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Abstract

The growth of mixed microbial cultures on mixtures of substrates is a problem of fundamental biological interest. In the last two

decades, several unstructured models of mixed-substrate growth have been studied. It is well known, however, that the growth

patterns in mixed-substrate environments are dictated by the enzymes that catalyse the transport of substrates into the cell. We have

shown previously that a model taking due account of transport enzymes captures and explains all the observed patterns of growth of

a single species on two substitutable substrates (J. Theor. Biol. 190 (1998) 241). Here, we extend the model to study the steady states

of growth of two species on two substitutable substrates. The model is analysed to determine the conditions for existence and

stability of the various steady states. Simulations are performed to determine the flow rates and feed concentrations at which both

species coexist. We show that if the interaction between the two species is purely competitive, then at any given flow rate, coexistence

is possible only if the ratio of the two feed concentrations lies within a certain interval; excessive supply of either one of the two

substrates leads to annihilation of one of the species. This result simplifies the construction of the operating diagram for purely

competing species. This is because the two-dimensional surface that bounds the flow rates and feed concentrations at which both

species coexist has a particularly simple geometry: It is completely determined by only two coordinates, the flow rate and the ratio of

the two feed concentrations. We also study commensalistic interactions between the two species by assuming that one of the species

excretes a product that can support the growth of the other species. We show that such interactions enhance the coexistence region.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The growth of mixed cultures on mixtures of
substrates is a phenomenon of considerable practical
and theoretical interest. A fundamental understanding
of this problem has repercussions for
* Food processing: Cheese is manufactured by mixtures
of Streptococci and Lactobacilli, and yogurt is the
product of Lactobacillus bulgaricus and Streptococcus

thermophilus. The production of sauerkraut, beer,
wine, and vinegar also depends on mixed-culture
systems (Harrison and Wren, 1976).
ing author. Tel.: +1-352-392-0028; fax: +1-352-392-
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* Production of ethanol from renewable resources: The
feedstock for production of fuel-grade ethanol from
plants consists of two streams derived from the
cellulosic and the hemicellulosic fractions of ligno-
cellulose. The cellulosic stream consists of hexoses;
the hemicellulosic stream contains a mixture of
pentoses and hexoses. In the current process, each
of these streams is fermented separately by distinct
recombinant strains. To make this process economic-
ally viable, it would be desirable to carry out both
fermentations in a single reactor (Ingram et al., 1999).

* Bioremediation: Xenobiotic contaminants degrade
faster if they are attacked by microbial consortia,
rather than pure species.

The problem also has profound implications for
microbial ecology. Early studies were concerned with
the growth of multiple species on a single
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growth-limiting substrate that is being fed at a constant
rate into a well-stirred chemostat. It was shown both
theoretically and experimentally that under these con-
ditions, no more than one of the species survives,
regardless of the dilution rate and the feed concentration
of the growth-limiting substrate (Aris and Humphrey,
1977; Hansen and Hubbell, 1980; Powell, 1958). This
result is in sharp contrast to what is observed in Nature.
In large bodies of water, many phytoplankton species
coexist, an observation referred to as the ‘‘paradox of
the plankton’’ (Hutchinson, 1961). To resolve this
paradox, the basic assumptions of the early studies
have been questioned (Fredrickson and Stephanopou-
los, 1981). It has been argued that in Nature

* the supply of nutrients is not constant;
* the nutrients are not homogeneously distributed;
* multiple growth-limiting substrates are present in the

environment.

Thus, the problem of mixed-culture growth on mixtures
of substrates has attracted considerable interest as one
possible resolution of the paradox of the plankton. This
initial interest culminated in two seminal papers which
recognized that in the presence of multiple growth-
limiting substrates, it is important to specify the
nutritional requirements satisfied by the substrates
(Le !on and Tumpson, 1975; Tilman, 1977). Thus, two
growth-limiting substrates are substitutable if they
satisfy identical nutritional requirements, so that growth
persists in the absence of either one of the substrates.
The two substrates are complementary if they satisfy
distinct nutritional requirements, so that growth is
impossible in the absence of either one of the substrates.
For example, during so-called heterotrophic growth of
microbes, glucose and galactose would be considered
substitutable since both function as carbon and energy
sources, but glucose and ammonia would be comple-
mentary since glucose is a carbon source, whereas
ammonia is a nitrogen source. In both studies,
unstructured models of mixed-culture growth on sub-
stitutable and complementary mixtures of substrates
were formulated, and necessary conditions for coex-
istence of the species were derived. But the use of
unstructured models ignores the fact that uptake of
substrates is regulated by the activity and level of the
transport enzymes. In mixtures of substitutable sub-
strates, this regulation often leads to preferential
utilization of only one of the substrates (Egli 1995;
Harder and Dijkhuizen, 1976; 1982). It seems desirable
then to study the problem of mixed-culture growth on
mixtures of substrates with the help of a structured
model that takes due account of the transport enzymes
and their regulation. In earlier work, we formulated
such a model for the growth of a single species on
mixtures of substitutable substrates, and showed that it
captures and explains all the experimental data in the
literature (Narang et al., 1997; Narang, 1998a,b). Here,
we extend this model to study the growth of two species
on a mixture of two substitutable substrates.

Despite the importance of the problem, review articles
show that the experimental data are sparse (Fredrick-
son, 1977; Gottschal, 1986, 1993). This reflects the
difficulty of measuring the population densities of
multiple species. In the past, this was done by exploiting
morphological differences between the species, or by
selective plating techniques in which inhibitors are
added to block the growth of all but one of the species.
These methods are tedious and prone to error. Recent
developments in flow cytometry and 16S RNA-based
probes permit quick and accurate measurements of
multiple population densities (Porter and Pickup, 2000).
These technological advances are likely to foster
rapid growth of the experimental literature on mixed
cultures (for recent applications, see Muller et al.,
2000; Rogers et al., 2000). The goal of this paper is to
submit conclusions derived from a structured model that
can be subjected to the test of these experiments. We
shall be concerned, in particular, with the following
questions

1. What are the flow rates and feed concentrations of
the two substitutable substrates at which both species
coexist?

2. How is their coexistence affected if one of the species
excretes a product that influences the growth of the
other species?

The first question is the crux of the ecological problem
referred to above. The second question is important
because pure competition between species is an idealiza-
tion that is difficult to realize in practice. Most microbial
species excrete metabolic products that can stimulate
or inhibit the specific growth rate of the other species;
this results in the establishment of commensalistic or
amensalistic, rather than competitive, interactions
(Fredrickson and Tsuchiya, 1977). It is, therefore, of
practical interest to assess the effect of excretion on the
phenomenon of coexistence.

