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Somatic cells, including immune cells such as T-cells have a limited capacity for proliferation and can
only replicate for a finite number of generations (known as the Hayflick limit) before dying. In this paper
we use mathematical models to investigate the consequences of introducing a Hayflick limit on the
dynamics of T-cells stimulated with specific antigen. We show that while the Hayflick limit does not
alter the dynamics of T-cell response to antigen over the short term, it may have a profound effect on
the long-term immune response. In particular we show that over the long term the Hayflick limit may
be important in determining whether an immune response can be maintained to a persistent antigen
(or parasite). The eventual outcome is determined by the magnitude of the Hayflick limit, the extent
to which antigen reduces the input of T-cells from the thymus, and the rate of antigen-induced
proliferation of T-cells. Counter to what might be expected we show that the persistence of an immune
response (immune memory) requires the density of persistent antigen to be less than a defined threshold
value. If the amount of persistent antigen (or parasite) is greater than this threshold value then immune
memory will be relatively short lived. The consequences of this threshold for persistent mycobacterial
and HIV infections and for the generation of vaccines are discussed.

7 1997 Academic Press Limited

Introduction

The classic studies of Hayflick and Moorhead
demonstrated that normal human fibroblasts cultured
in vitro display a finite proliferative capacity, with the
mean total number of population doublings, known
as the Hayflick limit ranging from 20 to 50 (Hayflick
& Moorhead, 1961; Hayflick 1965). The generality of
the Hayflick phenomenon has been confirmed for
several types of somatic cells, including keratinocytes
(Rheinwald & Green, 1975), vascular smooth muscle
cells (Bierman, 1978), lens cells (Tassin et al., 1979),
endothelial cells (Mueller et al., 1980), and T-cells
(see below and also Discussion). While early
limitations in T-cell culture techniques made it hard
to determine whether T-cells were capable of a limited
number of population doublings or were able to
undergo an unrestricted growth (Effros et al. 1990;

Effros & Walford, 1984), subsequent experiments
(Perillo et al., 1988) resolved these culture problems
and obtained estimates of the total number of
population doublings of human T-cells obtained from
the peripheral blood or neonatal chord samples of
a total of 109 individuals. Of over 200 cultures only
one generated an ‘‘immortal’’ cell line, and was
subsequently shown to have signs of karyotypic
abnormality. Their results demonstrated a Hayflick
limit in all the samples but one, with the mean number
of population doublings of 23 (Fig. 1). While this
value of the Hayflick limit (for human T cells) is
similar to that obtained for human fibroblasts, the
Hayflick limit varies widely for cells obtained from
different species.

In the case of fibroblasts and other somatic cells
which are generally long-lived and have relatively
slow replacement rates it has been proposed that the
Hayflick limit will contribute to the process of aging
and senescence of individuals [see Cristofalo &‡ Author to whom correspondence should be addressed.
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F. 1. The Hayflick limit for T-cells in vitro. Frequency
distribution showing the maximum number of cell divisions of
human peripheral blood or neonatal chord samples of a total of 109
individuals obtained by Perillo et al. (1988).

we transform this model into a PDE model. This
allows us to generate a system more amenable to
analysis.

We begin by constructing a general model for the
dynamics of T-cell-antigen interactions when there is
a Hayflick limit. This model includes the input from
the thymus and proliferation of T-cells as functions of
antigen density (the term antigen will be used
interchangeably with the term parasite). We use this
model to determine the age distribution and the total
magnitude of the T-cell response as functions of the
Hayflick number, the rate of input from the thymus
and the rate of proliferation of T-cells. We examine
the consequences of these results for the magnitude of
the immune response to persistent antigen (memory)
as well as for the immune response to short duration
(acute), and persistent infections.

In our model we let X (without a subscript)
represent the population of T-cells specific for a
given antigen P. By Q we denote a sequestered stage
of antigen (parasite). We let Xi equal the number of
immune cells in the i-th generation, where i goes
from zero (for cells just recruited from the thymus)
to n which equals the Hayflick limit. We let A(P),
S(P) and d, respectively, represent the rate of
recruitment of cells from the thymus, the rate of
proliferation of cells and the death rate of these cells.
We note that both the rate of recruitment of cells
from the thymus and the rate of proliferation of cells
will be functions of the antigen density P, and that
the latter is independent of the ‘‘age’’ of the cells.
The relative magnitudes of these variables (capital-
ized) and parameters (lower case) of the model are
described in Table 1. With these definitions and
assumptions we can write the following equations
for the density of immune cells of the various
generations.

