at fixed
k2, and Fig. 6a implies that the observed phenotype is
indeed feasible.
In E. coli PR166, b-galactosidase is synthesized despite

the presence of glucose if crr, the gene for enzyme IIAglc, is
deleted (Fig. 8a). Similarly, in the wild-type strain, E. coli

K12 W3110, glucose is consumed before galactose.
However, mutants with lesions in a gene encoding a
transport enzyme for glucose consume the two substrates
simultaneously (Kamogawa and Kurahashi, 1967). In these
cases, the effect of the mutation is to decrease Vs;2, so that
k2 increases and a decreases at fixed k1. It follows from Fig.
6b that such a change could lead to simultaneous
consumption of the substrates.
Now, all the mutant phenotypes discussed above

can be explained just as well by alternative hypotheses
appealing only to the molecular mechanisms. Indeed, the
first case is obviously due to impaired repressor–
operator binding, and one can argue that the remaining
two cases are due to diminished inducer exclusion.
However, the next two examples, which involve the reversal

of the diauxie, are difficult to explain from the molecular
point of view.
Fig. 9a shows that in E. coli Hfr3000, glucose is

consumed before galactose. However, the mutant strain
MM6, which contains a lesion in the PTS enzyme I
(Tanaka et al., 1967), consumes galactose before glucose
(Fig. 9b). Likewise, E. coli strain 159 consumes mannitol
before sorbitol (Fig. 9c), but the corresponding mutant
strain 157, which contains a lesion in the PTS enzyme IImtl ,
consumes sorbitol before mannitol (Fig. 9d). These
phenotypic changes fall within the scope of the minimal
model. In both mutants, the transport enzyme for the
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preferred substrate is impaired, i.e. Vs;2 decreases, so that
k1 remains unchanged, but k2 increases and a decreases. If
the changes in k2 and a are sufficiently large, Fig. 6b
implies that the substrate consumption pattern will shift
from preferential consumption of S2 to preferential
consumption of S1.
It should be emphasized that the ‘‘reversal of the

diauxie’’ is a natural consequence of the minimal model.
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This is because each enzyme inhibits the other enzyme due to
dilution by growth, i.e. the inhibition is mutual or competitive.
Consequently, suppressing the uptake (and hence, the
growth) on one of the substrates automatically tilts the
balance of power in favor of the other substrate. In contrast,
the ‘‘reversal of the diauxie’’ is difficult to explain in terms of
molecular mechanisms alone. This is because in all the
molecular mechanisms, the inhibition is unilateral rather than
mutual. In E. coli, for instance, there are numerous
mechanisms that allow PTS sugars, such as glucose and
mannitol, to inhibit the synthesis of the enzymes for non-PTS
substrates. But there is no mechanism for non-PTS substrates
to inhibit the synthesis of PTS enzymes. This difficulty did not
escape the attention of Asensio et al., who observed the
reversal of the glucose–galactose diauxie (Fig. 9, top panel).
Faced with the ‘‘reversal of the diauxie,’’ they were compelled
to conclude that the ‘‘diauxie is, at least in part, due to
competitive effects at the permease level.’’

3.1.2. Dependence of substrate consumption pattern on

relative growth rates

In order to consider the relationship between the
substrate consumption pattern and the ratio of the single-
substrate maximum specific growth rates, define

r �
rmax

g;2

rmax
g;1

,

where rmax
g;i denotes maximum specific growth rate during

single-substrate growth on saturating concentrations of Si.
Now, the model implies that

rmax
g;1 ¼ Y 1V s;1e1jE10

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve;1Y 1V s;1

p
�1jE10

,

rmax
g;2 ¼ Y 2V s;2e2jE01

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ve;2Y 2V s;2

p
�2jE01

,

so that

r ¼ a
�2jE01

�1jE10

¼
a

agðk1;k2Þ
,

agðk1; k2Þ �
�1jE10

�2jE01

¼
�k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q .

It follows that
2.5

(1)
1.5

2

The surface of agðk1;k2Þ separates the parameter space
into two distinct regions: above the surface, r41, i.e.
rmax

g;2 4rmax
g;1 , and below the surface, ro1, i.e. rmax

g;2 ormax
g;1 .
(2)
0.5 1 1.5 2 2.5 3 3.5 4
κ1,κ2

0.5

1

The surface of agðk1;k2Þ lies between the surfaces of
a�ðk1;k2Þ and a�ðk1;k2Þ, i.e.

a�ðk1;k2Þoagðk1;k2Þoa�ðk1;k2Þ (24)

for all k1;k240 (see Appendix C). Thus, the graph of ag,
denoted by the dashed brown line in Fig. 6, lies between
the graphs of a� (blue curve) and a� (red curve).
Fig. 10. Classification of substrate consumption patterns in terms of r, the
ratio of the single-substrate maximum specific growth rates. The full and

dashed lines show the graphs of r�ðk2Þ and r�ðk1Þ, respectively.
Given these results, we can recast the classification
of the substrate consumption patterns in terms of r.
To this end, define

r�ðk2Þ �
a�ðk1; k2Þ
agðk1;k2Þ

¼ k2
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
2

,

r�ðk1Þ �
a�ðk1; k2Þ
agðk1;k2Þ

¼
1

k1

2

�k1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q .