The paper is organized as follows. In Section 2, we
extend our earlier model of mixed-substrate growth to
mixed cultures. In Section 3, we compute the operating
diagram delineating the region of the parameter space in
which coexistence is feasible (Pavlou and Fredrickson,
1989). This is done for two types of inter-specific
interactions—pure competition and commensalism.
Finally, the conclusions are summarized in Section 4.
The key results are as follows:
1.
 If the interaction between the two species is purely
competitive, then:

(a)
 At any given flow rate, coexistence is possible

only if the ratio of the two feed concentrations
lies within a certain interval. Excessive supply
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of either one of the two substrates results in
extinction of one of the species.
(b)
 The operating diagram delineating the flow rate
and feed concentrations at which the two
species coexist has a particularly simple
geometry.
2.
 If, however, one of the species excretes a product
that can support the growth of the other species, the
coexistence region is significantly enhanced.
2. Model

The kinetic scheme of our model is shown in Fig. 1.
As a notational convention for the rest of the paper, the
index i will denote the species number, and the index j

will denote the substrate number. Thus, Ci denotes
the ith species, Sj denotes the jth substrate, Eij denotes
the ‘‘lumped’’ system of inducible enzymes catalysing
the uptake and peripheral catabolism of Sj by Ci; Xij

denotes the inducer for Eij ; and C�
i denotes all

intracellular constituents in the ith species, except Eij

and Xij : The concentrations of these entities are denoted
by the lower-case letters ci; sj ; eij ; xij ; and c�i : Here, ci

and sj are based on the volume of the chemostat, and
expressed in the units gdw/l and g/l, respectively; the
remaining variables, xij ; eij and c�i are based on the dry
weight of the biomass, and expressed in the units g/gdw.
The yield, denoted Yij ; is the fraction of Xij that is
converted into C�

i ; the remainder, 1� Yij ; is expelled
into the environment as carbon dioxide or partially
oxidized excretory products.

The following assumptions are made regarding the
kinetics of the various processes:
S

S
E

X
E

X

2

1
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12
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C1

1C
-

11

etic scheme of the model. Here, C1 and C2 denote the two specie

nzyme of the ith species for the jth substrate, Xij denotes the induc
1. The specific uptake rate of the jth substrate by the ith
species, denoted rs

ij ; satisfies the kinetic law

rs
ij � Vs

ijeij

sj

Ks
ij þ sj

:

2. The specific rate of breakdown of Xij into energy and
C�

i ; denoted rx
ij ; is given by

rx
ij � kx

ijxij :

3. The yield, Yij ; is a fixed ‘‘stoichiometric’’ coefficient.
That is, the rates of non-biosynthetic processes, such
as overflow metabolism, energy spillage, and main-
tenance, are proportional to the biosynthetic rate.

4. The specific rate of inducible enzyme synthesis,
denoted re

ij ; is hyperbolic with respect to xij:

re
ij � Ve

ij

xij

Ke
ij þ xij

:

5. The specific rate of constitutive enzyme synthesis,
denoted r�ij ; is constant:

r�ij � k�ij ;

where k�ij denotes the zeroth-order rate constant.
6. The specific rate of enzyme degradation, denoted rd

ij ;
follows first-order kinetics

rd
ij � kd

ijeij :

A mass balance on the state variables yields

dsj

dt
¼ Dðs f

j � sjÞ � rs
1jc1 � rs

2jc2; ð1Þ
E

X

X

E

22

- 

C2

22

21

2

21

C

s competing for the substitutable substrates, S1 and S2; Eij denotes the

er for Eij ; and C�
i denotes all intracellular components of Ci; except Eij
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dxij

dt
¼ rs

ij � rx
ij � D þ

1

ci

dci

dt

� �
xij ; ð2Þ

deij

dt
¼ re

ij þ r�ij � rd
ij � D þ

1

ci

dci

dt

� �
eij ; ð3Þ

dc�i
dt

¼
X2
j¼1

ðYijr
x
ij þ rd

ij � re
ij � r�ij Þ � D þ

1

ci

dci

dt

� �
c�i ; ð4Þ

where s
f

j denotes the concentration of Sj in the feed, and
D denotes the dilution rate. The last terms in Eqs. (2)–
(4) represent the loss of Xij ; Eij ; and C�

i ; respectively,
due to flow out of the chemostat and dilution by growth.
It is shown in Appendix A that for all but a negligibly
small initial time interval, Eqs. (2)–(4) are well approxi-
mated by the equations

dsj

dt
¼ Dðs f

j � sjÞ � rs
1jc1 � rs

2jc2; ð5Þ

deij

dt
¼ Ve

ij

eijsij

%Ke
ij þ eijsij

þ k�ij � kd
ijeij � r

g
i eij ; ð6Þ

dci

dt
¼ ðrg

i � DÞci; ð7Þ

where

%Ke
ij �

Ke
ijk

x
ij

V s
ij

; sij �
sj

Ks
ij þ sj

and r
g
i ; the specific growth rate of the ith species, is given

by

r
g
i � Yi1r

s
i1 þ Yi2rs

i2 ¼ Yi1Vs
i1ei1si1 þ Yi2Vs

i2ei2si2:

This is an eight-dimensional system with three control
parameters of interest, namely, the dilution rate, D; and
the two feed concentrations, s

f
1 and s

f
2 :

Evidently, the model admits four types of steady
states, which are as follows:
1.
Table

Param

Vs
11 ¼

Ks
11 ¼

Ve
11 ¼
%Ke
11 ¼

kd
11 ¼

k�11 ¼
Y11 ¼

The o

subst

rates

Secti
The trivial steady state, characterized by c1 ¼
c2 ¼ 0; denoted by f00:
2.
 The semitrivial steady states, where exactly one cell
density is nonzero:

(a)
1

eter

1000

0:01
0:00
0:00
0:01
10�2

0:41

rders

rate m

of C2

on 3.4
f10 characterized by c1 > 0; c2 ¼ 0;

(b)
 f01 characterized by c1 ¼ 0; c2 > 0:
values used in the simulations

Vs
12 ¼ 1000 V s

21 ¼ 1000

Ks
12 ¼ 0:01 Ks

21 ¼ 0:01
25 Ve

12 ¼ 0:0020 V e
21 ¼ 0:0006

17 %Ke
12 ¼ 0:0032 %Ke

21 ¼ 0:0013
kd
12 ¼ 0:01 kd

21 ¼ 0:01
Ve

11 k�12 ¼ 10�2 V e
12 k�21 ¼ 10�2 Ve

21

Y12 ¼ 0:24 Y21 ¼ 0:35

of magnitude of the parameters were estimated as shown in Appe

aximum specific growth rates of C1 on S1 and S2 were 0.73 and 0

on S1; S2; and S3 were 0.30, 0.60, and 0:36 1=h; respectively. H
for details).
3.
ndix

