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Abstract

The dynamic nature of immune responses requires the development of appropriate experimental and theoretical tools to

quantitatively estimate the division and death rates which determine the turnover of immune cells. A number of papers have used

experimental data from BrdU and D-glucose labels together with a simple random birth–death model to quantify the turnover of

immune cells focusing on HIV/SIV infections [Mohri et al. 279 (1998) 1223–1227, Hellerstein et al. 5 (1999) 83–89, Bonhoeffer et al.

164 (2000) 5049–5054, Mohri et al. 87 (2001) 1277–1287]. We show how uncertainties in the assumptions of the random birth–death

model may lead to substantial errors in the parameters estimated. We then show how more accurate estimates can be obtained from

the more recent CFSE data which allow to track the number of divisions each cell has undergone. Specifically, we: (i) describe a

general stage-structured model of cell division where the probabilities of division and death are functions of time since the previous

division; (ii) develop a rescaling method to identify invariant parameters (i.e. the ones that are independent of the specific functions

describing division and death); (iii) show how these invariant parameters can be estimated, and (iv) illustrate this technique by

applying it to CFSE data taken from the literature.

r 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

Understanding the quantitative aspects of cell turn-
over is a long standing theoretical problem. Specifically,
we need a reliable analytical tool for estimating the rates
of cell division and cell death that govern the rate of
change in the total cell population. In immunology, for
example, we would like to understand the mechanism
of homeostatic regulation of immune memory which
s : CFSE, carboxyl fluorescein succimidyl ester;

xyuridine; FLM, fraction of labeled mitoses; SM,

I, confidence interval
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results in a nearly constant cell population. Does such a
population consist of quiescent cells or there is a
balanced turnover of cells? If turnover occurs, how do
cells progress through the cell cycle so that division and
death processes balance each other?
Accurate quantification of the dynamics of antigen-

specific B- and T-lymphocytes in vivo has become
possible recently (Slifka and Ahmed, 1998; Murali-
Krishna et al., 1999). In addition, the development of
CFSE dye dilution experiments has allowed for accurate
tracking of the number of divisions that a given cell has
undergone following transfer in vivo (Weston and
Parish, 1990; Lyons and Parish, 1994; Lyons, 2000).
When cells are stained with CFSE, this fluoresecent dye
is included into the cell cytoplasm. In the process of cell
division, the CFSE dye is diluted approximately equally
between the two daughter cells. For in vivo transfer
experiments, the CFSE assay allows to accurately track
up to 5–10 successive generations of cells. Consequently,
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the CFSE technique provides a significantly more
accurate description of cell turnover compared to the
earlier techniques for measuring cell turnover such as
BrdU, thymidine and D-glucose labelling (Mohri et al.,
1998; Hellerstein et al., 1999; Bonhoeffer et al., 2000;
Mohri et al., 2001; Debacq et al., 2002). There has been
a widespread interest in using CFSE data to quantify the
birth and death processes underlying the dynamics of
immune responses.
A common way to study the quantitative aspects of

cell turnover is to formulate a specific model for cell
division and death and fit this model to the data. This
approach has two serious shortcomings. First, in the
absence of a biologically validated model it may be
difficult to distinguish between the parameters estimated
by using different models (see Section 2). Second, the
data may be insufficient to unambiguously determine
parameters of the model, that is, several parameter
combinations may fit the data equally well.
To formulate a biologically reasonable specific model

of cell division, one must analytically describe the
mechanisms that govern cell division and cell death.
For example, a very elegant quantitative model of cell
turnover was formulated by Smith and Martin (1973) in
their study of the fraction of labeled mitoses (FLM)
curves in the cell culture. In the Smith–Martin (or
simply SM) model, the progression of cells through the
cell cycle involves a stochastic recruitment of cells from
an A-state (approximately corresponding to G1 phase of
the cell cycle) into a dividing B-phase (approximately
equivalent to the S, G2, and M phases of the cycle). The
dividing phase has a fixed duration D: The recruitment
of cells from the A-state into the B-phase occurs at
the fixed rate l (the waiting time in the A-state has
exponential distribution with the parameter l). The two
parameters l and D provide a complete description of
cell division (Cain and Chao, 1997a,b). Although the
SM model could be viewed as a reasonable first
approximation for the process of cell division, alter-
native models consistent with the FLM data have also
been proposed (Castor, 1980; Brooks et al., 1980;
Grasman, 1990).
In contrast with cell division, our understanding of

processes that regulate cell death during the cell cycle is
much poorer1. The SM model postulates that cell death
occurs at constant rates dA and dB in the A-state and the
B-phase, respectively. Therefore, the SM model provides
a simple yet biologically reasonable description of cell
death. Alternatively, cell death events may be restricted
to a set of discrete checkpoints within the A-state and
the B-phase. Therefore, it is crucial to understand the
1The problem of understanding cell death in comparison with cell

