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Abstract

The growth of mixed microbial cultures on mixtures of substrates is a fundamental problem of both the-
oretical and practical interest. On the one hand, the literature is abundant with experimental studies of
mixed-substrate phenomena [T. Egli, The ecological and physiological significance of the growth of hetero-
trophic microorganisms with mixtures of substrates, Adv. Microbiol. Ecol. 14 (1995) 305–386]. On the
other hand, a number of mathematical models of mixed-substrate growth have been analyzed in the last
three decades. These models typically assume specific kinetic expressions for substrate uptake and biomass
growth rates and their predictions are formulated in terms of parameters of the model. In this work, we
formulate and analyze a general mathematical model of mixed microbial growth on mixtures of substitut-
able substrates. Using this model, we study the effect of mutual inhibition of substrate uptake rates on the
stability of the equilibria of the model. Specifically, we address the following question: How much of the

dynamics exhibited by two competing species can be inferred from single species data? We provide geometric
criteria for stability of various types of equilibria corresponding to non-competitive exclusion, competitive
exclusion, and coexistence of two competing species in terms of growth isoclines and consumption curves.
A growth isocline is a curve in the plane of substrate concentrations corresponding to the zero net growth
of a given species. In [G.T. Reeves, A. Narang, S.S. Pilyugin, Growth of mixed cultures on mixtures of
substitutable substrates: The operating diagram for a structured model, J. Theor. Biol. 226 (2004) 143–
157], we introduced consumption curves as sets of all possible combinations of substrate concentrations
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corresponding to balanced growth of a single microbial species. Both types of curves can be obtained in
single species experiments.
� 2004 Elsevier Inc. All rights reserved.
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1. Introduction

The coexistence of competing species is a problem that has attracted the attention of many
researchers. The earliest mathematical formulation of the problem is attributed to the works of
Lotka [1] and Volterra [2] in the 1920s. In the Lotka–Volterra model, two species compete for
two non-replenishable resources whose availability decreases linearly with the abundance of each
competing species. The model focussed entirely on the dynamics of the competing species, and did
not describe the dynamics and/or the possible interactions between the resources. The develop-
ment of resource-based models began with Monod�s experimental studies which established a
quantitative relation between the growth of microbial populations and the availability of re-
sources [3]. Specifically, Monod demonstrated that when the growth of microbes is limited by a
single resource (or substrate), the specific growth rate is a saturable function of the substrate con-
centration, and the specific substrate uptake rate is proportional to the specific growth rate. Pow-
ell generalized Monod�s model to the growth of two microbial species limited by a single substrate
[4]. Over the last three decades, the mathematical theory of microbial competition has been a sub-
ject of interest for many researchers. A book of Smith and Waltman [5] provides an excellent ac-
count of this theory and contains extensive bibliography on this topic. The cornerstone of the
theory is the principle of competitive exclusion which states that at most one species can survive
in the well-stirred chemostat limited by a constant supply of a single growth-limiting substrate.
This principle has been validated both theoretically and experimentally [4,6,8,7,9–11].

In the presence of multiple growth-limiting substrates, it becomes important to specify the
nutritional requirements satisfied by the substrates. Two growth-limiting substrates are substitut-
able if they satisfy identical nutritional requirements, so that a species can grow on either one of
the substrates. The two substrates are complementary or essential if they satisfy distinct nutritional
requirements, so that growth is impossible in the absence of either one of the substrates. Over the
last several decades, a series of models have been introduced that recognize not only the existence
of the resources for which the species compete, but also the nature of the nutrient requirements
satisfied by the resources [12,13,15,16]. In this paper, we focus on the growth of two microbial
species in a chemostat fed with a mixture of two substitutable substrates, and obtain a series of
results that improve upon the findings of previous studies.

Leon and Tumpson assumed that substrate uptakes in substitutable mixtures are non-interact-
ing, i.e., the uptake rate of a substrate is unaffected by the presence of the other substrate [12]. It
was shown that under these conditions, two species coexist at a stable equilibrium if and only if
each species consumes more of the substrate which influences their growth rate more strongly.
This is a generalization of the Gilpin–Justice stability criterion derived from the Lotka–Volterra
model for competing species [23]. However, the experimental literature provides sufficient evi-
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dence that the substrate uptake rates are not independent. In Section 2.1, we demonstrate that for
microbial cultures growing on mixtures of substitutable substrates, the interaction between the
substrates is, in general, mutually inhibitory. Although the nature of such inhibitory interaction
remains unclear, the experimental evidence shows that each substrate inhibits the rate of uptake of
the other substrate.