:41 1=
ere, S
And the nontrivial, or coexistence, steady state with
both c1 > 0; c2 > 0; denoted by f11:
For a more detailed anaylsis of the properties of the
four types of steady states, see Appendixes A–D.
Hereafter, we shall be concerned with the construction
of the operating diagram that delineates the parameter
space in which the two species can coexist.
3. Simulations

The simulations were done using Mathematica

(Wolfram, 1999) and CONTENT (Kuznetsov, 1998).
The parameter values used in the simulations are
shown in Table 1. Appendix C shows the rationale
for order-of-magnitude estimates of the parameters.
The parameter values were then adjusted to ensure
that C1 and C2 have opposite substrate preferences.
Specifically, the parameter values for C1 were chosen
so that S1 is the preferred substrate for C1; that is, s1
approaches s

f
1 at a rate slower than the rate at

which s2 approaches s
f
2 (Fig. 2a). This occurs

because synthesis of E12; the enzyme that catalyses the
transport of S2; cannot be sustained at sufficiently large
dilution rates (see (Narang, 1998a) for more detail).
Likewise, the parameter values for C2 were chosen such
that S2 is the preferred substrate for C2 (Fig. 2b). To
make matters concrete, one can imagine C1 as a
coliform, say, Escherichia coli, that prefers a sugar (S1)
over an organic acid (S2), and C2 as a pseudomonad,
say, Pseudomonas aeruginosa, that prefers the organic
acid over the sugar (Chian and Mateles, 1968; Kim and
Dhurjati, 1986).

3.1. Existence of competition

Our first simulation allows both C1 and C2 to grow in
a chemostat fed with relatively high concentrations of S1

and S2: Fig. 3 shows the steady-state cell densities of C1

and C2 as a function of D at fixed feed concentrations,
s

f
1 ¼ 1 g=l and s

f
2 ¼ 2 g=l: In Fig. 3a, one of the steady

states corresponds to the semi-trivial steady state, f10;
Vs
22 ¼ 1000 Vs

23 ¼ 1000 g=g h

Ks
22 ¼ 0:01 Ks

23 ¼ 0:01 g/l

Ve
22 ¼ 0:0036 Ve

23 ¼ 0:0015 g=gdw h
%Ke
22 ¼ 0:0030 %Ke

23 ¼ 0:0020 g/gdw

kd
22 ¼ 0:01 kd

23 ¼ 0:01 1/h

k�22 ¼ 10�2 Ve
22 k�23 ¼ 10�2 Ve

22 g=gdw h

Y22 ¼ 0:20 Y23 ¼ 0:17 g/g

C. The values of V e
ij and %Ke

ij were then adjusted so that the single-

h; respectively, and the single-substrate maximum specific growth

3 denotes the product excreted by C1 and consumed by C2 (see
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Fig. 2. Steady states of single-species growth on S1 and S2: The figures on the left correspond to growth of C1 on S1 and S2:Here, C1 prefers S1 in the

sense that S1 approaches s
f
1 at a slower rate than S2 approaches s

f
2 : The figures on the right correspond to growth of C2 on S1 and S2 and show that

C2 prefers S2:
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c 2
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L]
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Fig. 3. Variation of c1 and c2 with respect to D at feed concentrations, s
f
1 ¼ 1 g=l and s

f
2 ¼ 2 g=l: Note that c2 vanishes at large and at small dilution

rates. The washout at the large dilution rate occurs because the flow rate exceeds the maximum specific growth rate of C2: The washout at the low
dilution rate occurs due to competition between the two species.
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that would occur if C1 were the only species in the
chemostat; the other is the non-trivial steady state, f11;
corresponding to the coexistence of both species. Like-
wise, in Fig. 3b, one of the steady states corresponds to
the semi-trivial steady-state f01; that would occur if C2

were the only species in the chemostat; it is unstable at
all dilution rates. The other steady state is the non-trivial
steady state, f11: We see that two striking features
emerge when the chemostat is seeded with C1 and C2;
both of which are the outcome of competition between
the two species:
1.
 Whenever the two species coexist, their steady-state
cell densities are lower than the cell densities
sustained in the absence of the other species. This
suggests the existence of competition.
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L
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c 1
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so intense that C2 is outcompeted.
0
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Fig. 5. Variation of c1 with respect to D at feed concentrations s
f
1 ¼

0:05 g=l and s
f
2 ¼ 2 g=l: This figure illustrates the same principle shown

in Fig. 4, the only difference being that we have reduced the feed

concentration of S1; the substrate preferred by C1: Thus, it is C1 rather

than C2 that is outcompeted at small dilution rates.
We denote the low dilution rate at which C2 vanishes by
Dc

2; the competition dilution rate for C2: It should be
distinguished from the high dilution rate, Dw

2 ; at which
C2 washes out because the specific growth rate of C2 is
not large enough to withstand the large flow of C2 out of
the reactor.

3.2. Effect of feed concentrations on the competition

We showed above that the introduction of both C1

and C2 in the chemostat results in competition between
the two species; furthermore, at low dilution rates, the
competition becomes particularly intense, and C2 is
rendered extinct. Now, intuition suggests that if we
reduce the feed concentration of S2; the preferred
substrate for C2; its ability to compete would be
undermined even further. It then seems plausible that
the lower the value of s

f
2 ; the higher the dilution rate at

which C2 would be outcompeted by C1: This intuition is
borne out by the simulations. Fig. 4 shows c2 as a
function of D when s

f
1 is fixed at 1 g=l; but s

f
2 is reduced

from 2 g=l to various lower concentrations. It can be
seen that the smaller the value of s

f
2 ; the larger the

dilution rate at which C2 is outcompeted by C1: Indeed,
the interval of coexistence shrinks progressively until at
a sufficiently small value of s

f
2 ; it reduces to a point. At

even smaller values of s
f
2 ; C2’s ability to compete has

been undermined so severely that it is outcompeted by
C1; and hence, cannot coexist with C1; at any dilution
rate. These results are consistent with what we know
about the limiting case obtained if s

f
1 is held fixed and s

f
2

0

0.02

0.04

0.06

0.08

0.1

0 0.1 0.2 0.3 0.4 0.5 0.6
D [1 / hr]

s2
f = 0.5 g / L

0.3 g / L

0.2 g / L

riation of c2 with respect to D at feed concentrations s
f
1 ¼

f
2 ¼ 0:5; 0:3; 0:2 g=l: The range of dilution rates at which C2

mes smaller as s
f
2 decreases. This is because C2 prefers S2;

riving C2 of its preferred substrate compromises its ability to

ith C1:
is reduced progressively to zero—we obtain, in effect, a
system in which the two species compete for only one
substrate. It has been shown that in such single-
substrate systems, no more than one species can survive
(Hansen and Hubbell, 1980; Powell, 1958).