division is long standing (Monod, 1949) and stems in part from the fact

that cells which have undergone division can be visualized, while dead

cells rapidly disappear being eliminated by apoptosis.
consequences of making an incorrect assumption about
the death process.
In Section 2, we discuss some limitations of the

random birth–death model commonly used in the
analysis of BrdU and CFSE data (Mohri et al., 1998;
Bonhoeffer et al., 2000; Mohri et al., 2001; Revy et al.,
2001). We illustrate how different assumptions on the
timing of death in the cell cycle (as described above) can
drastically alter our estimates for the parameters
describing cell division and cell death. One potential
way to solve this problem might be to estimate the
parameters of the SM model by fitting the SM model to
the CFSE data. This approach has two limitations:

1. It assumes that the SM model is correct. As we
discussed above, while the progression through the
cell division cycle is biologically reasonable we do not
know if the assumption that the death rates are
constant during the A and B phases is correct.

2. The data on the total cell numbers and CFSE
distributions is insufficient to estimate all four
parameters (l; D; and death rates dA; dB).

In this paper, we present a different approach to the
problem of estimation of parameters describing cell
division and death from the CFSE data. We propose a
general model of the cell cycle which makes no specific
assumptions about the timing of cell division and death
except to say that the probability of division and death
are functions of the time since the previous division. To
analyze the general model, we develop a method of
rescaling (Section 3) and show how this method allows
us to identify and estimate kinetic parameters of the cell
cycle that are independent of the specific mechanisms of
cell division and cell death. In Section 4 we explain, with
an example, how our method can be used. We will make
available online a simple Mathematica program im-
plementing our method for other datasets2. Finally, we
go over the limitations of the current techniques in the
Discussion section. All mathematical derivations are
presented in Appendix A.
2. Illustrating the problem

To illustrate the consequences of making different
specific assumptions about the death process, we
consider two very simple models of the cell cycle. Both
models are derived as the limiting cases of the Smith–
Martin model with an infinitesimally short B-phase.3 In
both models, we let l equal the rate of recruitment of
2The Mathematica notebook implementing the rescaling method

can be downloaded from http://www.math.ufl.edu/~pilyugin/Rescaling

method.nb
3We present the Smith–Martin model and the mathematical

derivation of both limiting cases in the appendix.

http://www.math.ufl.edu/~pilyugin/Rescaling-method.nb
http://www.math.ufl.edu/~pilyugin/Rescaling-method.nb
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4We refer to the cells which have undergone n divisions as cells in the

n-th generation.
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cells from the A-state and let T ¼ 1=l be the average
division time (that is, the mean duration of the cell
cycle). We let xnðtÞ denote the number of cells that
have divided n times by time t: In the first model, we let
d ¼ dA ¼ dB so that the death rate is constant through-
out the cell cycle. The equations for xnðtÞ are

dxnðtÞ
dt

¼ 2lxn�1ðtÞ � ðlþ dÞxnðtÞ; x0ð0Þ ¼ x0: ð1Þ

This model is analogous to the widely used random
birth-death model (Veiga-Fernandes et al., 2000;
Bonhoeffer et al., 2000; Revy et al., 2001; Mohri et al.,
2001) where the probability rates of both cell division
and death are constant. The mathematical solution to
Eq. (1) can be written as

xnðtÞ ¼
ð2ltÞn

n!
e�2lt

|fflfflfflfflfflfflffl{zfflfflfflfflfflfflffl}
distribution

x0e
ðl�dÞt� �

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
total #

: ð2Þ

The first model therefore predicts that the total number
of cells changes exponentially at the rate ðl� dÞ: The
distribution in the number of cells that have undergone
n divisions by time t is Poisson, with the mean number
of divisions that increases at the rate 2l over time,
independently of the death rate. In the second model, we
let dA ¼ 0 so that there is no cell mortality in the A-state
and assume that a certain fraction f of cells dies in the
B-phase. Equations of the second model are

dxnðtÞ
dt

¼ 2lð1� f Þxn�1ðtÞ � lxnðtÞ; x0ð0Þ ¼ x0: ð3Þ

The mathematical solution to Eq. (3) is

xnðtÞ ¼
ð2lð1� f ÞtÞn

n!
e�2lð1�f Þt

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
distribution

x0e
lð1�2f Þt� �

|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}
total #

: ð4Þ

Thus in the second model, the total number of cells
grows exponentially at the rate lð1� 2f Þ: The distribu-
tion in the number of cells that have undergone n