Then, there is preferential consumption of S1 (resp., S2)
precisely when ror�ðk2Þ (resp., r4r�ðk1Þ), and simulta-
neous consumption if and only if r�ðk2Þoror�ðk1Þ. Thus,
r� and r� define the limits of r at which there is
simultaneous consumption. It turns out that r�ðk2Þ
increases from 0 to 1 as k2 goes from 0 to 1, and r�ðk1Þ
decreases from1 to 0 as k1 goes from 0 to1 (Fig. 10). We
are now ready to discuss the relationship between the
substrate consumption patterns and the ratio of the single-
substrate maximum specific growth rates.
The Harder and Dijkhuizen correlation states that when

growth is diauxic, the preferred substrate is the one that, by
itself, supports a higher maximum specific growth rate
(p. 9). The model predictions are consistent with this
correlation. This is already evident from Fig. 6: aoag, i.e.
ro1 in the region, aoa�, corresponding to preferential
consumption of S1, and a4ag, i.e. r41 in the region a4a�

corresponding to preferential consumption of S2. The same
property is also manifested in Fig. 10, e.g. in the region,
ror�ðk2Þ, corresponding to preferential consumption of
S1, ro1 because the graph of r�ðk2Þ is always below 1. The
manifestation of the Harder–Dijkhuizen correlation in this
minimal model suggests that is an intrinsic property of the
induction and dilution kinetics. It can be explained without
invoking goal-oriented regulatory mechanisms, which form
the basis of models based on optimality principles
(Kompala et al., 1986; Mahadevan et al., 2002; Ramak-
rishna et al., 1996).
Current experimental evidence suggests that the exis-

tence of comparable single-substrate maximum specific
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growth rates is, perhaps, necessary but not sufficient for
simultaneous consumption (p. 11). However, Fig. 10 shows
that this condition ðr � 1Þ is neither necessary nor
sufficient for simultaneous consumption. It is not necessary
because when k1;k251, there is simultaneous consumption
for almost all r. It is not sufficient for simultaneous
consumption because when k1;k2b1, simultaneous con-
sumption is virtually impossible—it cannot be obtained
unless r lies in a vanishingly small neighborhood of 1.
These results can be understood in terms of the limiting
cases discussed above. If k1;k2 are small, the enzymes are
quasiconstitutive, and they resist extinction, regardless of
the maximum specific growth rates. As k1 and k2 increase,
the enzymes become progressively more vulnerable to
extinction, and in the limit of large k1; k2, they cannot
coexist.

We note finally that unlike the standard Lotka–Volterra
model for competing species, there are no parameter values
that yield bistable enzyme dynamics (compare Figs. 5 and
6). We show below that bistability becomes feasible when
the induction kinetics are sigmoidal.

3.2. Case 2 (n1 ¼ 2; n2 ¼ 1)

In this case, the scaled equations are

d�1
dt
¼

�21
k21 þ �

2
1

� ð�1 þ a�2Þ�1,

d�2
dt
¼ a

�2
k2 þ �2

� ð�1 þ a�2Þ�2.

The key results, which are shown in detail in Appendix D,
are as follows:
α/κ2 ε1
(1)
ε

The trivial steady, E00, always exists, regardless of the
parameter values. It is always unstable.
2

(2)
α/κ2 ε1

ε2

α/κ2 ε1

α/κ2 ε1

ε2

κ2
The semitrivial steady state, E10, exists if and
only if k1o1, in which case it is unique, and
given by

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
; �2 ¼ 0.

It is stable (as a node) if and only if �1jE10
exceeds the �1-

intercept of the non-trivial nullcline for �2, i.e.

�1jE10
4

a
k2

3 aok2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
� a�ðk1;k2Þ. (25)
κ11β
(3)
Fig. 11. The bifurcation diagram for the case n1 ¼ 2, n2 ¼ 1 at any fixed

k240. In the phase portraits, the nullclines for �1 and �2 are represented by

full and dashed lines, respectively; stable and unstable steady states are

represented by full and open circles, respectively. The graphs of a�, a�,
k1 ¼ 1, and ag are represented by blue, red, green, and dashed brown

curves, respectively. In the hatched region, S is the preferred substrate for
The semitrivial steady state, E01, always exists, and is
given by

�1 ¼ 0; �2 ¼
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
2

. (26)

It is always stable (as a node).

2

all preculturing conditions, even though it supports a maximum specific
(4)
growth rate lower than that on S1.
Non-trivial steady states exist only if k1o1. Under
these conditions, there are at most two non-trivial
steady states. There is a unique non-trivial steady state
if and only if

0oaoa�ðk1; k2Þ,

and it is unstable whenever it exists. There are two non-
trivial steady states if and only if

0ok1ob �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2þ k22

2ð1þ k22Þ

s
; a�ðk1; k2Þoaoa�ðk1;k2Þ,

where a�ðk1;k2Þ is the value of a at which the non-
trivial nullclines for �1 and �2 touch. One of these steady
states is stable and the other is unstable.
(5)
 The surface of a�ðk1; k2Þ lies below the surface of
a�ðk1;k2Þ for all 0ok1ob and k240.
The bifurcation diagram shown in Fig. 11 implies the
following classification of the substrate utilization patterns.
(1)
 If aoa�, E10 and E01 are stable, i.e. there is preferential
consumption of S1 or S2, depending on the initial
conditions.
(2)
 If 0ok1ob and a�oaoa�, E01 and E11 are stable, i.e.
there is preferential consumption of S2 or simultaneous
consumption of S1 and S2, depending on the initial
conditions.
(3)
 If bok1o1; a4a�or k141, there is preferential con-
sumption of S2, regardless of the initial conditions.
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(resp., full). The bifurcation points are represented by full circles.
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The surfaces of a� and a� define the locus of transcritical
and fold (saddle-node) bifurcations, respectively (Fig. 12).
If a is increased at any fixed 0ok1ob and k240, the
substrate consumption pattern changes at a ¼ a� from
bistable dynamics involving preferential consumption of S1

or S2 to bistable dynamics involving preferential consump-
tion of S2 or simultaneous consumption. This transition
occurs via a transcritical bifurcation. At a ¼ a�, the
substrate consumption pattern switches to preferential
consumption of S2 via a fold bifurcation.