We have established that C2’s ability to compete can
be drastically undermined by reducing the supply of S2;
its preferred substrate. This suggests that C1 is not
absolutely superior to C2: By depriving C1 of its
preferred substrate, S1; it should be possible to
compromise its ability to compete to such an extent
that it is outcompeted by C2: This is also borne out by
the simulations. Fig. 5 shows that if s

f
2 is held fixed at

2 g=l; but s
f
1 is reduced to 0:05 g=l; it is C1 that vanishes

at a low dilution rate. Interestingly, C1 is resurrected if
the dilution rate is reduced even further, a point to
which we shall return later. Here, it suffices to note that
the ability of C1 to compete can be significantly
compromised by reducing the feed concentration of its
preferred substrate, S1:

3.3. The operating diagram

Our goal is to determine the subset of the s
f
1 s

f
2 D-

space in which C1 and C2 coexist. To this end, we begin
by determining the two-dimensional surfaces that
separate the region in which C1 and C2 can coexist
from the region in which only one of the species persists.
We shall then show that the surfaces have a very special
geometry which simplifies the description of the s

f
1 s

f
2 D-

space in which C1 and C2 coexist. It will turn out that
this three-dimensional subset can be characterized by
two suitably defined curves on a plane.

3.3.1. The boundary between extinction of C2 and

coexistence

To find the surface in the s
f
1 s

f
2 D-space that separates

the region in which both species coexist from the region
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in which C2 cannot survive, we seek the surface
satisfying the conditions

r
g
1 ¼ D; r

g
2 ¼ D; c2 ¼ 0:

This surface was computed by rewriting the governing
steady-state equations to reflect the above conditions as
follows:

0 ¼
s

f
1 � s1

s
f
2 � s2

�
rs
11

rs
12

; ð8Þ

0 ¼ re
ij þ k�ij � ðD þ kd

ijÞeij ; ð9Þ

0 ¼ r
g
i � D: ð10Þ

In the above equations, Eq. (8) is a combination of
ð5; j ¼ 1; 2Þ with c2 ¼ 0: Eq. (9) is the steady-state
version of Eq. (6), and Eq. (10) is Eq. (7) rewritten
without the cell densities. Since two equations were
combined into one, we lost one degree of freedom.
However, since we also eliminated the cell densities, the
coordinate variables changed from sj ; eij ; ci to sj ; eij : This
means there is an extra constraint; now the equations fix
D as well. Once an initial point on this surface was
obtained, the surface was continued along contours of
constant s

f
1 (see Fig. 6a). The surface is dual-valued

for most feed concentrations because there are typically
0 1 2 3 4 5 6sf
1 [g / L]

1
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3
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5
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(b) Projection of constant D contours onto the
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Fig. 6. Contours of the surface in the s
f
1 s

f
2 D-space separating the

coexistence region from the region in which C2 is outcompeted. (a)

‘‘Inside’’ the surface, both species coexist; outside it, C2 vanishes. (b)

At each dilution rate, C2 cannot exist at feed concentrations lying

below the line corresponding to that dilution rate.
two dilution rates at which c2 becomes zero—the low
competition dilution rate, Dc

2; and the high washout
critical dilution rate, Dw

2 : Inside the surface, both species
coexist; outside the surface, C2 cannot exist.

In Fig. 4, it was shown that if s
f
1 is held fixed, but s

f
2 is

progressively decreased, the competition dilution rate,
Dc

2; and the washout dilution rate, Dw
2 ; become closer

and closer until they coalesce, at which point the interval
of coexistence shrinks to zero. The locus of points at
which the surface in Fig. 6a folds back on itself is
another manifestation of this phenomenon. To see this,
it suffices to consider any one of the constant s

f
1

contours of the surface. As s
f
2 decreases along the

contour, the two branches of the contour approach each
other until they coalesce at a sufficiently small value
of s

f
2 :

Projection of the constant D contours of the surface in
Fig. 6a onto the s

f
1 s

f
2 -plane yields the family of straight

lines shown in Fig. 6b. To understand the significance of
this family, consider any one member of the family
corresponding to a given dilution rate. Then, at this
dilution rate, C2 cannot exist if the feed concentrations
lie below the line; coexistence is feasible only if the feed
concentrations lie above the line. We discuss below in
Section 3.3.3 the reasons for the remarkably simple
geometry of the constant D contours.

3.3.2. The boundary between extinction of C1 and

coexistence

A similar surface separating the region of coexistence
from the region in which C1 vanishes can also be found;
it is determined by the conditions

r
g
1 ¼ D; r

g
2 ¼ D; c1 ¼ 0:

This surface turns out to have a fairly complex
geometry: It folds three times for some range of feeds,
and only once for others (Fig. 7a). Recall that for s

f
1 ¼

0:05 g=l; s
f
2 ¼ 2 g=l there were two values for Dc

1: This is
because the surface is triple-valued for this set of feed
concentrations. The surface is also different because
‘‘inside’’ signifies the inability of C1 to survive in the
presence of C2; while ‘‘outside’’ signifies the possibility
of coexistence. In Section 3.3.1, we argued that the fold
of the surface in Fig. 6a represents the locus of points at
which Dw

2 and Dc
2 coalesce. In Fig. 7a also, the folds can

be thought of as the locus of points at which two critical
dilution rates coalesce.

Projection of the constant D contours of the surface
onto the s

f
1 s

f
2 -plane also yields a family of straight lines

(Fig. 7b). In this case, however, the significance is
slightly different. Consider once again the straight line
corresponding to a given dilution rate. Then, at this
dilution rate, C1 cannot exist if the feed concentrations
are above the line; hence, coexistence is feasible only if
the feed concentrations lie below the line.
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Fig. 8. The substrate consumption vectors, rs
i ðDÞ; and the feed

concentration vector, s f : There is coexistence if and only if s f lies

between the substrate consumption vectors. If s f lies above rs
2; c1

vanishes; if s f lies below rs
1; c2 vanishes.
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3.3.3. The operating diagram

Before constructing the operating diagram, it is useful
to explain why the projections of the constant D

contours in Figs. 6b and 7b are straight lines passing
through the origin. This physical insight simplifies the
construction of the operating diagram.