dX0

dt
=A(P)−S(P)X0 −dX0,

dXi

dt
=2S(P)Xi−1 −S(P)Xi −dXi ,

for i=1, . . . , n. (1)

Adding up all equations in (1) we obtain

dX
dt

=
d
dt

s
n

i=0

Xi =A(P)+S(P)(X−2Xn )−dX. (2)

     

We first determine the age distribution and total
immune response which will be obtained at a

Pignolo (1993) for a review]. However, the Hayflick
limit may have additional, shorter term consequences
for antigen-specific immune cells which proliferate to
large numbers following stimulation by specific-anti-
gen. For example, immune cells undergoing rapid
proliferation can have an average division time of
about 1 day and will consequently attain a Hayflick
limit of n=20 to n=30 within as many days. The
principle factors which govern the effect of the
Hayflick limit on the dynamics of antigen-specific
cells are (i) the rate of recruitment of ‘‘naive’’ or new
cells from the thymus, (ii) the rate at which they
proliferate in response to antigen, and (iii) the rate at
which they die, either as a consequence of a
background death rate or as a consequence of
reaching the Hayflick limit (Antia et al., 1996). In
this paper we develop simple mathematical models
to help us examine the impact of these processes on
the dynamics of T-cells. The mathematical formalism
which we develop can be applied to any process with
birth, death and aging where the input of ‘‘young’’ or
new cells immigrate from an external source, and
where the age of both daughter cells equals that of the
parent plus one, and where there is a Hayflick limit
which governs aging.

Models and Results

In the ODE model described below we employ a
system where we keep track of the subpopulations
of cells in each age class (age being defined in terms
of generation number ranging from zero for
immigrant cells to the Hayflick limit). On division
a cell leaves its age class and forms two daughter
cells in the subsequent age class. In the Appendix
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T 1
Description of variables and parameters

Parameter or
variable Description Range

P density of antigen or parasite we scale P(0)=1
Q density of antigen at sequestered stage we set Q(0)=0
X total number of immune cells specific for antigen P
Xi number of immune cells in the i-th generation
n Hayflick limit 15–30, 20 in simulations
A(P) rate of immigration from the thymus 0 to 1.0 depending on P
S(P) replication rate of immune cells 0 to 1.0 depending on P
d natural death rate of immune cells 0.1 unless otherwise specified
r rate of growth of antigen/parasite 0.5 to 2.0, 1.0 in simulations
h rate of killing of parasite by immunity h�X(0); 10−3 in simulations
k parasite density for 1/2 max. proliferation rate k�P(0); 103 in simulations
s maximum growth rate of immune cells 1.0 in simulations
a1 maximum input from thymus 1.0 in simulations
a2 parasite density for 1/2 max. input from the thymus a2 small
e cell division rate in absence of parasite e�d, 0.01 in simulations
f, g migration rates between stages P and Q both 0.1 in simulations

steady state. The age distribution for the immune cells
is obtained by setting the dXi /dt=0.

X0 =
A(P)

S(P)+ d
,

X1 =
2S(P)X0

S(P)+ d
=0 2S(P)

S(P)+ d1 A(P)
S(P)+ d

,

and in general

Xi =0 2S(P)
S(P)+ d1

i A(P)
S(P)+ d

for i=0, . . . , n. (3)

As the density of antigen increases, T-cells rapidly
proliferate, and leave the ‘‘naive’’ compartment thus
reducing X0. The number of T-cells in the i-th
generation equals that in the preceding generation
multiplied by a constant which increases with the
rate of proliferation of immune cells and decreases
with the death rate of these cells. This is illustrated
in Fig. 2. In the Appendix we show that if the
antigen density P is kept at a constant level, X
approaches its asymptotic state at an exponential
rate.

     

The total number of immune cells X at equilibrium
equals the sum of the numbers of immune cells in all
generations.

X= s
n

i=0

Xi = s
n

i=0 0 2S(P)
S(P)+ d1

i A(P)
S(P)+ d

Using the formula for the sum of a geometric series
we arrive at

X=0 A(P)
S(P)− d100 2S(P)

S(P)+ d1
n+1

−11
if S(P)$ d (4)

X= n0 A(P)
S(P)+ d1 if S(P)= d (4')

We note that at equilibrium the total density of
immune cells increases linearly with increasing input
from the thymus, increases approximately exponen-
tially with increasing Hayflick number, and decreases
with increasing death rate [Fig. 3(a)].