Comparison of Fig. 11 with Fig. 6 shows that certain
features are preserved. Specifically, preferential consump-
tion of S1 is feasible only at low a, and simultaneous
consumption occurs only if a has intermediate values and
k1;k2 are not too large. However, a unique property
emerges in Fig. 11, namely, bistability. This is due to the
sigmoidal induction kinetics for E1, which ensure that
preferential consumption of S2 is feasible at all parameter
values.

It is also worth examining the relationship between the
classification predicted by the model and the empirical
classification based on the single-substrate maximum
specific growth rates. In this case

r ¼ a
�2jE01

�1jE10

¼
a

agðk1; k2Þ
; ag �

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q .

Now, ag4a� because �k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
o2=k2 (see Appendix

C). Furthermore, ag is zero at k1 ¼ 1. Thus, the graph of ag

lies above the graph of a� (dashed brown line in Fig. 11).
This implies that a substrate can be consumed preferen-
tially even if it supports a lower maximum specific growth
rate. Indeed, if the parameters lie in the region, aoag, then
S2 supports a lower maximum specific growth rate than S1,
and yet, cells precultured on S2 consume this substrate
preferentially. If the parameter values lie in the hatched
region of Fig. 11, S2 is the preferred substrate, regardless of
the manner in which the cells are precultured.
3.2.1. Evidence of bistable substrate consumption patterns

The bistable dynamics predicted by Fig. 11 have been
observed in experiments.
The bistable dynamics in the region, a�oaoa�, corre-

spond to preferential consumption of S2 if the preculture is
grown on S2, and simultaneous consumption if the
preculture is grown on S1. Two examples of this substrate
consumption pattern were described in the Introduction,
namely, growth of P. aeruginosa on glucose plus citrate
(Hamilton and Dawes, 1959, 1960, 1961) and growth of E.

coli K12 on a mixture of glucose and pyruvate (Narang et
al., 1997b). Fig. 13 shows another example of this substrate
consumption pattern. When Streptococcus mutans GS5 is
grown on a mixture of glucose and lactose, glucose-
precultured cells consume glucose before lactose (Fig. 13a),
whereas lactose-precultured cells consume both glucose
and lactose (Fig. 13b).
The bistable dynamics in the region, aoa�, correspond

to preferential consumption of S1 if the preculture
is grown on S1, and preferential consumption of S2

if the preculture is grown on S2. Furthermore, the
maximum specific growth on S2 is lower than that
on S1. There is evidence suggesting the existence of
this substrate consumption pattern. Tsuchiya and
coworkers studied the growth of Salmonella typhimurium

on a mixture of glucose and melibiose (Kuroda et al.,
1992; Okada et al., 1981). They found that the wild-type
strain LT2 consumed glucose before melibiose. However,
the PTS enzyme I mutant, SB1476, yielded the bistable
substrate consumption pattern corresponding to the
region, aoa�. Cells precultured on glucose consumed
glucose preferentially (Fig. 13c), and cells precultured on
melibiose consumed melibiose preferentially (Fig. 13d).
Moreover, the maximum specific growth rate on glucose
ð0:24 h�1Þ is significantly lower than that on melibiose
ð0:41 h�1Þ. It should be noted that these experiments were
done in the presence of 5mM cAMP in the culture.
However, at least in the case of glucose-precultured
cells, the same phenotype was observed even in the absence
of cAMP.
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Fig. 13. Bistability in mixed-substrate growth: Upper panel: growth of Streptococcus mutans GS5 on a mixture of lactose (LAC) and glucose (GLU)

(Liberman and Bleiweis, 1984). (a) Glucose is consumed preferentially if the cells are precultured on glucose. (b) Glucose and lactose are consumed

simultaneously if the cells are precultured on lactose. Lower panel: growth of Salmonella typhimurium SB1476 on a mixture on a mixture of glucose (GLU)

and melibiose (MEL) (Kuroda et al., 1992). (c) Glucose-precultured cells consume glucose before melibiose. (d) Melibiose-precultured cells consume

melibiose before glucose. In (b) and (d), the concentration of glucose increases at t � 8 and t � 6 h, respectively. It is believed that is due to expulsion of the

glucose produced from intracellular hydrolysis of lactose and melibiose, respectively.
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4. Discussion

We have shown that a minimal model accounting for
only enzyme induction and dilution captures and explains
all the substrate consumption patterns observed in the
experimental literature. In what follows, we discuss the
robustness of the model, and its implications for the
problem of size regulation in development.
4.1. Robustness of the model

Given the simplicity of the model, it is necessary ask
whether the properties of the model will be preserved if
additional metabolic details and regulatory mechanisms
are incorporated in the model. Now, the defining property
of the minimal model is that the enzymes follow
competitive dynamics. We show below that this property
is not a consequence of the particular kinetics assumed in
the model. It is the outcome of two very general
characteristics possessed by most systems of mixed-
substrate growth.
To see this, it is useful to consider the generalized
Lotka–Volterra model for competing species (Hirsch and
Smale, 1974, Chapter 12). This model postulates that the
competitive interactions between two species are captured
by the relations

dNi

dt
¼ f iðN1;N2Þ; f 1ð0;N2Þ ¼ f 2ðN1; 0Þ ¼ 0 and

qf 1

qN2
;
qf 2

qN1
o0.

In other words, the essence of competitive interactions can
be distilled into two properties:
(a)
 The growth of a species is impossible in the absence of
that species (dNi=dt ¼ 0 whenever Ni ¼ 0).
(b)
 Each species inhibits the growth of the other species
ðqf 1=qN2; qf 2=qN1o0Þ.
These properties, by themselves, imply the existence of all
the dynamics associated with competitive interactions,
namely, the absence of limit cycles, and the existence of
extinction and coexistence steady states.
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Now, properties (a) and (b) will be manifested in most
systems of mixed-substrate growth. Indeed, the evolution
of the enzymes during the first exponential growth phase
can be described by the relations

dei

dt
¼ giðe1; e2Þ � re;iðe1; e2Þ � rgðe1; e2Þei.