To understand the geometry of the constant D

contours, observe that at a coexistence steady state,
Eq. (5) implies that

rs
11c1 þ rs

21c2 ¼ Dðs f
1 � s1Þ;

rs
12c1 þ rs

22c2 ¼ Dðs f
2 � s2Þ:

Now, the specific uptake rates, rs
ij ; are functions of D;

since coexistence steady states are completely deter-
mined by the dilution rate [see Eq. (B.10)]. Moreover,
the substrate concentrations at a coexistence steady state
are negligibly small compared to the feed concentrations
at all but the highest dilution rates and the smallest feed
concentrations. Under these conditions, coexistence
steady states satisfy the vectorial relation

c1r
s
1 þ c2r

s
2 ¼ Ds f ; rs

i �
rs

i1

rs
i2

" #
; s f �

s
f
1

s
f
2

" #
:

It follows that a non-trivial steady state (c1; c2 > 0) exists
if and only if the feed concentration vector, s f ; lies
between the substrate consumption vectors, rs

1 and rs
2

(Fig. 8). Moreover, C1 vanishes if s f coincides with or
lies above the vector rs

2; and C2 vanishes if s f coincides
with or lies below the vector rs

1: The constant D contours
in Figs. 6b and 7b lie precisely along the vectors rs

1 and
rs
2; respectively. As D changes, the substrate consump-
tion vectors, rs

i ; rotate. The fold points on the surface in
Fig. 6b [Fig. 7b, resp.] occur when the consumption
vector for C1 (C2; resp.) changes the direction of its
rotation.

This suggests a concise method of depicting the
operating diagram. Let y1ðDÞ denote the angle made
by the constant D contours in Fig. 7b with the s

f
1 -axis,

y2ðDÞ denote the angle made by the constant D contours
in Fig. 6b with the s

f
1 -axis, and ys denote the angle made

by the feed concentration vector with the s
f
1 axis:

y1ðDÞ � arctan
rs
22

rs
21

� �
; y2ðDÞ � arctan

rs
12

rs
11

� �
;

ys � arctan
s

f
2

s
f
1

 !
:

Then, at any dilution rate small enough to ensure that
sj5s

f
j ; coexistence is possible only if the feed concen-

trations are such that ys lies between y1 and y2: Fig. 9
shows the graphs of y1 and y2 as functions of the
dilution rate. The non-trivial steady state exists if and
only if ys lies between the two curves.

Fig. 9 shows that if the feed concentration of one of
the substrates is held fixed and the feed concentration of
the other substrate is raised progressively, we eventually
reach a region where coexistence is impossible. To
understand this result, we appeal to Phillips, who first
noted the inevitability and ecological significance of this
result (Phillips, 1973). Without loss of generality, take s

f
2

to be fixed and raise s
f
1 ; then the point will eventually

pass into the extinction region of C2: This is because as
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s
f
1 becomes large, so does the density of C1: Conse-
quently, no matter how high we choose the value for s

f
2 ;

the density of C1 will eventually become so high that
it will consume a major part of S2 even though S2 is not
its preferred substrate. Hence, C2 will become extinct
because it is overwhelmed by the high population
density of C1:

3.4. Influence of excretion on coexistence

To study the effect of excretion on coexistence of the
two species, we modified the model as follows. We
assumed that a certain fraction, a; of the specific growth
rate of C1 is diverted to production of an excretory
product, say S3; and C2; but not C1; can consume S3 as a
substrate. This introduces two additional mass balances
that account for the evolution of S3 and E23

ds3

dt
¼ ar

g
1c1 � Ds3 � rs

23c2; rs
23 � Vs

23e23s23;

de23

dt
¼ re

23 þ r�23 � rd
23 � r

g
2e23; re

23 � V e
23

e23s23
%Ke
23 þ e23s23

and the specific growth rate of C2 becomes

r
g
2 � Y21rs

21 þ Y22rs
22 þ Y23rs

23:

All other equations and kinetics remain unchanged.
The numerical studies of this model with a ¼ 0:1

indicate that the coexistence space increases. Fig. 10 is a
plot of c2jf11

vs. D at fixed feed concentrations, s
f
1 ¼

1 g=l and s
f
2 ¼ 2 g=l; for both models (with and without

excretion). Note that at most dilution rates, c2 is
increased almost insignificantly. However, the most
stiking difference is c2 does not drop to zero even at
the smallest dilution rates.

To find the boundary between coexistence of both
species and extinction of C2; we seek, once again, the
surface satisfying the conditions

r
g
1 ¼ D; r

g
2 ¼ D; c2 ¼ 0:
This surface is plotted in Fig. 11 with the dilution rate
on the vertical axis and the feed concentrations on the
horizontal axes. The excretion parameter a is still set to
0.1. The surface is single-valued for most feed concen-
trations because there is now typically only one dilution
rate at which c2 becomes zero—the washout dilution
rate, Dw

2 : There is coexistence at all points below the
surface. It follows that excretion by C1 of a product that
can be consumed by C2 increases the region in which C2

exists.
The disappearance of the competition dilution rate,

Dc
2; in the presence of excretion is not surprising. We

noted above that in the absence of excretion, C2

vanished at low dilution rates only if s
f
1 =s

f
2 was

sufficiently large, and that this occurred because under
these conditions, the density of C1 became much larger
than the density of C2:Now, if C1 excretes a product, S3;
then a high density of C1 implies significant production
of S3; a substrate that can be consumed by C2 only.
Hence, the very same conditions that in the absence of
excretion led to washout of C2 result in a large supply of
S3 in the presence of excretion; this can be consumed by
C2 without any competition from C1: Existence of C1;
therefore, implies the existence of C2:
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The bounding surface for C1 does not change, because
setting c1 ¼ 0 implies s3 ¼ 0; so that the growth rate of
C2 reverts to the original definition of r

g
2: Thus, since the

space for existence of C2 increased, and the correspond-
ing space for C1 remained the same, the overall
coexistence space increased.