An extensive analysis of a mathematical model in which two substitutable substrates may inhi-
bit each others uptake was conducted by Ballyk and Wolkowicz [16]. They analyzed the existence
and uniqueness of equilibria of the model and obtained important results regarding the stability
properties of these equilibria. Specifically, they obtained necessary and sufficient conditions for
the uniform persistence for single- and mixed species cultures, proved the global asymptotic sta-
bility of the single species equilibria, and provided a complete classification of dynamic outcomes
in the case of non-interacting substrates. They also showed that the growth of a single species may
exhibit multiple equilibria and that in some cases the presence of the second competing species
enables a given species to survive in the chemostat, a phenomenon referred to as the competi-
tor-mediated coexistence. In [17], Ballyk and Wolkowicz studied the effects of �enrichment� of sin-
gle species cultures by varying the feed concentrations and demonstrated that for intermediate
dilution rates an increase in the feed concentration of one of the substrates may result in the
extinction of the microbial culture. In both articles [16] and [17], Ballyk and Wolkowicz made
an additional assumption regarding the specific growth rate of each microbial species which effec-
tively restricted the geometry of growth isoclines to the class of monotone curves even though the
functions modeling the specific growth rates may be non-monotone. In this paper, we extend their
analysis to the case of non-monotone growth isoclines and show that most of their conclusions
remain valid. We also provide a necessary and sufficient condition for stability of single species
equilibria and extend their analysis of hysteresis-like switching behavior of single species growing
on a mixture of two (substitutable substrates) to a more general class of uptake and growth rates.
Finally, we present a constructive proof for the existence of Hopf bifurcations, and provide a suf-
ficient condition for this bifurcation. The possibility of Hopf bifurcations was mentioned in [16].

In their work, Ballyk and Wolkowicz followed an analytical approach. In contrast, Tilman
developed a graphical theory of two-species growth on arbitrary mixtures of substrates [13,14].
He showed that the existence of the non-trivial steady state at any given dilution rate and feed
concentrations could be predicted from single-species data. Specifically, a coexistence steady state
exists if and only if the dilution rate is such that the two growth isoclines intersect at positive sub-
strate concentrations, and the vector of feed concentrations lies in the positive cone generated by
the consumption vectors at the intersection of the growth isoclines (Fig. 1). Tilman calculated the
growth isoclines and consumption vectors by appealing to kinetic models that assume specific
functional forms for the growth and substrate uptake rates. We show below that in microbial cul-
tures, the growth isoclines and consumption vectors can be determined directly from the experi-
mental data without any recourse to models. Tilman also developed a graphical interpretation of
the generalized Gilpin–Justice criterion: A coexistence steady state is asymptotically stable if and
only if the two pairs of vectors, namely, the slopes of the two growth isoclines and the consump-
tion vectors for the two species, have the same orientation. In this paper, we show that when the
interaction between the substrates is mutually inhibitory, the generalized Gilpin–Justice criterion
is necessary, but not sufficient for the stability of coexistence equilibria. The feed concentrations
can be varied in such a way that the coexistence steady state undergoes a Hopf bifurcation even
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Fig. 1. Application of Tilman�s criterion for existence of non-trivial steady states to growth of A. formosa (species 1)
and C. meneghianiana (species 2) on a mixture of phosphate (s1) and silicate (s2) [13,14]. The full and dashed lines show
the growth isoclines for species 1 and 2 at the dilution rate, D = 0.25 l/day. These curves are given by the equation
rgi ðs1,s2Þ ¼ D, where rgi is the specific growth rate of the ith species on s1 and s2. The intersection point corresponds to the
substrate concentrations at the coexistence steady state. The arrows show the consumption vectors, ðrs11,rs12Þ and ðrs21,rs22Þ,
at the intersection point, where rsij is the specific uptake rate of the jth substrate by the ith species. Tilman showed that
the coexistence steady state exists if and only if the feed concentrations lie in the positive cone of the consumption
vectors. To calculate the growth isoclines and consumption vectors, he assumed that rgi � minfrgi1ðs1Þ,r

g
i2ðs2Þg and

rsij ¼ rgi =Y ij, where rgijðsjÞ and Yij denote the specific growth rate and yield of the ith species on sj alone.
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though the Gilpin–Justice condition is satisfied. This method may also be applied to the case of
complementary substrates where the Hopf bifurcations were reported previously [15].