If we assume that
(1)
Fig.

pers

lac

exis
each enzyme is necessary for its own synthesis, i.e. re;i ¼

0 whenever ei ¼ 0,

(2)
 each enzyme has either no effect or inhibits the

synthesis of the other enzyme, i.e. qre;1=qe2,
qre;2=qe1p0,
(3)
 the specific growth rate is an increasing function of e1
and e2, i.e. qrg=qe1, qrg=qe240,
then the enzymes satisfy both the hypotheses of the
generalized model for competing species: (a) There is no
enzyme synthesis in the absence of the enzyme (dei=dt ¼ 0
whenever ei ¼ 0), and (b) each enzyme inhibits the
synthesis of the other enzyme (qg1=qe2, qg2=qe1o0).
Consequently, they will display extinction and coexistence
dynamics.

It remains to consider the generality of Assumptions 1–3.
Assumption 1 will be satisfied whenever the substrates

are transported by unique inducible enzymes. In these
cases, the enzymes are required for the existence of the
inducer ðei ¼ 0) xi ¼ 0Þ, and the inducers are necessary
for the synthesis of the enzymes ðxi ¼ 0) re;i ¼ 0Þ; hence,
ei ¼ 0) re;i ¼ 0. One can imagine two cases in which
Assumption 1 is violated. First, if an enzyme is constitu-
tive, it is synthesized even in the absence of the inducer
ðxi ¼ 0Rre;i ¼ 0Þ. Second, in the presence of a gratuitous
inducer, such as IPTG, which can enter the cell even in the
absence of lactose permease, the enzyme is not required for
the existence of the inducer ðei ¼ 0Rxi ¼ 0Þ. In both cases,
the ‘‘extinction’’ steady state ceases to exist, and the
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tence of the permease.
substrates will be consumed simultaneously. This is
consistent with experiments (Fig. 14).
Assumption 2 will be satisfied provided the enzymes do

not activate each other. But all the known regulatory
mechanisms invariably entail direct or indirect inhibition of
one of the enzymes by the other enzyme. This includes
inducer exclusion (dephosphorylated enzyme IIglc inhibits
lac permease), and cAMP activation (dephosphorylation of
IIglc causes a reduction of cAMP levels, which in turn
inhibits lac transcription).
Assumption 3 will be satisfied if the yield of biomass on a

substrate during single-substrate growth does not change
markedly during mixed-substrate growth. In the model, the
yields were assumed to be constant. This is certainly true
for conservative substrates since Y i ¼ 1. It is also observed
to hold in many mixtures of carbon sources (Egli et al.,
1982; Narang et al., 1997b). However, it is conceivable that
there are systems in which the yields vary with the enzyme
levels. In such cases, the specific growth rate will have the
form, rgðe1; e2Þ ¼ Y 1ðe1; e2ÞV s;1e1 þ Y 2ðe1; e2ÞVs;2e2. At
present, the data is not sufficient for determining the
extent to which the yields vary with the enzyme levels.
It is therefore clear that inclusion of various regulatory

mechanisms will enhance the mutual inhibition due from
dilution. However, the qualitative behavior will be
preserved, since the enzymes will still follow Lotka–Vol-
terra dynamics. Thus, the key property of the model,
namely, competitive dynamics of the enzymes, is quite
robust insofar as the perturbations with respect to
regulatory mechanisms are concerned.
The notion that diauxic growth is the outcome of

competitive interactions between the enzymes is not new. It
can be found in the earliest papers on diauxic growth. In
1947, Monod noted that (Monod, 1947, p. 254)
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He observed, furthermore, that the (Monod, 1947, p. 259).

‘‘existence of competitive interactions in the synthesis of
different specific enzymes appears to be a fact of
fundamental significance in enzymatic adaptation, and
one for which any conception of the phenomenon
should be able to account.’’

However, these conclusions were based on the kinetics of
the enzyme levels during diauxic growth, and had no
mechanistic basis.

The above argument, first made in Narang (1998a),
shows the mechanistic basis of the competitive interactions
in a mathematically precise fashion.

4.2. Implication of the model for development

Diauxic growth has played a critical role in shaping
models of patterning in development. The first link
between genetics and development was established in the
late 1940s by appealing to the following argument (Gilbert,
2002). During diauxic growth, cells possessing identical
genes synthesize different proteins at distinct times
(namely, the first and second exponential growth phases).
By analogy, patterning in differentiation could be viewed
as the synthesis of different proteins at distinct times and
locations (Monod, 1947; Spiegelman, 1948). From this
standpoint, diauxic growth and developmental patterning
can be viewed as ‘‘temporal’’ and ‘‘spatiotemporal’’
differentiation, respectively.

The subsequent discovery of the molecular mechanisms
involved in developmental patterning have confirmed the
above hypothesis. It has been found that developmental
patterns are generated by genetic switches similar in
principle, but more complex in detail, than the
genetic switch of the lac operon (Ptashne and Gann,
2002, Chapter 3).

Despite remarkable successes in developmental pattern-
ing, there are outstanding questions about size regulation,
i.e. the mechanisms by which patterning is coupled to
growth (Day and Lawrence, 2000; Hafen and Stocker,
2003; Serrano and O’Farrell, 1997). Examples of such
questions include: what determines the size of organs and
organisms, i.e. why does their growth cease at a certain
time? and why is development scale-invariant, i.e. why is
the size of the organs is proportional to the size of the
organism?