The effect of varying the parameter a was also
investigated. One would expect that if a is taken to be
very close to zero, the surface for the extinction of C2

would be qualitatively similar to that found in Fig. 6a.
However, numerical studies show that this is not the
case. That is, a plot of the points of extinction of C2 at
s

f
1 ¼ 1 g=l and a ¼ 0:00016 reveal coexistence in the
limit as D ¼ 0 (see Fig. 12).
4. Conclusions

We extended our earlier structured model for growth
of a single species on two substitutable substrates to
accommodate the growth of two species on two
substitutable substrates. Our goal was to determine

1. The dilution rates and feed concentrations at
which both species coexist.

2. The influence of excretion on this region of
coexistence.

In the course of our studies, we found that:

1. If the interaction between the two species is purely
competitive, the coexistence region is completely
determined by the flow rate and the ratio of the feed
concentrations. This suggests that the most fruitful
method for acquiring the data is to hold the flow rate
fixed and vary the ratio of the feed concentrations
(see Fig. 9).
2. If the interaction between the two species is
commensalistic, the coexistence region is significantly
enhanced, since one of the species cannot vanish due
to competition.
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Appendix A. Derivation of the reduced equations (5)–(7)

We show here that for all but the smallest initial time
intervals, Eqs. (1)–(4) can be approximated by the
reduced equations (5)–(7). To see this, observe that:

1. In each species, the sum of the concentrations of all
the intracellular components is unity. That is

ðxi1 þ ei1Þ þ ðxi2 þ ei2Þ þ c�i ¼ 1 g=gdw; i ¼ 1; 2:

Hence, adding Eqs. (2)–(4) yields

0 ¼
X2
j¼1

ðrs
ij � rx

ij þ Yijr
x
ijÞ � D þ

1

ci

dci

dt

� �
; i ¼ 1; 2

which may be rewritten as

dci

dt
¼

X2
j¼1

rs
ij � rx

ij þ Yijr
x
ij

 !
ci � Dci;

i ¼ 1; 2: ðA:1Þ

It is convenient to replace Eq. (4) by (A.1).
2. The inducer concentrations rapidly achieve quasi-

steady state

dxij

dt
¼ 0 ) rx

ijErs
ij ;

where the last two terms in Eq. (2) have been
neglected since loss of Xi due to dilution by growth
and efflux of cells from the reactor is negligibly small
compared to consumption of Xi by catabolism. It
follows from this relation that

dci

dt
¼ ðrg

i � DÞci; r
g
i �

X2
j¼1

Yijr
s
ij

and

xij ¼
rs

ij

kx
ij

¼
V s

ijeijsj=ðKs
ij þ sjÞ

kx
ij

: ðA:2Þ
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Fig. 13. Steady-state enzyme levels at fixed substrate concentrations:

(a) The full line shows the synthesis rate of Eij ; the dashed lines show

the removal rate of Eij at various specific growth rates. (b) Since ei1 and

ei2 are decreasing function of r
g
i ; so is

P
j Yijr

s
ij ; hence, Eq. (B.3) has a

unique solution.
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Substituting Eq. (A.2) in Eq. (3) yields

deij

dt
¼ V e

ij

eijsij

%Ke
ij þ eijsij

þ k�ij � kd
ijeij � r

g
i eij ;

%Ke
ij �

Ke
ijk

x
ij

V s
ij

; sij �
sj

Ks
ij þ sj

:

Thus, we arrive at the reduced eight-dimensional system

dsj

dt
¼ Dðs f

j � sjÞ � rs
1jc1 � rs

2jc2;

deij

dt
¼ Ve

ij

eijsij

%Ke
ij þ eijsij

þ k�ij � kd
ijeij � r

g
i eij ;

dci

dt
¼ ðrg

i � DÞci:
Appendix B. Analysis

In this section, we analyze the existence and stability
of the steady states.

B.1. The trivial steady state f00

The trivial steady state, f00; satisfies c1 ¼ c2 ¼ 0: It
follows from Eq. (5) that sj ¼ s

f
j : This makes intuitive

sense because in the absence of the biomass, there is no
consumption of either substrate.

We show below that f00 is completely and uniquely
determined by the feed concentrations; therefore, it is
independent of the dilution rate, and exists for all D > 0:
This result follows from a more general proposition: If
the substrate concentrations are held constant, then the
enzyme levels and specific growth rates approach a
unique steady state. The uniqueness of f00 now follows
by letting the substrate concentrations be the feed
concentrations. The proof of the more general proposi-
tion follows in two steps.

1. If the substrate concentrations are fixed, the enzyme
levels are decreasing functions of the specific growth
rate.

To see this, observe that at steady state, Eq. (6)
may be written as

Ve
ij

eijsij

%Ke
ij þ eijsij

þ k�ij ¼ ðrg
i þ kd

ijÞeij : ðB:1Þ

Since the substrate concentrations are fixed, it
immediately follows that the enzyme levels are a
decreasing function of the specific growth rate. This is
shown graphically in Fig. 13a. The analytical proof
follows by recasting Eq. (B.1) in the form

r
g
i ¼ V e

ij

sij

%Ke
ij þ eijsij

þ
k�ij
eij

� kd
ij : ðB:2Þ
Clearly, r
g
i is a decreasing function of eij; hence, eij is a

decreasing function of r
g
i : We denote this function by

eijðr
g
i ; sjÞ:

2. The steady-state specific growth rates and enzyme
levels are uniquely determined by the substrate
concentrations.

This result follows directly from the definition of r
g
i

r
g
i �

X2
j¼1

Yijr
s
ij ¼

X2
j¼1

YijV
s
ijeijðr

g
i ; sjÞsij : ðB:3Þ

Now, the left-hand side of Eq. (B.3) increases with r
g
i ;

while the right-hand side decreases with r
g
i (Fig. 13b).

Hence, there is a unique value of r
g
i satisfying

Eq. (B.3). We conclude that the steady-state value
of r

g
i is uniquely determined by s1 and s2: The

uniqueness of the enzyme levels follows from the
uniqueness of the specific growth rates.
We have shown above that the steady state is uniquely
determined by the substrate concentrations. In particu-
lar, the trivial steady state, f00; is uniquely determined
by the feed concentrations, and the specific growth rate
of the ith species at this steady state, denoted r

g
i jf00

;
satisfies

r
g
i jf00

�
X2
j¼1

Yijr
s
ij ¼

X2
j¼1

YijV
s
ijeijðr

g
i jf00

; s f
j Þsijðs

f
j Þ: ðB:4Þ

In Appendix D (Section D.2), we show that f00 is
stable if and only if D > r

g
1jf00

; r
g
2jf00

: In other words, the
stability of the trivial steady state depends on the ability
of either species to survive at the feed concentrations. If
D > r

g
1jf00

; r
g
2jf00

; then neither species can survive, and
both species will be washed out of the reactor. If, on the
contrary, Dor

g
i jf00

; then Ci will persist in the reactor
(assuming the absence of competition).
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B.2. The semitrivial steady states f10 and f01

Here, we show that the semitrivial steady state, f10;
exists for all feed concentrations and for all sufficiently
small dilution rates; furthermore, it is unique whenever
it exists. The analysis of f01 is analogous and is not
presented here.