In this paper, we show that the conditions for existence and stability of equilibria can be ex-
pressed in simple graphical terms. More importantly, the validity of the graphical criteria can
be ascertained by inspection of the single-species data. To this end, we define the notion of the
consumption curve for a given species. We show that such curves are completely determined by
the single-species data. The stability of the semitrivial steady state is completely determined by
the manner in which the growth isocline and the consumption curve intersect. This result enables
us to give a graphical interpretation of the multiple steady states that can occur in single-species
growth. More generally, we show that consideration of the consumption curves together with the
growth isoclines clarifies the analogy with the Lotka–Volterra model for competing species.

The rest of this paper is organized as follows. In Section 2, we describe a mathematical model of
microbial competition that includes the mutually inhibitory interaction between the substrates.
We term this model phenomenological 1 because it does not include a specific mechanism for such
inhibitory interaction. In Section 2.1, we provide the experimental basis for our modeling assump-
tions. In Sections 2.2 and 3, we analyze the consumption curves and the growth isoclines and de-
rive the criteria for the existence and stability of equilibria of the model. We revisit the notion of
1 The present report lays out the foundation for the study of a physiological model in which we describe a specific
mechanism of substrate interaction by including the dynamics of transport enzymes that catalyze the uptake of the
substrates. There, we use the insights from the analysis of the phenomenological model to study the existence and
stability of the equilibria of the physiological model.
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substrate preference in Section 4. We illustrate possible applications of our results in 5. The sum-
mary of the results is presented in Section 6.
2. The model

We consider the model
_sj ¼ Dðsfj � sjÞ � c1r1jðs1,s2Þ � c2r2jðs1,s2Þ, ð1Þ

_ci ¼ ciðrgi ðs1,s2Þ � DÞ, ð2Þ
where ci, i = 1,2 denote microbial concentrations and sj, j = 1,2 denote the substrate concentra-
tions. The function rij represents the specific uptake rate of the jth substrate by the ith species, and
rgi denotes the specific growth rate of the ith species. The dilution rate D and the substrate feed
concentrations sfj are the operating parameters and can be adjusted in the course of an experiment.

We make the following assumptions regarding the specific uptake and growth rates.

1. The specific uptake rate ri1, i = 1,2 of substrate s1 increases monotonically with s1 but is inhib-
ited by an increase of substrate s2 (and vice versa). We refer to this phenomenon as the mutual
inhibition of substrate uptake. Mathematically, we postulate that for all i, j = 1,2 and for all
s1, s2 > 0, rij(s1, s2) > 0 with ri1(0, s2) = 0 and ri2(s1,0) = 0 so that neither substrate can be con-
sumed in its absence, and
ori1
os1

ðs1,s2Þ > 0,
ori2
os2

ðs1,s2Þ > 0, sj > 0, ð3Þ

ori1
os2

ðs1,s2Þ < 0,
ori2
os1

ðs1,s2Þ < 0, sj > 0 ð4Þ
for i, j = 1,2.
2. The specific growth rate of the ith species has the form
rgi ðs1,s2Þ ¼ Y i1ri1ðs1,s2Þ þ Y i2ri2ðs1,s2Þ, ð5Þ

where Yij denotes the yield of species ci when it grows on substrate sj alone. In the microbio-
logical literature, the yields are said to be additive whenever the specific growth rate admits of
such a representation. Note that if the mutual inhibition is weak (or non-existent as in the
model of Leon and Tumpson [12]), rgi ðs1,s2Þ is an increasing function of both substrate
concentrations.

We show below that these assumptions are supported by the single-species data for mixed-sub-
strate growth in both batch and continuous cultures.