In general, the total density of immune cells as a

F. 2. If the level of T-cell proliferation S, and immigration, A are
maintained constant then a unique stable age distribution is
obtained. In the figure we plot the steady-state age distribution
obtained from eqn (3) with A=0.1, d=0.1 and S=1, 0.2, 0.08
respectively. We note that as the proliferation increases the number
of immune cells in the naive class decreases due to more rapid
migration of cells out from this class.
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F. 3. The total immune response X is a function of the Hayflick
number, n, the input from the thymus, A, the proliferation of the
T-cells S, and the background death rate d. We plot the log of the
total density X as a function of: (a) Hayflick number n with
A=0.1, S=0.5 and d=0.1, 0.2, 0.3, 0.4; (b) proliferation rate
S(P) with A=0.1 and d=0.1. In biologically reasonable region
of parameters (SQ 1 and ne 20), log(X) increases with S(P), but
for low n and high S(P) as in (c), we observe a decline in log(X),
reminiscent of ‘‘high-zone’’ tolerance.

zero to the Hayflick limit n. However, we note that
this drop is probably not observed in biologically
reasonable parameter space (S(P)Q 1.0; nq 15) and
in a more reasonable parameter regime the total
number of immune cells varies in a sigmoid way with
their rate of proliferation [Fig. 3(b)].

     

  

We now introduce specific functions to describe
how the rate proliferation of cells and the rate of
input of cells from the thymus varies with the density
of antigen, P. As a first approximation we let S(P) be
a monotone increasing function of P saturating at the
maximum rate of growth of immune cells. We use a
modified Monod-type function

S(P)= e+
sP

k+P
(5)

with a small additive term eq 0 which accounts for
random proliferation of immune cells in the absence
of parasite/antigen [Fig. 4(a)]. Note that eQ d, and in

F. 4. We describe the dose response for proliferation of immune
cells S(P) and the input from the thymus A(P) as functions of the
density of antigen or parasite, P. (a) Plot of S(P) with e=0.01; (b)
Plot of A(P) with a1 =1.0, a2 =200, and m=3, 7, 20.

function of proliferation rate has a maximum at
intermediate values of S(P) [Fig. 3(c)]. The initial
increase in number of immune cells with increasing
stimulation is intuitive, (stimulation is required for
cell proliferation). The subsequent decline at very
high rates of proliferation is due to the decreased
transit time of these cells through generations from
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the absence of antigen there will be A/(e+ d) cells in
the ‘‘naive’’ compartment i.e. with i=0. As the
density of antigen increases, T-cells specific for this
antigen will be deleted in the thymus (Kappler et al.,
1987), and we would expect A(P) to be a monotone
decreasing function of the antigen density. At present,
it is not known whether this function looks like a step
function with a threshold parasite density above
which input from the thymus falls to very low values
or whether it is more gently sloping. In the absence
of quantitative data we have as a first approximation
used Hill functions of different orders m. By varying
m we can approximate both these extremes. As
illustrated in Fig. 4(b) when m increases the function
A(P) becomes closer to a step function.

A(P)= a1 −0 a1Pm

am
2 +Pm1 (6)

In the above formula, a1 is the maximum input from
the thymus, and a2 is the antigen density at which the
input from the thymus is reduced in half. Qualitative
description of thymic deletion (Miller, 1992) showing
that even with barely detectable levels of antigen the
input from the thymus is greatly reduced suggests that
the constant a2 is comparably small.

    

We now determine the immune response to
different antigen densities. If, in fact, immune
memory arises from the persistence of antigen, then
this will tell us how the magnitude of immune
memory changes with the concentration of antigen.
In Fig. 5 we plot the magnitude of the immune
response as a function of antigen density, obtained by
substituting eqns (5) and (6) for S(P) and A(P) into

(4). We find that the immune response attains its
maximum at an intermediate density of antigen, and
the immune response is low when the level of antigen
increases beyond that density. The decline in the
immune response when the density of antigen is high
requires both the drop in immigration of cells from
the thymus as well as the Hayflick limit for cells in the
periphery. Either of these processes considered
separately will not give rise to this result. If there is
no Hayflick limit, then input from the thymus is
relatively small compared to the density of cells in the
periphery, and since the cells can divide indefinitely,
lowering or even completely stopping the input from
the thymus will only give rise to very slight changes
in the total density of immune cells. On the other
hand, if the input from the thymus is constant, then
the total density of the immune cells will vary in a
sigmoid way with the density of antigen.