The steady state, f10; is characterized by the condi-
tions, r

g
1 ¼ D and c2 ¼ 0: The proof of its existence and

uniqueness follows in two steps.

1. If the growth rate is fixed, the enzyme level, e1j ; is an
increasing function of sj :

Substituting r
g
1 ¼ a (a constant) into Eq. (B.1) with

i ¼ 1; we obtain

Ve
1j

e1j

ð %Ke
1j=s1jÞ þ e1j

þ k�1j ¼ ða þ kd
1jÞe1j : ðB:5Þ

It follows immediately that e1j is an increasing
function of sj : A graphical proof is shown in
Fig. 14a. The analytical proof follows if we rewrite
Eq. (B.5) in the form

s1j ¼ %Ke
1j

a þ kd
1j � k�1j=e1j

V e
1j þ k�1j � ða þ kd

1jÞe1j

: ðB:6Þ

Then, s1j is an increasing function of e1j : It follows
that e1j is an increasing function of s1j ; and hence,
of sj :
e 1j

Increasing sj

At fixed D, e1j is an
increasing function of sj.

sf
1

sf
2

s1

s2

The growth isocline and 
consumption curve have a 
unique intersection.

(b)

(a)

Fig. 14. Uniqueness of the semitrivial steady state f10: (a) The full

lines show the synthesis rate of E1j at various sj ; the dashed line shows

the removal rate of Eij : (b) The full line shows the growth isocline; the

dashed line shows the consumption curve; the unique semitrivial steady

state lies at the intersection of the two curves.
2. f10 exists and is unique at all feed concentrations and
sufficiently small dilution rates.

First, we note that the condition, r
g
1 ¼ D; may be

written as

X2
j¼1

Y1jV
s
1je1jðD; sjÞs1jðsjÞ ¼ D: ðB:7Þ

This determines a curve on the s1s2-plane; Tilman
calls it the growth isocline (Tilman, 1977). Since
e1jðD; sjÞ is an increasing function of sj ; the left-hand
side of Eq. (B.7) is an increasing function of s1 and s2:
It follows that the growth isocline is a graph of a
decreasing function in the s1s2-plane (solid line in
Fig. 14b). It can be shown that the larger the dilution
rate, the further the distance from the origin of the
corresponding growth isocline.

Second, letting c2 ¼ 0 in Eq. (5) for both j ¼ 1; 2;
we obtain

ðs f
1 � s1Þ

Vs
11e11ðr

g
i ; s1Þs11

¼
ðs f

2 � s2Þ
V s

12e12ðr
g
i ; s2Þs12

: ðB:8Þ

This determines a curve on the s1s2-plane passing
through the origin and the point ðs f

1 ; s
f
2 Þ; we shall call

this the consumption curve. It can be shown that the
left- and right-hand sides of Eq. (B.8) are decreasing
functions of s1 and s2; respectively. Thus, the
consumption curve is a graph of an increasing
function in the s1s2-plane (Fig. 14b).

Steady states occur at the points of intersection of
the growth isocline and the consumption curve. Since
the growth isocline decreases, and the consumption
curve increases, there can be at most one steady state.
There is exactly one steady state if the growth isocline
lies on or below the growth isocline passing through
ðs f

1 ; s
f
2 Þ; there is no steady state if the growth isocline

lies above the growth isocline passing through
ðs f

1 ; s
f
2 Þ: The dilution rate at which the growth isocline

passes through ðs f
1 ; s

f
2 Þ satisfies the equation

X2
j¼1

Y1jV
s
1je1jðD; s f

j Þs1jðs
f

j Þ ¼ D: ðB:9Þ

We denote this dilution rate by Dw
1 ; the washout

dilution rate for C1: We conclude that the steady
state, f10; exists if and only if DoDw

1 ; moreover, it is
unique whenever it exists.

In Appendix D, Section D.3, we show that r
g
2jf10

pD is
a necessary condition for stability of f10: This condition
has a simple heuristic interpretation. The quantity,
r

g
2jf10

� D; is the overall specific growth rate of C2 in the
reactor where C1 is resident. Consequently, if r

g
2jf10

�
D > 0; then once an arbitrarily small inoculum of C2 is
introduced into the reactor, it will successfully invade
the reactor and either outcompete C1 or coexist with C1:
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state f11:
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B.3. The non-trivial steady state f11

The non-trivial steady state f11 satisfies the equations

r
g
i �

X2
j¼1

YijV
s
ijeijðD; sjÞsij ¼ D; i ¼ 1; 2: ðB:10Þ

It follows that f11 exists only if Eq. (B.10) has a solution
satisfying 0osjos

f
j ; j ¼ 1; 2: Evidently, the enzyme and

substrate concentration at the coexistence state are
completely determined by the dilution rate.

Under what conditions does Eq. (B.10) have a
solution? We show below that if both semitrivial steady
states f10 and f01 exist, and one of the following holds

1. r
g
1jf01

; r
g
2jf10

> D;
2. r

g
1jf01

; r
g
2jf10

oD:

Then Eq. (B.10) admits a solution with 0osjos
f

j ; j ¼
1; 2: Both conditions (1) and (2) allow a simple heuristic
explanation. Condition (1) states that either species can
successfully invade a reactor inhabited by the other
species. In this case, a stable coexistence steady state
exists and is stable. Condition (2) states that neither
species can invade a reactor inhabited by its competitor.
In this case, an unstable coexistence steady state exists,
but is unstable, so that a small perturbation in the
environment would typically drive one species to
extinction, while the other species would persist at the
corresponding semitrivial steady state.

To prove this assertion, we observe that the functions
r

g
i in Eq. (B.10) are strictly increasing in both arguments

s1 and s2: If condition (1) holds, then one of the
following must be true:

* either s1jf10
> s1jf01

and s2jf10
os2jf01

;
* or s1jf10

os1jf01
and s2jf10

> s2jf01
;

because the two remaining alternatives contradict
condition (1). Now suppose that the first combination
is the case (see Fig. 15). In the s1s2-plane, the curve
r

g
1 ¼ D is a graph of a decreasing function passing
through the point f10: This curve cannot intersect the
segment that lies to the right of f01 because everywhere
on that segment r

g
1 > D: Thus the curve must intersect

the segment directly below f01: A similar argument
shows that the curve r

g
2 ¼ D must intersect the segment

that lies to the left of f10: Since the curves r
g
1 ¼ D and

r
g
2 ¼ D are continuous, they must intersect somewhere
inside the shown rectangle and any such point of
intersection provides a solution of Eq. (B.10). The proof
proceeds along the same lines for the second possible
combination in (1) or if condition (2) holds. We
conclude that (1) or (2) provide sufficient conditions
for Eq. (B.10) to have a feasible solution.