Remark. Although Eqs. (1) and (2) and the assumptions (3) and (4) are the same as in [16], there is
an important difference. Ballyk and Wolkowicz make an additional assumption that the specific
growth rate rgi of the ith species is strictly increasing in s1 and that there exists a critical
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concentration sc1 such that
orgi
os2

> 0 for s1 < sc1 and
orgi
os2

< 0 for s1 > sc1 for all s2 > 0. They distinguish
between the substrates based on the maximal growth rates that would result if each substrate was
supplied alone, so that one substrate (s1) supports a higher maximal growth rate and the other
substrate (s2) supports a lower maximal growth rate. In their model, when both substrates are in
short supply, increasing the concentration of either one is beneficial. At the critical concentration
s1 ¼ sc1, the growth rate on s1 alone equals the maximal growth rate on s2 alone. Once this critical
concentration is exceeded ðs1 > sc1Þ, then increasing the concentration of s2 inhibits growth, but
not below the lower maximal growth rate. This assumption effectively restricts the growth
isoclines (the indifference curves using the terminology in [16]) to the case of monotone curves. We
do not make such assumption in this paper.
2.1. Experimental basis for model assumptions

The data obtained in batch cultures show that the specific uptake rate of a substrate is never
improved by the addition of another substitutable substrate to the medium. Table 1 illustrates this
point with experimental data for E. coli K12. The third column of the table shows the change in
the specific uptake rate of s1 when s2 is added to a culture of E. coliK12 that is already growing on
s1. The fourth column of the table shows the change in the specific uptake rate of s2 when s1 is
added to a culture of E. coli K12 growing on s2. The first four rows provide clear evidence of mu-
tual inhibition: Each substrate inhibits the uptake of the other substrate. The last two rows show
the striking effect of a mutual inhibition that is highly asymmetric. Glucose inhibits the uptake of
fumarate and succinate so strongly that there is no consumption of these organic acids. Only glu-
cose is consumed until it is almost completely exhausted.

The substrate concentrations used in batch cultures are typically quite large (0.1–1g/l). Analysis
of the data obtained from continuous cultures confirms the existence of a mutually inhibitory
interaction at the lower substrate concentrations (�0.01g/l). Before describing the experimental
evidence, we give a brief overview of the experiments. In the literature, steady state continuous
culture data have been reported for two types of experiments.
Table 1
Evidence of mutually inhibitory interaction in batch cultures of E. coli K12 (from [24])

Substrate pair % change in specific uptake
rate

% change in specific
growth rate

s1 s2 s1 s2 s1 s2

Pyruvate Fumarate �12% �33% 79% 22%
LL-Lactate Fumarate �20% �35% 72% 22%
Pyruvate Oxoglutarate �20% �39% 61% 61%
LL-Lactate Oxoglutarate �37% �23% 72% 67%
Glucose Fumarate 0% �100% 0% 80%
Glucose Succinate 0% �100% 0% 68%

The first and second columns show the pair of substitutable substrates, s1 and s2, with which the experiment was
performed. The third column (resp., fourth) shows the percent change in the specific uptake rate of s1 (resp., s2) when s2
(resp., s1) is added to the medium. The fifth (resp., sixth) column shows the percent change in the specific growth rate
when s2 (resp., s1) is added to a culture growing on s1 (resp., s2).
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1. The dilution rate is varied, while the feed concentrations are held fixed. Fig. 2(a) shows the
data obtained when such experiments were performed with H. polymorpha as the pure species,
and glucose plus methanol as the two growth-limiting substrates. Both substrates are con-
sumed at low dilution rates, only glucose is consumed at intermediate dilution rates, and nei-
ther substrate is consumed at large dilution rates. Such pattern of substrate consumption has
been observed in many different systems, and we shall provide a mechanistic model for this
pattern in the sequel to this paper.

2. The composition of the feed is varied, while the dilution rate and the total feed concentration
are held fixed. Fig. 2(c) shows the data obtained when such experiments were performed with
E. coli ML308, as the pure species, and glucose plus galactose as the two growth-limiting sub-
strates. The data shows that the concentration of a substrate increases with the proportion of
the substrate in the feed.