     

()

We now consider immune response to a rapidly
replicating micro-parasite with a dormant or se-
questered stage. We do so by assuming that in the
absence of the antigen-specific immune response the
growth of the parasite is governed by the growth rate
r, and that h equals the rate of the control of the
parasite by the immune cells. We then have equations
for the rate of change in the density of immune cells
and parasite as

dP
dt

= rP− hPX− fP+ gQ (7)

dQ
dt

= fP− gQ (8)

and from (2)

dX
dt

=A(P)+S(P)(X−2Xn )− dX.

Q here represents the level of the micro-parasite at
a conceivable dormant stage. At a steady state we
have

dQ
dt

=0, Q=
f
g

P (9)

dP
dt

=0, X=
r
h

(10)

dX
dt

=0, X=0 A(P)
S(P)− d100 2S(P)

S(P)+ d1
n+1

−11 (11)

what we already derived in (4).

F. 5. Using the dose respnse functions for proliferation and input
from the thymus described in Fig. 4 we plot the total immune
response X as a function of antigen density with m=3, d=0.1,
e=0.01, s=1.0 and k=103.
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In order for parasite and immune response to be at
an equilibrium the two isoclines given by dP/dt=0
and dX/dt=0 must intersect. When they do intersect
we see that there are at most two possible steady
states corresponding to low and high levels of
parasite. Points of intersection of these isoclines are
given by

r
h

=0 A(P)
S(P)− d100 2S(P)

S(P)+ d1
n+1

−11 (12)

Here A(P) and S(P) are defined by eqns (5) and (6).
The intersection of the isoclines for particular
parameter values is shown in Fig. 6.

In the Appendix we introduce a PDE model of the
Hayflick limit and provide similar analysis for the
PDE model as for steady-states, stability and
asymptotic dynamics.

Dynamics of Infection

In this section we investigate the effect of the
Hayflick limit on the dynamics of immune cells
following the introduction of a parasite (replicating
antigen). We do so by examining the outcome at short
times following infection (which would correspond to
the ‘‘acute’’ phase of the infection) and at longer times
during a persistent infection. Prior to the introduction
of a parasite there are relatively few specific immune
cells. During the initial acute phase of the infection we
do not expect the Hayflick limit to prevent the control
of the parasite. This can be seen if we note that the

intensity of the immune response required to control
the parasite is approximately r/h, which we would
estimate to be in the region of 102 to 104. A single
precursor cell can reach a density of 223 or
approximately 107 cells before the Hayflick limit is
reached. For a parasite in general we might expect
several clones specific for the different antigens on the
parasite and thus increase in the number of cells
available. The lack of an effect of introducing a
Hayflick limit on an ‘‘acute’’ infection is seen in
Fig. 7(a–d). We point out that for a short initial
period of time, the dynamics of infection (‘‘acute
phase’’) closely follows the pattern of the model
without the Hayflick limit. If the parasite is not driven
to extinction after the acute phase of the infection, we
might expect one of the following outcomes in the
long term: (i) the eventual elimination of the parasite,
(ii) a steady state between parasite and immunity, (iii)
limit cycle oscillations of parasite and immune
response, or (iv) escape of the parasite from immune
control. Our numerical simulations of the model
described above suggest that when the presence of a
sequestered stage prevented parasite extinction
following the initial acute phase of the infection the
parasite does not go extinct in the longer term.
However, the subsequent scenarios [i.e. outcomes (ii),
(iii) and (iv) above] may be attained. Which outcome
obtains depends on both the parameters and the
initial conditions. We now illustrate these outcomes
obtained by numerical simulations.

The numerical simulations reveal a possible
bifurcation that the model undergoes when the
parameter a2 changes from its high values to low
values. For high values of a2 such as 200, the system
has a stable steady state which loses its stability at
intermediate values of a2, and gives rise to an
asymptotically stable limit cycle ‘‘around’’ now
unstable steady state. When a2 is lowered yet further,
the unstable steady state is lost, but the limit cycle
persists. If a2 is lowered further, the limit cycle
becomes unstable, and the parasite gains the ability to
escape from the immune control. This bifurcation is
illustrated in Fig. 7(a–c).

In order to get a better feel for the age distribution
of T-cells during the dynamics observed in the
simulations described in Fig. 7(a–c) we plot the
age distributions of T-cells as a function of time
in Fig. 8(a–c).