The above argument does not rule out the possibility
of multiple coexistence steady states because the curves
in Fig. 15 may intersect more than once.
Appendix C. Orders of magnitude of the parameters

For most substrates, the empirical values of V s
ij ; Ks

ij ;
V e

ij ; and %Ke
ij are unknown. We show below that the

orders of magnitude of the parameters can be estimated
by requiring agreement with the following experimental
observations:

1. The maximum enzyme level, emax
ij is on the order of

1 mg=gdw (Ingraham et al., 1983).
2. The maximum specific substrate uptake rate is on the

order of 1 g=gdw h (Andersen and Meyenburg,
1980).

3. The yield is on the order of 0.1–0:5 gdw=g (Andersen
and Meyenburg, 1980).

It was assumed in the model that %Ke
ijBemax

ij : Now
according to the model:

1. The maximum enzyme level is on the order offfiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V e

ij=ðYijV
s
ijÞ

q
: Hence

Ve
ij

V s
ij

B0:5ðemax
ij Þ2 ¼ 0:5	 10�6:

2. The maximum specific uptake rate is on the order of
Vs

ije
max
ij :

Vs
ije

max
ij B1 g=gdw h:

It follows that Vs
ijB1000 g=gdw h and

V e
ijB0:001 g=gdw h:
Having determined the orders of magnitude, the

parameter values of Ve
ij and %Ke

ij were chosen in order
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to obtain preassigned values of the maximum specific
growth rates on each of the substrates.
e

e

W (e  )

i2

i1

2 i2

Fig. 16. Phase portrait of Eqs. (D.1)–(D.2). The curves labeled W1ðei1Þ
and W2ðei2Þ represent the nullclines for ei1 and ei2; respectively. The
nullclines partition the ei1ei2-quadrant into four regions; the arrows

show the orientation of the vector field in these four regions.
Appendix D. Dynamics and stability

D.1. Dynamics of the enzymes

Here we analyze the dynamics of the enzymes of the
ith species at fixed substrate concentrations; that is, we
study the dynamics generated by the equations

dei1

dt
¼V e

i1

ei1si1

%Ke
i1 þ ei1si1

�
X2
j¼1

YijV
s
ijeijsij

 !
ei1

� kd
i1ei1 þ k�i1; ðD:1Þ

dei2

dt
¼V e

i2

ei2si2

%Ke
i2 þ ei2si2

�
X2
j¼1

YijV
s
ijeijsij

 !
ei2

� kd
i1ei1 þ k�i1; ðD:2Þ

at fixed s1 and s2: Solving for the nullclines in Eqs. (D.1)
and (D.2), we obtain two functions

ei2 ¼W1ðei1Þ �
1

Yi2V
s
i2si2

Ve
i1

si1

%Ke
i1 þ ei1si1

�

þ
k�i1
ei1

� Yi1Vs
i1ei1si1 � kd

i1

�
;

ei1 ¼W2ðei2Þ �
1

Yi1V
s
i1si1

Ve
i2

si2

%Ke
i2 þ ei2si2

�

þ
k�i2
ei2

� Yi2Vs
i2ei2si2 � kd

i1

�
:

The functions W1ðei1Þ and W2ðei2Þ describe the ei1- and
ei2-nullclines, respectively. We observe that

(a) both W1 and W2 are decreasing functions;
(b) W1-þN as ei1-0 and W1-�N as ei1-N;

similarly W2-þN as ei2-0 and W2-�N as
ei2-N;

(c) since s1 and s2 are fixed, Eqs. (D.1) and (D.2)
admit a unique positive steady state, so that the graphs
of W1 and W2 have only one point of intersection in the
positive quadrant;

(d) dei1=dto0 for ei2 > W1ðei1Þ and dei1=dt > 0 for
ei2oW1ðei1Þ; similarly dei2=dto0 for ei1 > W2ðei2Þ and
dei2dt > 0 for ei1oW1ðei2Þ:

Observations (a)–(d) imply that the only possible
phase diagram of Eqs. (D.1)–(D.2) is as shown in
Fig. 16.

An important conclusion of the phase plane analysis
is that the positive steady state of Eqs. (D.1)–(D.2) is
locally asymptotically stable and the variational matrix

@ð’ei1; ’ei2Þ
@ðei1; ei2Þ
of Eqs. (D.1)–(D.2) at this steady state has two real
negative eigenvalues. The eigenvalues must be real
because the solutions near the steady state are not
oscillatory.

D.2. Stability of f00

The variational matrix of Eqs. (5)–(7) at f00 is given
by

� 0

0 �

0 0

0 0

0 0

0 0

� �

� �

� �

� �
@ð’e11; ’e12Þ
@ðe11; e12Þ

0 0

0 0

0 0

0 0

� �

� �

0 0

0 0

@ð’e21; ’e22Þ
@ðe21; e22Þ

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

r
g
1 � D 0

0 r
g
2 � D

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

Here we denote all positive entries by þ; all negative
entries by �; and by � if the sign is undetermined. The
two blocks

@ð’e11; ’e12Þ
@ðe11; e12Þ

and
@ð’e21; ’e22Þ
@ðe21; e22Þ

contribute two negative eigenvalues each. Therefore, the
first six eigenvalues of Jðf00Þ are strictly negative while
the last two are given by l7 ¼ r

g
1jf00

� D and l8 ¼
r

g
2jf00

� D: Thus, f00 is stable if and only if r
g
1jf00

oD and
r

g
2jf00

oD:
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D.3. Stability of f10 and f01

The variational matrix of Eqs. (5)–(7) at f10 is given
by

� 0

0 �

� 0

0 �

0 0

0 0

� �

� �

� �

� �
@ð’e11; ’e12Þ
@ðe11; e12Þ

0 0

0 0

0 0

0 0

� �

� �

0 0

0 0

@ð’e21; ’e22Þ
@ðe21; e22Þ

0 0

0 0

þ þ

0 0

þ þ

0 0

0 0

0 0

0 0

0 r
g
2 � D

0
BBBBBBBBBBBBBB@

1
CCCCCCCCCCCCCCA

:

The last eigenvalue of Jðf10Þ is given by l8 ¼ r
g
2jf10

� D:
Therefore, the sufficient condition for instability of f10 is
given by the inequality r

g
2jf10

� D > 0: We conjecture
that this also a necessary condition for instability.

Stability analysis of Jðf01Þ is performed similarly.
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