divisions by time t is again Poisson, but the mean
number of divisions now increases at the rate 2lð1� f Þ
over time.
We see that in both models the distribution in the

number of cells that have undergone n divisions is
Poisson. In the first model, the rate of increase in the
mean number of divisions depends on l whereas in the
second model it depends on both l and f : Consequently,
if we were to estimate the mean generation time T using
Eq. (1) or (3), we would obtain different estimates
depending on the underlying model. For example, in
case of a stable population (l ¼ d in Eq. (1) and f ¼ 0:5
in Eq. (3)) we would obtain a twofold discrepancy in the
estimate for T : Such discrepancies will be even more
pronounced for contracting populations and less pro-
nounced for expanding populations. On the other hand,
the estimates obtained from both models would be
equally ‘‘significant’’ because both models produce
equally good fits to the data.
This example illustrates that in the absence of further

knowledge on the nature of the death process, we cannot
estimate T with much confidence using only the data on
the total number of cells and the number of divisions
they have undergone (such as given by the CFSE data,
for example). Given the uncertainties we have in the
formulation of a specific model, we would like to define
quantities that describe the cell turnover independently
of the underlying model. In the following section, we do
this by formulating a very general model of the cell cycle
and determining which quantities we can estimate from
the CFSE data.
3. General stage-structured model of cell cycle

3.1. Formulation

We postulate a set of relatively general biological
assumptions about the nature of cell proliferation. We
define cell division as an event when one mother cell
leaves its generation and at the same time two identical
daughter cells enter the next generation4. We define cell
death as an event when one cell leaves its generation and
no daugther cells are produced. Using this terminology,
we assume that (i) The cycle of a given cell is terminated
either by cell division or by cell death. (ii) Cell division
and cell death are independent random events whose
probabilities of occurrence depend only on the time
since the cell was born. In particular, such probabilities
are independent of a particular cell and a given
generation. (iii) The probability that cell division
and cell death occur simultaneously is negligibly small.
(iv) The system is closed, that is, new cells enter
the population only through division and cells leave
the circulating pool only through death.
We let xnðt; sÞ denote the density of cells at time t that

entered the n-th generation at time t � s:We refer to s as
the age of cells inside the generation. We let lðsÞ denote
the probability rate of cell division at age s and dðsÞ
denote the probability rate of cell death at age s inside
the generation. The dynamics of the cell density within
the n-th generation is described by the partial differ-
ential equation

@xnðt; sÞ
@t

þ
@xnðt; sÞ

@s
¼ �ðlðsÞ þ dðsÞÞxnðt; sÞ; nX0: ð5Þ

The number of cells in the n-th generation that divide
anywhere between the times t and t þ dt is given byZ

N

0

lðsÞxnðt; sÞ ds

	 

dt;
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and therefore twice the number of cells enter the
ðn þ 1Þ-th generation between t and t þ dt: Conse-
quently, the dynamics of two consecutive generations
are coupled through the boundary condition

xnðt; 0Þ ¼ 2

Z
N

0

lðsÞxn�1ðt; sÞ ds; nX1: ð6Þ

The set of Eqs. (5) and (6) constitutes the general stage-
structured model of the cell cycle. Since the system is
closed, no cells enter the 0-th generation, that is,
x0ðt; 0Þ ¼ 0:
The dynamics of the cell density is governed by a set

of linear partial differential equations (5) where the
boundary condition (6) describes the rate at which cells
enter the n-th generation. Therefore, rescaling this rate
by a factor of aX0 will result in the identical rescaling of
the cell density xnðt; sÞ: Equivalently, the dynamics of the
rescaled cell densities xnðt; s; aÞ ¼ anxnðt; sÞ must satisfy
the equations

@xnðt; s; aÞ
@t

þ
@xnðt; s; aÞ

@s
¼ �ðlðsÞ þ dðsÞÞxnðt; s; aÞ; ð7Þ

xnðt; 0; aÞ ¼ 2a

Z
N

0

lðsÞxn�1ðt; s; aÞ ds: ð8Þ

The set of Eqs. (7) and (8) constitutes the rescaled model
of the cell cycle.
The biological meaning of the rescaling is intuitively

simple: Suppose that each mother cell produces not 2
but 2a daughter cells, then the cell density in each
subsequent generation will be rescaled by a factor of a

relative to the cell density in the preceding generation. In
particular, the cell density in th n-th generation will be
rescaled by a factor of an: Importantly, such rescaling
does not affect the distribution of division or death
events within a given generation, but only the rate of
transfer of cells from one generation to the next.
In the next section, we show that for any nonnegative

value of a; the rescaled model (7)–(8) describes an
exponentially growing or decaying population. We also
show how one can estimate parameters describing cell
division and death from the relationship between the net
proliferation rate rðaÞ of the rescaled population and the
value of a:

3.2. Method of rescaling

A typical set of experimental data (e.g., obtained from
CFSE experiments) is presented as a time series for each
generation of cells. We let XnðtÞ ¼

R
N

0 xnðt; sÞ ds denote
the total number of cells in the n-th generation at time t

and consider the rescaled time series Xnðt; aÞ ¼ anXnðtÞ
with aX0: In the previous section, we explained that the
time series XnðtÞ corresponds to the original model (5)–
(6) if and only if the rescaled time series Xnðt; aÞ
corresponds to the rescaled model (7)–(8). The total
population sizes are given by

X ðtÞ ¼
XN
n¼0

XnðtÞ; X ðt; aÞ ¼
XN
n¼0

anXnðtÞ;

respectively. Since Eqs. (5) and (6) are a special case of
Eqs. (7) and (8) with a ¼ 1; we analyze the more general
case aX0:
According to Eqs. (7) and (8), the dynamics of the

rescaled total cell density xðt; s; aÞ ¼
P

N

n¼0 anxnðt; sÞ
satisfies the classical von Foerster equation (Foerster,
1959),

@xðt; s; aÞ
@t

þ
@xðt; s; aÞ

@s
¼ �ðlðsÞ þ dðsÞÞxðt; s; aÞ; ð9Þ

xðt; 0; aÞ ¼ 2a

Z
N

0

lðsÞxðt; s; aÞ ds: ð10Þ

This model is also equivalent to the celebrated Lotka
renewal equation (Sharpe and Lotka, 1911) widely used
in demographical applications (Keyfitz, 1968, 1985).
Model (9)–(10) is linear, and therefore it predicts an
asymptotically exponential net proliferation of X ðt; aÞ at
a rate rðaÞ which will vary as we vary the value a

(Bellman and Cooke, 1963). The underlying relationship
between rðaÞ and a is given by the characteristic equation
of the rescaled model

1 ¼ 2a

Z
N

0

lðsÞe�LðsÞ�DðsÞe�rðaÞs ds; ð11Þ

where LðsÞ ¼
R s

0 lðzÞ dz and DðsÞ ¼
R s

0 dðzÞ dz (Sharpe
and Lotka, 1911) (We present the derivation of Eq. (11)
in the appendix). Note that rðaÞ is a strictly increasing
function of a for aX0:
In demographic applications, the functions LðsÞ and

DðsÞ can be readily obtained from the census data
(Keyfitz, 1985) which provides the age distribution of
individuals within one generation. In our application,
the absence of such information (i.e. the age distribution
of cells within a single generation) is a major obstacle.
Fortunately, the CFSE data provide the age distribution
of cells according to their division numbers. The novelty
and the advantage of the rescaling method is that it
allows one to approximate the characteristic equation
(11) only using the distribution of cells by division
numbers. To approximate the characteristic equation
from a given experimental time series XnðtÞ; we generate
a family of rescaled time series Xnðt; aÞ; calculate the
change in the total population size X ðt; aÞ with time, and
evaluate the exponential proliferation rate rðaÞ for each
value of a: As a result, we can obtain the function rðaÞ by
manipulating a single time series of CFSE data.

3.3. Estimation of intrinsic parameters

With no additional assumptions on model (5)–(6), we
can estimate several intrinsic kinetic parameters of the
cell cycle. Estimation of intrinsic parameters can be
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able 1

he dynamics of P-14 Tg CD8 T cells after adoptive transfer into

radiated hosts (Murali-Krishna and Ahmed, 2000). The numbers

elow equal the number of cells per spleen divided by 104

t ðdaysÞ

nðtÞ 0:5 1:25 3 8

7.38 7.07 1.77 0.0

0.0 0.64 6.10 0.29

0.0 0.0 6.58 5.71

0.0 0.0 1.28 19.97

0.0 0.0 0.0 18.83

0.0 0.0 0.0 7.99

+ 0.0 0.0 0.0 4.00

stands for generation.
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performed without specific knowledge of functions lðsÞ
and dðsÞ: Such parameters include:

1. the fraction of cells that die in one generation ðdÞ;
2. the mean generation time of surviving cells ðtÞ:

Suppose that a cohort of N0 cells enters a given
generation (simultaneously) at t ¼ 0: Eq. (9) implies that
the fraction of cells that have not divided and remain
alive by time s is equal to NðsÞ ¼ Nð0Þ expð�LðsÞ �
DðsÞÞ: Consequently, the number of cells in this cohort
that will eventually divide is given by

N1 ¼
Z

N

0

lðsÞNðsÞ ds ¼ N0

Z
N

0

lðsÞe�LðsÞ�DðsÞ ds:

Assuming that in the absence of death all cells
eventually divide (that is,

R
N

0 lðsÞe�LðsÞ ds ¼ 1), we find
that the fraction of cells that die in one generation is
given by d ¼ 1� N1=N0: Consequently,

d ¼ 1�
Z

N

0

lðsÞe�LðsÞ�DðsÞ ds: ð12Þ

Similarly, the fraction of cells that survive through one
generation (and therefore divide) is given by

1� d ¼
Z

N

0

lðsÞe�LðsÞ�DðsÞ ds:

Let a� be the real root of r; that is, rða�Þ ¼ 0: Eqs. (11)
and (12) imply that

d ¼ 1�
1

2a�
; 1� d ¼

1

2a�
: ð13Þ

If not all cells die during one generation (i.e. do1),
we can define the mean generation time for surviving
cells as

t ¼
1

1� d

Z
N

0

slðsÞe�LðsÞ�DðsÞ ds: ð14Þ

In the Appendix, we show that

t ¼
1

a�r0ða�Þ
: ð15Þ

According to Eqs. (13) and (15), the quantities d and t
can be estimated from a given experimental time series
by first finding a� as the a-intercept of the graph r ¼ rðaÞ
and then finding the slope to this graph at a ¼ a�:
In addition to the mean generation time for surviving

cells t; we can estimate the variance of t; that is, the
variance of generation times for surviving cells. Such
variance is mathematically expressed as

s2t ¼
1

1� d

Z
N

0

s2lðsÞe�LðsÞ�DðsÞ ds � t2:

In the appendix, we show that s2t is given by

s2t ¼ t2 1þ ða�Þ2r00ða�Þt
� �

: ð16Þ
4. Illustration of the rescaling method

In this section, we analyze the time series describing
the dynamics of CFSE labeled P-14 transgenic naive
CD8 T cells after adoptive transfer into irradiated hosts
(Murali-Krishna and Ahmed, 2000) (Fig. 1). The
original data show that during the first week following
transfer, the cells grow exponentially (rE0:28 day�1)
and the mean number of divisions they have undergone
increases approximately linearly. The CFSE data is best
represented as the table of the number of cells having
undergone n divisions at time t (Table 1).
To estimate the parameters d and t we rescale the data

by a; where a varies from 0 upwards. We do so by
multiplying the number of cells in the n-th generation by
an; for example, if a ¼ 2 then the number of cells in the
n-th generation is multiplied by 2n: Using Table 1 for
day 3 and a ¼ 2; the rescaled numbers will be ð1:77 104Þ �
20; ð6:10 104Þ � 21; ð6:58 104Þ � 22; ð1:28 104Þ � 23 and 0:0 �
24: After rescaling the entire Table 1 with a given a;
we sum the cells in all generations and estimate the
exponential growth rate rðaÞ for the corresponding value
of a (see Fig. 1). Plotting rðaÞ as a function of a; we
estimate a� as the a-intercept and r0ða�Þ as the slope of
rðaÞ at a�: Then we use the resulting values and Eqs. (13)
and (15) to estimate d and t; respectively.
We applied the rescaling method to the data on the

dynamics of Tg CD8 T cells during proliferation in
lymphopenic hosts to estimate the relationship between
a and rðaÞ: For a list of values a (from a ¼ 0:2 to 1), we
fitted the logarithmic time series lnðX ðt; aÞÞ with a linear
function and used the resulting slope as the estimate for
rðaÞ (Fig. 1). The estimated graph of a vs. rðaÞ is shown
by a bold solid line in Fig. 2. The thin dashed lines
represent the 67% confidence intervals for rðaÞ which
were calculated as the standard errors for rðaÞ for each
value of a:
The value a� at which the rate of exponential increase

is zero is 0:549: Thus we estimated a� ¼ 0:549 with 67%
confidence intervals ð0:546; 0:551Þ (these values are a-
intercepts of 67% CI for rðaÞ; i.e., values at which the
T

T

ir

b

x

0

1

2

3

4

5

6

n
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a
) 

The characteristic equation and 67% CI

a*

r’(a )*

Fig. 2. The plot of a vs. rðaÞ obtained from the Tg cells data (see

Table 1). The bold solid line is the graph r ¼ rðaÞ obtained from the

data. The 67% confidence intervals for rðaÞ are represented by the thin

dashed lines. From this graph, we estimated the average fraction of

surviving cells as 1� d ¼ 0:91 and the mean generation time of

surviving cells as t ¼ 2:33 days.
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Fig. 1. The change in the total population size of the rescaled

population (with a ¼ 0:4 and 0.7) with time using the data in Table 1.