Discussion

The Hayflick limit equals the maximum number of
cumulative doublings a cell population can undergo,
and is a property of many somatic cells including

F. 6. Plot of the isoclines for dX/dt=0 and dP/dt=0 as a
function of the antigen density for T-cell deletion in the thymus
(a2). Parameters, r=1.0, h=10−3, k=103, s=1.0, n=20,
d=0.1, a1 =1.0, m=3, a2 =100, 150, 200. When a2 =100 and
150 the isoclines for dX/dt=0 and dP/dt=0 do not intersect and
there is no steady state and the parasite cannot be controlled by
the immune response. When a2 =200 there are two steady states
corresponding to parasite densities of approximately 210 and 720
units. The former was numerically shown to be locally stable while
the latter was shown to be unstable.
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F. 7. Numerical simulations of the eqns (1–2) showing different outcomes of the infection course: (a) locally stable steady-state is reached,
infection is controlled by the immune system, a2 =200, X(0)=1, P(0)=1, Q(0)=0; (b) locally stable limit cycle is reached, infection
is controlled, a2 =100, X(0)=1, P(0)=1, Q(0)=0; (c) instability, parasite escape from the control, a2 =50, X(0)=1, P(0)=1, Q(0)=0;
(d) choosing different initial values in (c), it is possible to control the infection, a2 =50, X(0)=10, P(0)=10, Q(0)=0; (e) situation when
parasite escapes from the control, a counterpart to the outcome in (a), a2 =200, X(0)=1, P(0)=5·104, Q(0)=0. The rest of the parameters
are described in Table 1.

lymphocytes. In vitro culture experiments suggest that
the Hayflick limit of human T-cells is approximately
23 (see Introduction). On the molecular level the
Hayflick limit arises from progressive loss of
chromosome telomeres. The loss of telomeres is
prevented in the germ line and in hematopoeitic stem

cells by expression of the enzyme telomerase
(Cristofalo & Pignolo, 1993; Hiyama et al., 1995).
The level of telomerase is much lower in peripheral
blood lymphocytes and is found to be upregulated in
virally transformed lymphocytes such as those
propagated in long-term cell culture which are
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capable of indefinite proliferative capacity (Counter
et al., 1994).

In this paper we examine the consequences of the
Hayflick limit for the dynamics of expansion of
antigen-specific T-lymphocytes. We do so by con-
structing a simple model which incorporates the
following processes: input of ‘‘naive’’ cells from the
thymus, antigen-induced proliferation, and death by
two processes, namely at a fixed ‘‘background’’ rate
and when the cells reach the Hayflick limit. We show
that if the level of antigen is held constant the immune
response will attain a steady-state ‘‘age’’ distribution
with the total immune response obtaining a maximum
at intermediate antigen densities and falling to lower
levels at higher antigen densities. Two factors
contribute to the decline in number of antigen-specific
immune cells at high antigen densities; first, the input
of T-cells from the thymus is reduced (due to clonal
deletion), and second, immune cells progress more
rapidly towards the Hayflick limit. When a replicating
parasite is introduced, we find that although the early
dynamics are not altered by the presence of the
Hayflick limit, in the long term (i.e. in the case of a
persistent infection) the dynamics of parasite and
immune response can be relatively complex, allowing
for stable fixed points, limit cycle behavior, and loss
of control of the parasite. Furthermore, the final
outcome is now dependent on both the parameters
and the initial conditions which can determine
whether the parasite densities cycle over time, or are
controlled at a steady state, or the parasite escapes
from control.

These results suggest that the inclusion of a
Hayflick limit does not introduce a quantitative
change for acute infections which are cleared by the
immune response. However, the Hayflick limit may
have a major impact on persistent infections, a
situation which will obtain if the immune response
does not drive the parasite to extinction, namely when
there is a dormant stage, limitation on T-cell
proliferation (De Boer & Perelson, 1994, 1995), or
antigenic variation. We note that the Hayflick limit is
an addition to the numerous mechanisms of immune
suppression which include: an additional population
of suppressor cells (Kaufman et al., 1985), idiotypic
networks between immune cells (Jerne, 1974; De Boer
& Hogeweg, 1989), adaptive cellular interactions

F. 8. Dynamics of age-distribution of T-cells in eqns (1–2)
corresponding to the outcomes (a, b, c) in Fig. 7: (a) locally stable
steady state is reached, infection is controlled by the immune system,
a2 =200, X(0)=1, P(0)=1, Q(0)=0; (b) locally stable limit cycle
is reached, infection is controlled, a2 =100, X(0)=1, P(0)=1,
Q(0)=0; (c) instability, parasite escape from the control, a2 =50,
X(0)=1, P(0)=1, Q(0)=0.
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(Grossman & Paul, 1992), the shape of the
T-cell-antigen dose response (McLean & Kirkwood,
1990; Schweitzer & Anderson, 1992; Swinton et al.,
1994), cross-regulation between Th1 and Th2
responses (Mosmann & Sad, 1996; Fishman &
Perelson, 1994).