The model presented here may be relevant to the
problem of size regulation. It shows that the ‘‘temporal’’
differentiation in the diauxie is coupled to growth, and this
coupling is mediated by the process of enzyme dilution.
Inasmuch as the diauxie is a paradigm of the mechanisms
controlling cellular differentiation, a similar mechanism
may lie at the heart of the coupling between developmental
patterning and growth. Based on the minimal model, one
can speculate, for instance, that organ growth ceases at a
certain time because growth-promoting enzymes are driven
to ‘‘extinction’’ at sufficiently high growth rates.
The model also has implications for the problem of scale
invariance. In many mathematical models of development,
pattern formation occurs when a homogeneous steady state
of a reaction–diffusion system

qc

qt
¼ Dr2c� rðc; pÞ, (27)

becomes unstable due to the onset of a Turing instability
(Murray, 1989). Here, cðx; tÞ denotes the vector of
morphogen concentrations, D is the matrix of diffusivities,
and rðc; pÞ is the reaction rate vector expressed as a function
of c and a vector of parameters, p. In general, the patterns
predicted by these models are not scale-invariant. How-
ever, this problem can be resolved if the system is fed more
information about its size (say, L). For instance, perfect
scale invariance is obtained if the diffusivities or rate
constants are proportional to L2, and plausible mechan-
isms for such a dependence have been proposed (Othmer
and Pate, 1980; Ishihara and Kaneko, 2006).
In growing systems, however, information regarding the

growth rate is constantly fed to the mechanism driving
pattern formation. Indeed, in the presence of growth, Eq.
(27) becomes

qc

qt
þ v:rc ¼ Dr2c� rðc; pÞ � cr � v, (28)

where vðx; tÞ is the velocity vector field, v � rc is the
accumulation of the morphogens due to convection,
r � v is the specific growth rate, and cr � v is the dilution
of the morphogens due to growth. Crampin et al.
have shown that these equations exhibit a certain
degree of scale invariance—as the system grows, the
number of pattern elements remains the same despite a
doubling of the system size (Crampin et al., 1999, 2002).
Further analysis of this class of equations offers the
promise of deeper insights into the coupling between
patterning and growth.

5. Conclusions
(1)
 We showed that a minimal model accounting for
enzyme induction and dilution, but not cAMP activa-
tion and inducer exclusion, captures and explains all
the observed substrate consumption patterns, including
diauxic growth, simultaneous consumption, and bis-
table growth. This suggests that the dynamics char-
acteristic of mixed-substrate growth are already
inherent in the minimal structure associated with
induction and dilution. We find that many of the
molecular mechanisms, such as inducer exclusion, serve
to amplify these inherent dynamics.
(2)
 We constructed bifurcation diagrams showing the
parameter values at which the various substrate
consumption patterns will be observed. The bifurcation
diagrams explain the phenotypic responses to various
genetic perturbations, including lesions in the genes for
the repressor, operator, and the transport enzymes.
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Importantly, they provide a simple explanation for the
‘‘reversal of the diauxie,’’ a phenomenon which is quite
difficult to explain in terms of molecular mechanisms.
The bifurcation diagrams also provide deep insights
into the mechanisms underlying the empirically ob-
served correlations between the substrate consumption
patterns and the single-substrate growth rates. We
found that
(a) when the induction kinetics are hyperbolic, the

preferred substrate is always the one that supports a
higher growth rate. This correlation is, therefore,
unlikely to be the outcome of optimal design. It is a
natural consequence of the fact that the enzymatic
dynamics are governed by the rates of induction
and dilution.
If induction is sigmoidal, it is possible for the
preferred substrate to support a lower growth rate
than the less preferred substrate. We presented
experimental data illustrating this case.

(b) the existence of comparable growth rates is neither
necessary nor sufficient for simultaneous consump-
tion. When the saturation constants are small,
simultaneous consumption occurs regardless of the
maximum specific growth rates, since induction is
quasiconstitutive. If the saturation constants are
large, simultaneous consumption is impossible even
if the growth rates are comparable.
(3)
 The key property of the model, namely, competitive
dynamics of the enzymes, is quite robust with respect to
structural perturbations.
(4)
 The model has implications for the problem of size
regulation in development, since it provides a mechan-
ism for coupling differentiation and growth, namely,
protein dilution.
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Appendix A. Interpretation of ni, Ve;i, and Ke;i in terms of

molecular interactions

To express ni, Ve;i, and Ke;i in terms of molecular
parameters, we appeal to the Yagil and Yagil model (Yagil
and Yagil, 1971). For notational clarity, we shall ignore the
subscript i for the substrate; thus, the operator, inducer,
and repressor will be denoted by O, X, and R, respectively.
Furthermore, their concentrations will be denoted ½O�, ½X �,
and ½R�, respectively.

The Yagil and Yagil model views induction as the
outcome of a competition for the repressor between the
operator and the inducer. Induction occurs when the
inducer molecules sequester the repressors away from the
operator. The competitive interactions are represented by
two binding equilibria

RþOÐ R �O; Ko �
½R�½O�

½R �O�
, (A.1)

Rþ nX Ð R � X n Kx �
½R�½X �n

½R � X n�
, (A.2)

where n denotes the number of inducer molecules that bind
to 1 molecule of repressor; ½R �O�, ½R � X n� denote the
concentrations of the complexes, R �O, R � X n, respec-
tively; and Ko, Kx denote the dissociation constants for the
two equilibria.
It is assumed that
(1)
 enzyme synthesis is limited by the transcription rate, i.e.
translation is not limiting. Thus, the specific enzyme
synthesis rate is proportional to the specific transcription
rate. Furthermore, the specific transcription rate is
proportional to the concentration of the free operator, i.e.

re ¼ n½O�, (A.3)

where n denotes the enzyme synthesis rate per unit mass
of operator.
(2)
 the total concentrations of O and R, denoted ½O�t and
½R�t, respectively, are conserved, i.e.