The regression lines for the total size increase are shown (r0 is the mean

slope; the 67% confidence intervals for the slope are in parantheses).
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dashed curves in Fig. 2 intersect the a-axis). Conse-
quently, we estimate that d ¼ 0:089 with the same small
error ðCI ¼ ð0:085; 0:092ÞÞ: Thus, approximately 9% of
the cells die on average during a single cell cycle in the
given experiment.
We estimated the slope of the function rðaÞ at

a� ¼ 0:549 using a five-point difference scheme (from
a� � 2Da to a� þ 2Da with a step Da ¼ 0:02; other small
steps gave approximately the same result) and found
that r0ða�Þ ¼ 0:782: To obtain the confidence intervals
for r0ða�Þ; we again used the five-point difference scheme
but now for 67% CI of rðaÞ to calculate the slopes r0þða

�Þ
and r0�ða

�Þ: We found the 67% confidence intervals for
r0ða�Þ to be: ð0:733; 0:831Þ: Finally, we estimated the
mean generation time of surviving cells t ¼ 1=a�r0ða�Þ
as t ¼ 2:33 days: The 67% confidence intervals for t
were ð2:18; 2:50Þ:
Based on the CFSE time series presented in Table 1,
we conclude that following transfer of CD8 T cells into
irradiated hosts approximately 9% die per cell cycle, and
the average division time for surviving cells is approxi-
mately 2.3 days.
5. Discussion

We have shown how the existing experimental data on
the dynamics of cell populations and the number of
divisions they have undergone can give us a quantitative
picture of the underlying processes of cell division and
cell death. We have argued that the problem is harder
than previously thought (Gett and Hodgkin, 2000;
Veiga-Fernandes et al., 2000; Revy et al., 2001). The
reason is that making accurate estimates of parameters
requires having a biologically reasonable quantitative
model of both cell division and cell death. While the
features of cell division can be quantitatively described
(at least to a first approximation) much less is known
about cell death. We have shown that choosing
different, biologically plausible scenarios for cell death
can lead to large inaccuracies in the estimation of the
parameters of both cell division and cell death.
As the next step, we have investigated a general class

of stage structured models, where the division and death
of a cell are random variables that depend only on the
time since cell division. For this class of models, we have
introduced the method of rescaling, identified para-
meters that are independent of the particular mechan-
isms of cell division and cell death, and shown how they
can be estimated from the CFSE data. These parameters
are the fraction of cells which die per cell cycle (d) and
the average time that surviving cells take to complete the
cell cycle (t). We should, however, note that these are
not the only invariant parameters, but have been chosen
because they have a clear biological interpretation.
Other parameters such as the variance of generation
times for surviving cells s2t can also be obtained from the
characteristic equation r ¼ rðaÞ:
Due to the linearity of model (9)–(10), the total

population size X ðtÞ should reach an exponential phase
after a short transient (Bellman and Cooke, 1963). The
rescaling method is based on the assumption that the
population is in the exponential phase, and therefore it
can be applied only to the data in which the total
population size changes exponentially (i.e., increases,
declines, or stays constant). Using the CFSE data we
can calculate the exponential rate of change of the total
population size rðaÞ if each cell divides not in 2 but in 2a

daughter cells for each value of a by rescaling the CFSE
data. The value of a at which the rescaled population
size does not change (a�), the slope and curvature of the
experimental curve rðaÞ at this point (r0ða�Þ and r00ða�Þ)
allow us to estimate d; t; and s2t :



ARTICLE IN PRESS
S. S. Pilyugin et al. / Journal of Theoretical Biology 225 (2003) 275–283 281
The rescaling method allows us to estimate the
invariant parameters without making any specific
assumptions about how and when cells divide and die.
Once a more detailed mechanistic model of cell division
and death is validated then the parameters of such a
model could be estimated. However, our present lack of
information about cell death precludes formulating such
a model.

5.1. Limitations of the rescaling method

The rescaling method is considerably more general
than existing methods to analyze cell turnover. Never-
theless, it has several important limitations:

1. The CFSE assay can only detect up to a maximum of
5–10 divisions (Lyons, 2000) (after this, the CFSE dye
becomes so dilute that it cannot be detected above
the background) and this causes truncation errors.
The truncation errors result from excluding cell
counts with higher division numbers from the total
population. It is therefore important that the CFSE
measurements are obtained prior to such truncations
having occurred.

2. In formulating the general model of cell turnover
and the rescaling method we assume that the
cell turnover is independent of both time and number
of divisions. This may not be always valid, for
example, as in the case of programmed immune
responses (Kaech and Ahmed, 2001; van Stipdonk
et al., 2001).

3. The rescaling method evaluates the function rðaÞ
assuming that the total population size changes
exponentially and disregards the transient effects.