The experiments of the first type can be performed at various fixed feed concentrations.
Egli and coworkers obtained such data for the growth of H. polymorpha on a mixture of glu-
cose and methanol (Fig. 3(a) and (b)). Given any residual methanol concentration, this data
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Fig. 2. Variation of the steady state concentrations and specific substrate uptake rates in typical single-species
experiments. Upper panel: Experimental data for growth of H. polymorpha at varying dilution rates, and fixed feed
concentrations of 2g/l of glucose and 3g/l of methanol (from [18,19]). (a) The cell density and residual concentrations of
glucose and methanol at various dilution rates. (b) The corresponding specific uptake rates of glucose and methanol.
Lower panel: Experimental data for growth of E. coli ML308 growing on a mixture of glucose and galactose at varying
feed compositions, and fixed dilution rate (0.3 l/h) and total substrate concentration (100mg/l) [20]. (c) The cell density
and residual concentrations of glucose and galactose at various feed compositions. (d) The corresponding specific
uptake rates of glucose and galactose.
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Fig. 3. Evidence of mutually inhibitory interaction in continuous cultures (from [19]) (a) The steady state substrate
concentrations during growth of H. polymorpha on various mixtures of glucose and methanol. Each data set was
obtained at a fixed feed concentration. The total feed concentration of glucose plus methanol was always 5g/l. The feed
concentrations were varied by changing the weight percent glucose in the feed (see legend). (b) The corresponding cell
densities. (c) The specific substrate uptake rates of glucose and methanol when the concentration of residual methanol is
0.01g/l. The specific uptake rates were calculated from the data in (a) and (b).
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immediately yield the corresponding set of dilution rates and specific substrate uptake rates.
Fig. 3(c) shows the specific uptake rates of glucose and methanol as a function of the dilution rate
when the residual methanol concentration is 0.01g/l. Note that the specific uptake rate of meth-
anol decreases with D. The glucose concentrations under these conditions were below the detec-
tion limit of 2mg/l. However, since the specific uptake rate of glucose increases with D, so must
the glucose concentration. Thus, the data imply that glucose inhibits the uptake of methanol even
if the concentration of methanol is small.

The data in columns 5 and 6 of Table 1 suggest that despite the mutual inhibition of sub-
strate uptakes, the addition of a second substrate always stimulates the specific growth rate,
so that rgi ðs1,s2Þ is an increasing function of s1 and s2. This is true in many cases, and in the
sequel to this paper, we describe a physiological mechanism for this behavior. However, there
are instances in which the addition of a second substrate depresses the specific growth rate.
When xylose or glycerol is added to a batch culture of H. polymorpha growing on glucose,
the specific growth rate decreases from 0.61 l/h to 0.47 l/h and 0.52 l/h, respectively [25]. Like-
wise, when 3-phenylpropionic acid is added to a batch culture of E. coli ML308 growing on
glucose, the specific growth rate decreases from 0.91 l/h to 0.70 l/h [26]. Thus, in general,
rgi ðs1,s2Þ is a non-monotone function.

2.2. Consumption curves and growth isoclines

In what follows, we shall constantly appeal to the notions of consumption curves and growth
isoclines. Here, we define these curves and show that they are completely determined by single-
species data.

Definition. We define the consumption curve Ui of the ith species as the locus of all pairs (s1, s2)
such that
sf1 � s1
ri1ðs1,s2Þ

¼ sf2 � s2
ri2ðs1,s2Þ

P 0,
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Fig. 4. (a) The consumption curve for H. polymorpha growing on a mixture of 2g/l of glucose and 3g/l of methanol.
The curve was derived from the data Fig. 2(a). (b) The growth isocline for E. coli ML308 growing on a mixture of
glucose and galactose at a dilution rate of 0.3 l/h. The curve was derived from the data in Fig. 2(b).
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with 0 6 sj 6 sfj. We emphasize that the consumption curves for both species are independent of
the dilution rate D.

The consumption curve Ui represents the set of all possible substrate concentrations (s1, s2) ob-
tained at equilibrium where the ith species alone is cultivated at fixed feed concentrations, ðsf1,sf2Þ.
Indeed, consider the culture inoculated with species c1 alone, so that c2 = 0. At an equilibrium,
_s1 ¼ _s2 ¼ 0 and thus according to (1),
c1
D

¼ sf1 � s1
r11ðs1,s2Þ

¼ sf2 � s2
r12ðs1,s2Þ

: ð6Þ
Therefore, the (s1, s2) coordinates of any single species equilibrium with c2 = 0 satisfy the relation
defining U1. Similarly, the (s1, s2) coordinates of any single species equilibrium with c1 = 0 satisfy
the relation defining U2.