In the subsequent section we discuss the impli-
cations of this model for disease, and possible ways
it can be experimentally tested. We also describe some
of the caveats and limitations of the current models,
outline some refinements, and suggest directions for
future studies.

  

As mentioned above, the model has implications
for persistent infections. We briefly consider the
implications of a Hayflick limit for following three
persistent infections: mycobacterial infections such as
TB and leprosy, HIV, as well as for the immunity
induced by live recombinant vaccines.

Mycobacteria causing tuberculosis and leprosy
grow very slowly in the host and can remain
dormant, sequestered in long-lived macrophages, in
which they can also replicate. Both these mechan-
isms may contribute to the long-term persistence of
mycobacteria within their hosts. Another feature of
infection is that early control of the infection can be
followed by later escape from control. This has led
to the suggestion that the loss of control may be
associated with the parasite specific immune cells
reaching the Hayflick limit (Antia et al., 1996). An
alternative (but not necessarily mutually exclusive)
explanation is that an initially dominant Th1
response capable of controlling the parasite is lost at
a later time due to the generation of a Th2
associated response which is characteristic of disease
(Salgame et al., 1991; Bloom et al., 1992; Flynn
et al., 1993). We are currently using mathematical
models to investigate how these processes may
interact to give rise to the dynamics observed during
infection.

The Hayflick limit may also play an important role
in AIDS pathogenesis. Infection with HIV is followed
by a long and persistent ‘‘asymptomatic period’’
during which the infecting agent (‘‘parasite’’) persists
at high densities. Studies of viral density changes
following anti-viral drug treatment suggest that HIV
replicates very rapidly in AIDS patients (Ho et al.,
1995; Wei et al., 1995; Perelson et al., 1996). HIV may
also reduce the rate at which naive T-cells immigrate
into the body by destroying thymic tissues (Grody
et al., 1985; Miller, 1992). These conditions may cause
immune cells to reach their Hayflick limit more
rapidly than in uninfected individuals. Support for

this mechanism of HIV pathogenesis comes from a
recent study by Effros et al. (1996) that reveals greatly
shortened telomeres in CD28− CD8+ T-cells taken
from HIV patients. CD28− CD8+ T-cells expand
considerably during HIV infection (Saukkonen et al.,
1993; Kammerer et al., 1996) and have been shown
to display HIV-specific cytotoxic activity (Vinger-
hoets et al., 1995; Dalod et al., 1996; Fiorentino et al.,
1996). At this point it is not clear whether or not
telomere lengths also decrease in CD4+ T-cells over
the course of HIV-infection (Cohen, 1996; Effros
et al., 1996). Further experimental research should
shed more light on the aging of both CD8+ and
CD4+ populations during HIV infection.

Our conjecture that the intensity of the immune
response to a persistent antigen is maximized at
intermediate antigen levels (Fig. 6) has consequences
for design and use of live recombinant vaccines.
Recombinant vaccine could be constructed by
inserting multiple antigens into a live vector such as
the vaccinia virus or BCG (Perkus et al., 1985; Stover
et al., 1991; Andino et al., 1994). In accord with our
results it will be important to find the proper
(intermediate) level of expression of these proteins
since too high a level of expression could eventually
push T-cell lineages beyond their Hayflick limit and,
thus, either reduce the immune response to that
protein, or even prevent future responsiveness to that
protein.

   

First we note that the central assumption of our
model is based on experiments demonstrating the
Hayflick limit for T-cells, which in turn is based on
both direct measurements of the Hayflick limit for
proliferating T-cells in vitro, and indirect observations
of the length of telomeres in vivo. We have briefly
reviewed this literature in the introduction, as well as
in the beginning of this section. We now mention
several predictions the model generates which make it
amenable to experimental tests.

One way to test the model would be to determine
the immune response to a fixed amount of antigen. In
accord with this model the immune response would be
maximum at intermediate antigen doses, and decline
at both lower and higher antigen doses. Furthermore,
analysis of the age distribution of antigen-specific
immune (by looking at telomere lengths) should
show age profiles similar to those in Fig. 6 as the
density of antigen and thus immune proliferation is
increased.