4. The rescaling method cannot be used to analyse
the data obtained with such commonly used labels
of cell division as BrdU or D-glucose because these
labels do not allow the quantification of the
number of divisions that cells have undergone. Thus
it is easier to point out the limitations of the
earlier models for the analysis of BrdU data than
to suggest ways in which the analysis can be
improved.

5. The rescaling method described can only be applied
to a homogenous population of cells. Some of the
problems associated with measurement of turnover of
heterogenous populations of cells using BrdU label-
ing have been elegantly considered by Asquith et al.
(2002).

5.2. Existing analysis of CFSE data

Prior to this work, the CFSE data has been
interpreted using two different approaches. For com-
pleteness, we describe them here. One approach is
based on a purely statistical description of the data.
Such description includes the dynamics of the mean
number of divisions for surviving cells, the variance
in the number of divisions for surviving cells, and
the changes in the total number of precursors (obtained
by dividing the number of cells undergone n divisions
by 2n) (Gett and Hodgkin, 2000). The model of cell
division and death used by Gett and Hodgkin (2000)
may serve as an alternative to the model presented
in this paper. Gett and Hodgkin analysed the CFSE
data assuming that once a cell commits to division, its
progeny continues to divide in equal intervals of time.
They concluded that the rate at which cells commit to
division follows a normal curve. These two models
can be distinguished by estimating the variance in the
number of divisions for surviving cells. The general
model of the cell cycle predicts a continuous linear
increase in the variance while the model of Gett and
Hodgkin predicts that after a transient increase this
variance will remain nearly constant. Another approach
is to fit the random birth-death model to the CFSE data
(Veiga-Fernandes et al., 2000; Revy et al., 2001). This
approach includes the estimation of the division and
death rates (assuming that they are constant). We have
demonstrated that the parameter estimation performed
in this fashion largely depends on the specific underlying
model of cell division and death. Discrepancies in the
underlying model often lead to large inaccuracies in
the resulting estimates. In particular, we note that broad
inferences such as that of Revy et al. (2001) suggesting
that ‘‘relative sizes of the CFSE peaks do not depend on
the death rate and can be used to unambiguously
determine the mean division time’’, are not generally
valid.
We have emphasized our lack of a quantitative

understanding of cell death and explained why the
CFSE data alone cannot provide further insights
into the regulation of cell death during the cell cycle.
We hope that this theory will be instrumental in
designing direct experimental studies that would eluci-
date such mechanisms of regulation. For instance,
in vitro FLM studies of immune cell populations in
expansion and contraction phases might give us a better
understanding of where cell death occurs in the cell
cycle. Such studies might allow us to generate a
biologically valid explicit model for cell death and
stimulate the development of new quantitative methods
for estimating specific parameters of the model from
the data.
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Appendix A. Mathematical derivations

A.1. Two limiting cases of Smith–Martin equations

The original SM model (Smith and Martin, 1973) is
formulated as a set of differential equations

dAnðtÞ
dt

¼ 2bn�1ðt;DÞ � ðlþ dAÞAnðtÞ; ðA:1Þ

@bnðt; sÞ
@t

þ
@bnðt; sÞ

@s

¼ � dbbnðt; sÞ; 0osoD; bnðt; 0Þ ¼ lAnðtÞ; ðA:2Þ

where n is the number of divisions that a given cell has
undergone by time t: AnðtÞ is the number of cells in the
A-state and bnðt; sÞ is the fraction of cells that entered the
B-phase at time t � s: The amount of time that cells
spend in the A-state is exponentially distributed with
parameter l: All cells spend a constant amount of time
ðDÞ in the B-phase. The mean generation time (i.e. the
mean duration of the cell cycle) is given by T ¼ 1

l þ D:
All cells divide when they reach the end of the B-phase
and their daughter cells immediately re-enter the A-state
of the next generation. The total number of cells in the
B-phase is given by BnðtÞ ¼

R D
0 bnðt; sÞ ds: The death rates

in both states are constant and denoted by dA and dB:
One can reduce the SM model by expressing bnðt; sÞ in
terms of AnðtÞ as

bnðt; sÞ ¼ le�dBsAnðt � sÞ; 0osoD; ðA:3Þ

and replace Eqs. (A.1) and (A.2) by

dAnðtÞ
dt

¼ 2le�dBDAn�1ðt � DÞ � ðlþ dAÞAnðtÞ; ðA:4Þ

BnðtÞ ¼ l
Z D

0

e�dBsAnðt � sÞ ds: ðA:5Þ

In Eq. (A.4), the factor e�dBD is the fraction of cells
that survive in the B-phase. The mean generation time
defined as the average duration of the cell cycle is
T ¼ 1=lþ D:
In Section 2, we present two limiting cases of model