The consumption curve for a given species can be constructed from the single-species data
obtained at fixed feed concentrations. Fig. 4(a) shows the consumption curve for H. polymor-
pha constructed from the data shown in Fig. 2(a). Superimposed on the consumption curve
are the corresponding consumption vectors, (ri1, ri2), derived from Fig. 2(b). As expected from
(6), the consumption vectors point toward the feed point ðsf1,sf2Þ. The data show that the
consumption curve is the graph of an increasing function. In the following Lemma, we argue
that this property is a consequence of the mutually inhibitory interaction between the
substrates.

Lemma 1. The consumption curve Ui of the ith species is a graph of a smooth function
s2 ¼ giðsf1,sf2,s1Þ which is monotonically increasing in s1 and sf2 and monotonically decreasing in sf1.
Moreover, s2 ¼ giðsf1,sf2,s1Þ is defined for all 0 6 s1 6 sf1 and
lim
s1!0

giðsf1,sf2,s1Þ ¼ 0, lim
s1!sf

1

giðsf1,sf2,s1Þ ¼ sf2:
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Proof. The consumption curve Ui is implicitly defined as the set of all solutions of the equation
F iðs1,s2,sf1,sf2Þ ¼ ðsf1 � s1Þri2ðs1,s2Þ � ðsf2 � s2Þri1ðs1,s2Þ ¼ 0:
For 0 < sj < sfj,
oF i

os1
¼ �ri2 þ ðsf1 � s1Þ

ori2
os1

� ðsf2 � s2Þ
ori1
os1

< 0,

oF i

os2
¼ ri1 þ ðsf1 � s1Þ

ori2
os2

� ðsf2 � s2Þ
ori1
os2

> 0,
due to assumptions (3) and (4). Consequently, equation Fi = 0 defines a smooth function
s2 ¼ giðsf1,sf2,s1Þ which is monotonically increasing in s1. Since
F ið0,0,sf1,sf2Þ ¼ F iðsf1,sf2,sf1,sf2Þ ¼ 0,
it follows that giðsf1,sf2,0Þ ¼ 0 and giðsf1,sf2,sf1Þ ¼ sf2.
To show that gi is a decreasing function of sf1, we differentiate equation F iðs1,giðsf1,sf2,s1Þ,

sf1,s
f
2Þ ¼ 0 with respect to sf1 to obtain
ri2ðs1,giðsf1,sf2,s1ÞÞ þ ðsf1 � s1Þ
ori2
os2

ðs1,giðsf1,sf2,s1ÞÞ
ogi
osf1

ðsf1,sf2,s1Þ

� ðsf2 � s2Þ
ori1
os2

ðs1,giðsf1,sf2,s1ÞÞ
ogi
osf1

ðsf1,sf2,s1Þ ¼ 0:
Since ori2
os2

> 0 and ori1
os2

< 0, we find that ogi
osf

1

ðsf1,sf2,s1Þ < 0. A similar argument shows that
ogi
osf

2

ðsf1,sf2,s1Þ > 0. h

Definition. We define the growth isocline Gi of the ith species as the locus of all pairs (s1, s2)
such that rgi ðs1,s2Þ ¼ D with sj P 0. We note that Gi is independent of the feed concentrations
sfj.

The growth isocline for a given species can be constructed from the single-species data obtained
at a fixed dilution rate. Fig. 4(b) shows the growth isocline for E. coliML308 constructed from the
data shown in Fig. 2(c). Superimposed on the growth isocline are the corresponding consumption
vectors (rglu

s, rgal
s) obtained from the data shown in Fig. 2(d). Thus, all the information required

to apply Tilman�s criterion for existence of a non-trivial steady state can be completely determined
from single-species data without appealing to specific kinetic models.