The relevance of the Hayflick limit during
persistent infections is also amenable to empirical
tests. If the Hayflick limit plays a dominant role in the
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generation of disease following infection with
mycobacteria such as Mycobacterium leprae and M.
tuberculosis, then progression to disease might be
expected to be accompanied by two phenomena: the
aging of the dominant antigen-specific T-cell lineage
with time, followed by the loss of this lineage.

, , ,  



We have used simple deterministic models to
describe the dynamics of antigen and the immune
response. These models have the usual limitations in
that they assume that the immune system is a
‘‘well-mixed vessel’’, and ignore both spatial and
stochastic effects. The following assumptions com-
mon to many models are worthwhile to mention:
(i) We have used a simple saturating function to
describe the antigen-driven immune proliferation
e+ sP/(k+P). While this is in accord with clonal
expansion of immune cells in an antigen-dependent
manner, it is only a rough approximation. However,
by changing this to other commonly used terms such
as sP, and sXP we still obtain similar qualitative
behavior suggesting that our results are fairly robust.
For simplicity we have considered a population of
T-cells, and assumed that the efficacy of the immune
response is proportional to this population. Further
work also needs to be done to incorporate more
complex immune response functions (Schweitzer &
Anderson, 1992; McLean, 1994; De Boer & Perelson,
1995). (ii) We have used a simple product term to
describe the control of parasite by immunity hXP.
However, in some cases such as for cell mediated
responses this term may be expected to saturate. Once
again, provided the saturation is high many of the
quantitative features of the models remain intact.
(iii) While it is clear that the input from the thymus
is a decreasing function of antigen concentration, the
quantitative aspects of thymic deletion probably vary
for different antigens dependent on how easily they
access the thymus, and how well they are presented on
the MHC. For this reason we used a function whose
shape we could vary from steep to gently sloping.
(iv) We have structured T-cells by the number of
divisions they have undergone but assumed that all
cells, prior to reaching the Hayflick, are identically
‘‘naive’’. More complex models will be required to
take into account differences in the rate of aging of
naive and activated cells (Weng et al., 1995). (vi) We
have assumed the parasite is equivalent to a single
antigen. In reality a parasite is composed of multiple
antigens, and ‘‘competition’’ between the immune
responses to these antigens may need to be considered
(De Boer & Perelson, 1994; Nowak et al., 1995).

In conclusion we note that the value of this simple
model is to explore the type of behavior which may
be generated if T-cell proliferation is restricted by a
Hayflick limit, and is not intended to generate precise
numerical results. More complex interactions can be
added stepwise. One particularly exciting addition
which we are currently considering is competition
between the immune responses to multiple parasite
antigens. This may be relevant to the dynamics of
immune responses to mycobacterial infections where
competition between Th1 and Th2 responses may
play an important role during infection. Another area
of interest is to explore the effect of the Hayflick limit
on the immune repertoire, and how it changes with
aging, as well as during HIV infection.

This work was supported by NIH grant R29 GM54269
(R.A.).
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APPENDIX

In order to simplify the analysis of the model we
introduce an alternative partial differential equation
(PDE). In so doing, we seek a PDE resembling the
introduced system of ODE’s.

For the PDE model we assume that the age of
T-cells is a continuous variable that varies from 0 for
naive cells to l for those cells having reached the
Hayflick Limit. The discrete ages similar to successive
generations can be incorporated in this model by
dividing the interval [0, 1] into n subintervals each
corresponding to a single generation. For instance,
the generation Xi will correspond to the age
distribution over the interval [i/n, i+1/n]. Let now
U(t, a) be the age distribution of T-cells, that is the
density of T-cells of age a at time t. Note, that we still
keep the well-mixedness hypothesis for both T-cell
and parasite populations. A continuous analogue of
the total immune response X would be

X(t)= n ·g
1

0

U(t, a)da. (A.1)

So, we have the following integro-differential
equation for the evolution of P and an ODE
for Q:

dP
dt

=P0r− hn ·g
1

0

U(t, a)da1−fP+ gQ, (A.2)
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dQ
dt

= fP− gQ. (A.3)

In order to set up the equation for U(t, a) we
rewrite eqn (1) as

dXi

dt
=2S(P)(Xi−1 −Xi )+ (S(P)− d)Xi ,

and replace the first term on the r.h.s. by

−2S(P)(U0t, a−
1
n1−U(t, a))