(A.4)–(A.5) as D becomes infinitesimally small. Letting
xnðtÞ ¼ AnðtÞ þ BnðtÞ; we observe that due to Eq. (A.5),
in the limiting case D-0 we also have AnðtÞ-xnðtÞ and
An�1ðt � DÞ-xn�1ðtÞ:
In the first limiting case, we let d ¼ dA ¼ dB so that

the death rate is constant throughout the cell cycle. In
the limit D-0; Eq. (A.4) is replaced by

dxnðtÞ
dt

¼ 2lxn�1ðtÞ � ðlþ dÞxnðtÞ; x0ð0Þ ¼ x0: ðA:6Þ

The mathematical solution to Eq. (A.6) can be
written as

xnðtÞ ¼
ð2ltÞn

n!
e�2lt½x0e

ðl�dÞt	: ðA:7Þ
In the second limiting case, we let dA ¼ 0 so that
there is no cell mortality in the A-state and assume
that e�dBD-1� f as D-0: Here f is a limiting fraction
of cells that die in the B-phase. This model is
described by

dxnðtÞ
dt

¼ 2lð1� f Þxn�1ðtÞ � lxnðtÞ; x0ð0Þ ¼ x0: ðA:8Þ

The mathematical solution to Eq. (3) is

xnðtÞ ¼
ð2lð1� f ÞtÞn

n!
e�2lð1�f Þt x0e

lð1�2f Þt� �
: ðA:9Þ

A.2. The characteristic equation of the general model

To derive the characteristic equation of Eqs. (9)–(10),
we substitute xðt; s; aÞ ¼ yðs; aÞerðaÞt into Eq. (9). Since
the partial derivatives of xðt; s; aÞ are given by

@x

@t
ðt; s; aÞ ¼ rðaÞyðs; aÞerðaÞt;

@x

@s
ðt; s; aÞ ¼

@y

@s
ðs; aÞerðaÞt;

yðs; aÞ is a solution of

@y

@s
ðs; aÞ ¼ �ðlðsÞ þ dðsÞ þ rðaÞÞyðs; aÞ; sX0:

Solving this equation for y; we find that

yðs; aÞ ¼ yð0; aÞe�LðsÞ�DðsÞe�rðaÞs; ðA:10Þ

where LðsÞ ¼
R s

0 lðzÞ dz and DðsÞ ¼
R s

0 dðzÞ dz: Substitut-
ing Eq. (A.10) into Eq. (10), we obtain the equation

erðaÞtyð0; aÞ ¼ 2aerðaÞtyð0; aÞ
Z

N

0

lðsÞe�LðsÞ�DðsÞe�rðaÞs ds:

Since erðaÞtyð0; aÞa0; we cancel this quantity on both
sides of the above equation to obtain the final form of
the characteristic equation

1 ¼ 2a

Z
N

0

lðsÞe�LðsÞ�DðsÞe�rðaÞs ds: ðA:11Þ

A.3. The expressions for t and s2t

To derive the expression for t; we differentiate
Eq. (A.11) with respect to a to obtain

0 ¼ 2

Z
N

0

lðsÞe�LðsÞ�DðsÞe�rðaÞs ds

� 2ar0ðaÞ
Z

N

0

slðsÞe�LðsÞ�DðsÞe�rðaÞs ds: ðA:12Þ

We substitute a ¼ a� and rða�Þ ¼ 0 into Eq. (A.12) and
obtain

0 ¼
1

a�
� 2a�r0ða�Þð1� dÞt:

Using the fact that 2a�ð1� dÞ ¼ 1; we find that

t ¼
1

a�r0ða�Þ
: ðA:13Þ
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To derive the expression for s2t ; we differentiate
Eq. (A.12) with respect to a to obtain

0 ¼ � 2r0ðaÞ
Z

N

0

slðsÞe�LðsÞ�DðsÞe�rðaÞs ds

þ 2aðr0ðaÞÞ2
Z

N

0

s2lðsÞe�LðsÞ�DðsÞ e�rðaÞs ds

� 2ðr0ðaÞ þ ar00ðaÞÞ
Z

N

0

slðsÞe�LðsÞ�DðsÞe�rðaÞs ds:

ðA:14Þ

We substitute a ¼ a�; rða�Þ ¼ 0; and Eq. (A.13) into
Eq. (A.14) and find that

1

1� d

Z
N

0

s2lðsÞe�LðsÞ�DðsÞ ds ¼ t2ð2þ ða�Þ2r00ða�ÞtÞ:

Finally, we compute

s2t ¼
1

1� d

Z
N

0

s2lðsÞe�LðsÞ�DðsÞ ds

� t2 ¼ t2ð1þ ða�Þ2r00ða�ÞtÞ: ðA:15Þ
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