If rgi ðs1,s2Þ is an increasing function of both substrates, the growth isocline is a graph of a mono-
tone decreasing function in the (s1, s2) plane. However, as noted above, there are instances where
rgi ðs1,s2Þ is non-monotone. It is therefore possible that for some range of dilution rates, the growth
isocline may be a graph of a non-monotone function or it may consist of several disconnected
curves (i.e. not be graph of any function).
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3. Equilibria and their stability

The model equations (1) and (2) yield three types of equilibria:

1. The trivial equilibrium, denoted /00, at which neither species is present the chemostat
(c1 = c2 = 0);

2. The semitrivial equilibria at which only one of the two species is present in the chemostat: /10

(c1 > 0, c2 = 0), and /01 (c2 > 0, c1 = 0);
3. The non-trivial equilibrium, denoted /11, at which the both species are present in the chemo-

stat (c1,c2 > 0).

In this section, we discuss the existence and stability of all three types of steady states.

3.1. The trivial equilibrium /00

Lemma 2. The trivial equilibrium /00: ðs1,s2,c1,c2Þ ¼ ðsf1,sf2,0,0Þ of (1) and (2) always exists. It is
asymptotically stable if rg1ðsf1,sf2Þ < D and rg2ðsf1,sf2Þ < D and unstable if one of these inequalities is
reversed.

Proof. Existence and uniqueness of /00 is straightforward. The variational matrix of (1) and (2) at
/00 is given by
Jð/00Þ ¼

�D 0 �r11 �r21
0 �D �r12 �r22
0 0 rg1 � D 0

0 0 0 rg2 � D

0
BBB@

1
CCCA, ð7Þ
where rij ¼ rijðsf1,sf2Þ and rgi ¼ rgi ðsf1,sf2Þ. The eigenvalues of (7) are given by
k1 ¼ k2 ¼ �D, k3 ¼ rg1 � D, k4 ¼ rg2 � D:
It follows that /00 is stable if and only if rgi < D for i = 1,2. h
3.2. The semitrivial equilibria /10 and /01

Any semitrivial equilibrium /10 of (1) and (2) must satisfy c1 > 0, c2 = 0. Eqs. (1) and (2) imply
that the projection of such an equilibrium onto the (s1, s2) plane must be an intersection of the
consumption curve and the growth isocline of the 1st species. Now, if the mutual inhibition is
weak, orgi =os1,or

g
i =os2 > 0, and the growth isocline is monotone. In this case, the monotonicity

of the consumption curve implies that the specific growth rate increases monotonically along
the consumption curve. Since rgi ð0,0Þ ¼ 0 < D, a unique semitrivial equilibrium exists if and only
if rgi ðsf1,sf2Þ > D. However, if the mutual inhibition is strong, a growth isocline may be non-
monotone. It can then intersect the consumption curve several times, thus generating multiple
semitrivial equilibria. In general, it is difficult to provide necessary and sufficient conditions for
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the existence of multiple semitrivial equilibria without making specific assumptions about the nat-
ure of the function rgi ðs1,s2Þ. Since there is little experimental data to support such assumptions, we
will assume the existence of such semitrivial equilibria, and provide a geometric criterion for their
stability. The following notion is crucial for this purpose.

Definition. Let (s1, s2) be a point of intersection of the consumption curve Ui and the growth
isocline Gi of the ith species. Let F iðs1,s2,sf1,sf2Þ be the tangent vector to the consumption curve Ui

oriented in the direction of increasing sj and let rrgi ðs1,s2Þ be the gradient of the specific growth
rate. We say that the substrates s1 and s2 are

• locally synergistic for the ith species if rrgi ðs1,s2Þ � F iðs1,s2,sf1,sf2Þ > 0;
• locally antagonistic for the ith species if rrgi ðs1,s2Þ � F iðs1,s2,sf1,sf2Þ < 0.

Both types of substrate interactions are illustrated in Fig. 5(a). Biologically, the substrates are
synergistic if increasing both substrate levels along the consumption curve results in the increase
of the overall growth rate and antagonistic otherwise.

Remark. In general, the slope of the consumption curve through a given point (s1, s2) depends on
both feed concentrations sfj. Therefore, the same substrates may behave synergistically or
antagonistically at different feed concentrations. Nevertheless, if rrgi ðs1,s2Þ 2 R2

þ then the
substrates are synergistic for all feed concentrations, and if rrgi ðs1,s2Þ 2 R2

� then the substrates are
antagonistic for all feed concentrations.