½O�t ¼ ½O� þ ½R �O�, (A.4)

½R�t ¼ ½R� þ ½R �O� þ ½R � X n�. (A.5)

These two relations, together with Eqs. (A.1)–(A.2),
constitute four equations in four unknowns, namely,
½O�, ½R�, ½R�O], and ½R � X n�. In principle, these
equations can be solved for ½O�, and substituted in
(A.3) to obtain re. However, since the solution is
cumbersome, it is convenient to make the following
additional assumption.
(3)
 The repressor is bound primarily to the inducer (rather
than the operator), i.e.

½R �O�5½R�t.

This assumption is valid under most conditions because
the operator concentration (�2 per cell) is significantly
smaller than the total repressor concentration (at least
�10 molecules per cell).
These assumptions yield

re ¼ n½O� ¼ Ve
Kx þ ½X �

n

Kxð1þ ½R�t=KoÞ þ ½X �
n ,

where V e � n½Ot�.
In the case of constitutive enzymes, the repressor has a

weak affinity for the operator, i.e. Kob½R�t, so that

re � V e

regardless of the inducer concentration.
In the case of inducible enzymes, the repressor has a high

affinity for the operator, i.e. Ko5½R�t, so that

re � V e

Kx þ ½X �
n

Kx½R�t=Ko þ ½X �
n .
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This is a monotonically increasing function of ½X � with a
small non-zero intercept. Neglecting this small ‘‘basal’’
enzyme synthesis rate yields8

re � Ve

½X �n

Kn
e þ ½X �

n ; Kn
e �

Kx

Ko

½R�t.
Appendix B. Derivation of the equations

Eqs. (3)–(5) implicitly define the specific growth rate
and the evolution of the cell density. To see this, observe
that since all the intracellular concentrations are expressed
as mass fractions (g/gdw), their sum equals 1,
i.e. x1 þ x2 þ e1 þ e2 þ c� ¼ 1. Hence, addition of
Eqs. (3)–(5) yields

0 ¼
X2
i¼1

rs;i �
X2
i¼1

ð1� Y iÞrx;i �
1

c

dc

dt
,

which can be rewritten in the more familiar form

dc

dt
¼ rgc; rg �

X2
i¼1

rs;i �
X2
i¼1

ð1� Y iÞrx;i,

where rg denotes the specific growth rate.
We can simplify the model by observing that

xi�10
�3 g=gdw (Chung and Stephanopoulos, 1996) and

rs;i; rx;i�1 g gdw
�1 h�1. Thus, xi attains quasisteady state on

a time scale of 10�3 h. Moreover, the dilution term
rgxi�10

�4 g gdw�1 h�1 is negligibly small compared to
rs;i; rx;i. Hence, within a few seconds, (3) becomes,
0 � rs;i � rx;i, which implies that rg �

P
i Y irs;i, i.e. Y i is

essentially the yield of biomass on Si. Thus, we arrive at the
equations

dc

dt
¼ ðY 1rs;1 þ Y 2rs;2Þc,

dsi

dt
¼ �rs;ic,

dei

dt
¼ re;i � ðY 1rs;1 þ Y 2rs;2Þei,

xi �
Vs;ieisi=ðKs;i þ siÞ

kx;i
,

c� ¼ 1� x1 � x2 � e1 � e2,

where xi is obtained by solving the quasisteady state
relation, rx;i � rs;i.
8Recent evidence suggests that in the case of the lac operon, the

cooperativity does not arise from the binding of two inducer molecules to

a single repressor molecule. Instead, it might be due to the cooperative

binding of a single repressor molecule to two operators (Oehler et al.,

2006).
Appendix C. Stability analysis of case 1 ðn1 ¼ n2 ¼ 1Þ

In this case, the steady states satisfy the equations

0 ¼
1

k1 þ �1
� �1 � a�2

� �
�1,

0 ¼ a
1

k2 þ �2
� �1 � a�2

� �
�2.

and the Jacobian at any ð�1; �2Þ is

Jð�1; �2Þ ¼

k1
ðk1 þ �1Þ

2
� 2�1 � a�2 �a�1

��2
ak2

ðk2 þ �2Þ
2
� �1 � 2a�2

2
664

3
775.
C.1. Trivial steady state

It is evident that E00 exists, regardless of the parameter
values. It is always an unstable node since

JðE00Þ ¼

1

k1
0

0
1

k2

2
664

3
775

which implies that both eigenvalues, 1=k1 and 1=k2, are
positive.

C.2. Semitrivial steady states

The semitrivial steady state, E10, always exists. It is
unique and given by

�1 ¼
�k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
2

; �2 ¼ 0.

Since 1=ðk1 þ �1Þ ¼ �1 at E10, the Jacobian at this steady
state is

k1�1
k1 þ �1

� 2�1 �a�1

0
a
k2
� �1

2
664

3
775,

and the eigenvalues are

l1 ¼
k1�1

k1 þ �1
� 2�1 ¼ ��1

k1 þ 2�1
k1 þ �1

o0; l2 ¼
a
k2
� �1.

Hence, E10 is stable (as a node) if and only if

l2 ¼
a
k2
� �1o0 3 aok2�1jE10

3
k2
a
� k14

a
k2

. (C.1)

A similar analysis of the semitrivial steady state, E01,
shows that it always exists. It is unique and given by

�1 ¼ 0; �2 ¼
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
2

.
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It is stable (as a node) if and only if

a4
1

k1�2jE01

3 aðak1 � k2Þ4
1

k1
. (C.2)

C.3. Non-trivial steady state(s)

The non-trivial steady state(s), E11, satisfy the equations

0 ¼
1

k1 þ �1
� �1 � a�2, (C.3)

0 ¼ a
1

k2 þ �2
� �1 � a�2. (C.4)

Eliminating �2 from these equations yields the equation

1

k1 þ �1
¼ ð1þ a2Þ�1 þ aðak1 � k2Þ,

which has at most 1 positive root, and it exists if and only if

aðak1 � k2Þo
1

k1
3 E01 is unstable.