=−2S(P)Ua (t, a)
1
n
,

naturally assuming the distance between Xi−1

and Xi being 1/n, and n being large enough to give
a good approximation. Thus, we arrive at the
following PDE:

1

1t
U(t, a)=

−2S(P)
n

1

1a
U(t, a)+ (S(P)− d)U(t, a)

for 0Q aE 1, 0E tQa. (A.4)

The differential equation for X0 suggests the form
of the boundary condition at the age a=0. The rate
at which newborn cells (naive cells) are being
introduced to the system is A(P), now these cells die
at a rate d and are stimulated and move into the
subsequent age class (thus, away from a=0) at a rate
S(P). These three facts put together comprise the
following equation at a=0:

1

1t
U+dU+S(P)U=A(P),

for a=0, 0E tQa. (A.5)

Leaving out the standard question of existence and
uniqueness for the solutions to the system (A.2–A.5)
which couples a first order hyperbolic PDE with an
integro-differential equation and an ODE, we look
for the steady states of this system. Since at a steady
state the T-cell distribution U is a function of a single
variable a, we will denote it as U(a). There are two
different situations: P=0 and P$ 0.

If P=0, eqns (A.2–A.3) are satisfied whenever
Q=0. For eqn (A.4) one has

0=
−2e

n
1

1a
U(a)+ (e− d)U(a),

which can be solved directly using the boundary
condition (A.5) which reads now (e+ d)U(0)=A(0).
The solution is given by the following formula:

U(a)=
A(0)
e+ d

e
n(e− d)

2e
a for 0E aE 1.

Again we point out that since e�d, the steady-state
distribution is an exponentially decreasing function of
the age a. Note that this steady state always exists for
all values of parameters in A(P) and S(P).

If P$ 0 we can always find the steady state
distribution for Q= f/gP and for U which is given by
the formula

U(a)=
A(P)

S(P)+ d
e

n(S(P− d)

2S(P)
a for 0E aE 1.

To satisfy eqn (A.2) we equate r= h ·X. X given by
the eqn (A.1) can be calculated as:

X= ng
1

0

A(P)
S(P)+ d

e
n(S(P− d)

2S(P)
a·da

=
2A(P)S(P)

(S(P)+ d)(S(P)− d) 0e
(S(P)− d)

2S(P) − 11 (A.6)

if S(P)$ d. However, if S(P)= d, then U(a)0U(0)
and

X(P)=
nA(P)

S(P)+ d
= lim

P : S−1(d)
X(P), (A.6')

so X(P) is a continuous function of P, differentiable
away from P=S−1(d). Now for a steady state to exist
one must be able to find such a value of P that
X=X(P)= r/h. We follow the steps similar to those
in investigating the existence of nontrivial equilibria
for the ODE model.

At this point we turn to the description of the
dynamics generated by the eqns (A.2–A.5). The
advantage we have is that the PDE was created in
such a way that it yields the original system of ODE
for Hayflick limit when solved by method of lines with
the number of grid points equal exactly to n. Thus,
we do not present the numerical results for the PDE
model here. Rather we investigate what would
happen if the parasite level were constant. The
solution U(t, a) would be presented by means of the
explicit formula:

U(t, a)= e(S− d)t·U00, a−
2S
n

t1,
for a−

2S
n

te 0, (A.7)

U(t, a)= e(S− d)
an

2S0e−0t−
an

2S1·U(0, 0)

+
A

S+ d 01−e−0t−
an

2S11 for a−
2S
n

tE 0, (A.7')
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where S=S(P) and A=A(P) are evaluated at the
fixed level of parasite density P. This solution
(A.7–A.7') is found by integration along character-
istics of (A.2–A.5), that is along straight lines
a=2S/nt+Const.

We would like to point out several useful properties
of the above equations. First of all, as time goes past
n/2e where e is the minimal possible value of S(P), the
solution depends exclusively upon its value at (0, 0),
that is U(0, 0). Second, for t sufficiently large

(t : +a) the solution is given by the formula (A.7'),
and therefore its limit is calculated as

U(a)=
A(P)

S(P)+ d
e

n(S(P)− d)

2S(P)
a.

Thus, we expect the T-cell distribution to reach a
certain asymptotic distribution, different for each
value of P. Third, given a parasite density P, the time
required for T-cells to reach the Hayflick limit can be
estimated as t= n/2S(P).