On the other hand, eliminating �1 from (C.3)–(C.4) yields
the equation

a
k2 þ �2

¼
1

a
þ a

� �
�2 þ

k2
a
� k1

which has at most 1 positive root, and it exists if and only if

k2
a
� k1o

a
k2

3 E10 is unstable.

Thus, E11 exists if and only if both E10 and E01 are
unstable. Furthermore, it is unique whenever it exists, and
is given by

�1 ¼
ðak2 � k1Þ � 2a2k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðak2 � k1Þ

2
þ 4½ð1þ a2Þ þ ak2�

q
2ð1þ a2Þ

,

�2 ¼
�aðak2 � k1Þ � 2k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðak2 � k1Þ

2
þ 4½ð1þ a2Þ þ ak2�

q
2ð1þ a2Þ

.

It turns out that E11 is stable whenever it exists since
(C.3)–(C.4) imply that

J11 ¼
k1

ðk1 þ �1Þ
2
� 2�1 � a�2 ¼�

�1
k1 þ �1

ðk1 þ 2�1 þ a�2Þo0

and

J22 ¼
ak2

ðk2 þ �2Þ
2
� �1 � 2a�2 ¼ �

�2
k2 þ �2

ðak2 þ �1 þ 2a�2Þo0

so that tr JðE11Þo0 and

det JðE11Þ ¼ ðk1 þ ak2Þ�1 þ aðk1 þ ak2Þ�2 þ 4a�1�2 þ 2a2�2240.

Hence, the eigenvalues of JðE11Þ have negative real parts.
We conclude that E11 exists if and only if

Both E10 and E01 are unstable 3
1

k1�2jE01

oaok2�1jE10
.

(C.5)

Furthermore, it is unique and stable whenever it exists.

C.4. Disposition of the surfaces of a�, a�, and ag

The surface of ag lies between the surfaces of a�ðk1; k2Þ
and a�ðk1;k2Þ, i.e.

a�ðk1;k2Þoagðk1;k2Þoa�ðk1;k2Þ (C.6)

for all k1;k240. To see this, observe that

1

x
þ

x

2

� �2

41þ
x2

4
)
�xþ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ 4
p

2
o

1

x

for all x40. Hence

�k1 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
2=k2

o
�k1 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k21 þ 4

q
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q o
2=k1

�k2 þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
for all k1; k240, and (C.6) follows immediately from the
definitions of a�, a�, and ag.

Appendix D. Stability analysis of case 2 (n1 ¼ 2; n2 ¼ 1)

In this case, the steady states satisfy the equations

0 ¼
�1

k21 þ �
2
1

� �1 � a�2

� �
�1,

0 ¼ a
1

k2 þ �2
� �1 � a�2

� �
�2.

and the Jacobian at any ð�1; �2Þ is

Jð�1; �2Þ ¼

2k21�1
ðk21 þ �

2
1Þ

2
� 2�1 � a�2 �a�1

��2
ak2

ðk2 þ �2Þ
2
� �1 � 2a�2

2
6664

3
7775.

In what follows, we study the conditions on the parameter
values for the existence and stability of all four types of
steady states.

D.1. Trivial steady state

The trivial steady, E00, always exists, regardless of the
parameter values. The Jacobian is singular at this steady
state, but we can infer its stability from the dynamics on
the invariant lines, �1 ¼ 0 and �2 ¼ 0. Indeed, in the
neighborhood of E00,

d�1
dt

����
�2¼0

� �21
1

k21
� 1

� �
;

d�2
dt

����
�1¼0

�
a
k2
�240.

Hence, E00 is a non-hyperbolic saddle if k1o1 and a non-
hyperbolic unstable node if k141.
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D.2. Semitrivial steady states

The semitrivial steady state, E10, exists provided k1o1,
in which case it is unique, and given by

�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
; �2 ¼ 0.

Since �21 þ k2e;1 ¼ 1 at this steady state, the Jacobian is

2ðk21 � 1Þ�1 �a�1

0
a
k2
� �1

2
4

3
5,

and the eigenvalues are

l1 ¼ 2ðk21 � 1Þ�1o0; l2 ¼
a
k2
� �1.

Hence, E10 is stable (as a node) if and only if

l2 ¼
a
k2
� �1jE10

o0 3 aok2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
. (D.1)

Analysis of the steady state, E01, shows that this steady
state always exists, and is given by

�1 ¼ 0; �2 ¼
�k2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
k22 þ 4

q
2

.

The Jacobian at this steady state is

�a�2 0

��2
ak2�2
k2 þ �2

� 2a�2

2
4

3
5,

and the eigenvalues are

l1 ¼ �a�2o0; l2 ¼ �a�2
k2 þ 2�2
k2 þ �2

o0. (D.2)

We conclude that E01 always exists and is stable (as a
node).

D.3. Non-trivial steady state(s)

D.3.1. Existence

The non-trivial steady states satisfy the equations

0 ¼
�1

k21 þ �
2
1

� �1 � a�2, (D.3)

0 ¼ a
1

k2 þ �2
� �1 � a�2. (D.4)

If k140, there are no non-trivial steady states, since (D.3)
cannot be satisfied for any �1; �240. Indeed,

k141)
�1

k21 þ �
2
1

� �1 � a�2 ¼ �1
1

k21 þ �
2
1

� 1

� �
� a�2o0

for all �1; �240. Henceforth, we shall assume that 0ok1o1
and k240.
We begin by introducing a change of coordinates that
reduces the problem to the existence of roots on a finite
interval. Letting �2 ¼ n�1, we rewrite the above system as

1

k21 þ �
2
1

¼ 1þ an,

a
k2 þ n�1

¼ �1ð1þ anÞ.

Solving the first equation for �1, and rewriting the second
equation, we obtain

�1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ an
� k21

r
,

a
1þ na

¼ n�21 þ k2�1.

Hence, we obtain the following equation for n:

a
1þ na

¼ n
1

1þ an
� k21

� �
þ k2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

1þ an
� k21

r
.

Multiplying through by ð1þ anÞ, we obtain

a ¼ n½1� k21ð1þ anÞ� þ k2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1þ anÞ½1� k21ð1þ anÞ�

q
.

Finally, we let

z ¼ k21ð1þ anÞ; n ¼
1

a
z

k21
� 1

� �
,

and rewrite the above equation as

1 ¼
1

a2 k21
ðz� k21Þð1� zÞ þ

k2
ak1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
zð1� zÞ

p
¼ f ðz; aÞ. (D.5)

Observe that z uniquely determines n, and hence both �1
and �2. To ensure that both �i40, z must belong to the
interval ðk21; 1Þ. Thus, the problem is reduced to the
existence of roots of (D.5) on the finite interval ðk21; 1Þ.
Several properties of f are immediate:

f ð1; aÞ ¼ 0o1; f ðk21; aÞ ¼
k2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q
a

,

and

f zzðz; aÞ ¼ �
2

a2k21
�

k2½4zð1� zÞ þ ð1� 2zÞ2�

4ak1½zð1� zÞ�3=2
o0 8 0ozo1,

so that f ðz; aÞ is strictly concave down in z for each a40
and for all k21ozo1. In particular, this implies that (D.5)
has a unique root z 2 ½k21; 1� if f ðk21; aÞ41, and at most two
roots if f ðk21; aÞp1. Furthermore, we observe that
f zðz; aÞ ! �1 as z! 1,

f zðk
2
1; aÞ ¼

2ð1� k21Þ
3=2
þ ak2ð1� 2k21Þ

2a2k21

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� k21

q ,

and

f zðk
2
1; a�Þ ¼

2ð1� k21Þ þ k22ð1� 2k21Þ
2k21k

2
2ð1� k21Þ

.
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Hence, f zðk
2
1; a�Þ40 if and only if 2ð1� k21Þ þ k22ð1�

2k21Þ40, i.e.

k1ob �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ k22

2ð1þ k22Þ

s
.

Finally, we observe that f ðz; aÞ decreases in a for each fixed
z, and f ðz; aÞ ! 0 as a!þ1.

We conclude that there are two scenarios:
(1)
 If k1ob, then there exists a�4a� such that (D.5) has
only one root in ðk21; 1Þ for all aoa�, two distinct roots
in ðk21; 1Þ for all a�oaoa�, and no roots for a4a�.
When a ¼ a�, (D.5) has two roots: z ¼ k21 and another
root in ðk21; 1Þ. When a ¼ a�, (D.5) admits a double root
in ðk21; 1Þ.
(2)
 If k1Xb, then (D.5) admits only one root in ðk21; 1Þ for
all aoa�, and no roots for a4a�.
A single root z ¼ k21 occurs if and only if a ¼ a�.
Thus, we obtain the bifurcation diagram shown in Fig. 11.

D.3.2. Computation of a�ðk1;k2Þ
We have shown above that a� exists for all k1ob. Here,

we present an algorithm for computing a�, which rests
upon the fact that the non-trivial nullclines for �1 and �2
touch at a ¼ a�.

Eliminating �2 from (D.3)–(D.4) yields the quartic
polynomial

�41 � ð1þ a2Þ � �32 � ak2 þ �
2
1 � ½2a

2k21 � ð1� k21Þ�

þ �1 � ak21 þ a2k41 ¼ 0. ðD:6Þ

This equation has two equal real roots if and only if the
discriminant is zero (Dickson, 1914, p. 41), i.e.

n �
a2

ð1þ a2Þ6
½c0ða2Þ

3
þ c1ða2Þ

2
þ c2ða2Þ þ c3� ¼ 0, (D.7)

where

c0 ¼ k81ð4þ k22Þ
240,

c1 ¼
k61
4
½8k41ðk

2
2�4Þ�ðk

2
2 þ 2Þðk22 þ 4Þ2�4k21ðk

2
2 þ 4Þðk22þ8Þ�,

c2 ¼
k41
16
½16k81 þ 32k61ðk

2
2 � 6Þ þ ðk22 þ 4Þ2

� 4k21ðk
2
2 þ 4Þð5k22 þ 12Þ8k41ðk

4
2 � 11k22 � 44Þ�,

c3 ¼
k41
4
ð1� k21Þ

3
½4ð1� k21Þ þ k22�40.

For every k1;k240, Eq. (D.7) has three non-zero roots.
One of these roots is negative since c0 and c3 are positive.
Computations show that the remaining two roots are also
positive. However, the nullclines touch in the first
quadrant, �1; �240, only if k1ob, and a is the largest
positive root. Thus, a�ðk1;k2Þ is the largest of the three
roots of (D.7).
D.3.3. Stability

The stability of the steady states follows from the
geometry of the non-trivial nullclines for �1 and �2. Indeed,
it is known from the theory of the generalized Lotka–-
Volterra model for competing species that a non-trivial
steady state is stable if and only if in the neighborhood of
the non-trivial steady state, the non-trivial nullclines for
both �1 and �2 have negative slopes, but the slope of the
non-trivial nullcline for �2 is more negative (i.e. higher in
absolute value) than the slope of the non-trivial nullcline
for �1 (Hirsch and Smale, 1974, Chapter 12).
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