The following Theorem elucidates the relation between the particular type of substrate interac-
tion and the stability of the semitrivial equilibrium of (1) and (2).

Theorem 3. The semitrivial equilibrium /10 = (s1, s2, c1,0) is asymptotically stable if and only if
rg2ðs1,s2Þ < D and the substrates s1 and s2 are locally synergistic at /10. If r

g
2ðs1,s2Þ > D and the
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Fig. 5. Stability of the semitrivial equilibria. (a) Two different types of interaction between substrates s1 and s2. At the
intersection A, the substrates are antagonistic because rrg1 � F 1 < 0. At the intersection S, the substrates are synergistic
because rrg1 � F 1 > 0. (b) Possible hysteresis in the single-species case. The growth isocline of the ith species is given by
Gi. The stable and unstable equilibria are represented by S and U, respectively.
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substrates s1 and s2 are locally synergistic at /10, then /10 is unstable with one positive eigenvalue. If
rg2ðs1,s2Þ > D and the substrates s1 and s2 are locally antagonistic at /10, then /10 is unstable with
two positive eigenvalues. In each of the above cases, the variational matrix of (1) and (2) at /10

admits only real eigenvalues.

Proof. The variational matrix of (1) and (2) at /10 has the form
Jð/10Þ ¼

�D� c1
or11
os1

�c1
or11
os2

�r11 �r21

�c1
or12
os1

�D� c1
or12
os2

�r12 �r22

c1
org

1

os1
c1

org
1

os2
0 0

0 0 0 rg2 � D

0
BBBBB@

1
CCCCCA
, ð8Þ
where rij = rij(s1, s2),
orij
osk

¼ orij
osk

ðs1,s2Þ,
org

1

osj
¼ Y 11

or11
osj

þ Y 12
or12
osj
, and rgi ¼ rgi ðs1,s2Þ.

Clearly, one eigenvalue of (8) is k4 ¼ rg2 � D. The remaining three eigenvalues of (8) are the
eigenvalues of the submatrix
A ¼

�D� c1
or11
os1

�c1
or11
os2

�r11

�c1
or12
os1

�D� c1
or12
os2

�r12

c1
org

1

os1
c1

org
1

os2
0

0
BBB@

1
CCCA: ð9Þ
The determinant of A equals
detA ¼ c1
org1
os1

c1r12
or11
os2

� Dr11 � c1r11
or12
os2

� �
� c1

org1
os2

c1r12
or11
os1

þ Dr12 � c1r11
or12
os1

� �
: ð10Þ
Observe that the following relations must hold at /10:
c1r11 ¼ Dðsf1 � s1Þ, c1r12 ¼ Dðsf2 � s2Þ, Y 11r11 þ Y 12r12 ¼ D: ð11Þ

Substituting the first two relations of (11) into (10), we can rewrite the determinant of A as
detA ¼ c1D
org1
os1

ðsf2 � s2Þ
or11
os2

� r11 � ðsf1 � s1Þ
or12
os2

� �

� c1D
org1
os2

ðsf2 � s2Þ
or11
os1

þ r12 � ðsf1 � s1Þ
or12
os1

� �
,

or simply as
detA ¼ �c1D
org1
os1

oF 1

os2
þ c1D

org1
os2

oF 1

os1
¼ �c1Drrg1 � F 1, ð12Þ
where F 1 ¼ oF 1

os2
,� oF 1

os1

� �
is the tangent vector to the consumption curve U1 oriented in the direc-

tion of increasing sj. Since c1D > 0, we conclude that detA < 0 if the substrates are locally syner-
gistic and detA > 0 if the substrates are locally antagonistic.

One eigenvalue of A is given by k3 = �D. Indeed, a direct calculation shows that
(Y11,Y12,1) Æ (A + DI) = 0 due to the third relation in (11). The trace of A is given by
trA ¼ �2D� c1
or11
os1

� c1
or12
os2

:
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Since k3 = �D, the sum of the two remaining eigenvalues k1 and k2 must be strictly negative
k1 þ k2 ¼ �D� c1
or11
os1

� c1
or12
os2

< 0:
Moreover, the product k1k2 equals � detA
D because k3 = �D. If detA < 0 (synergistic substrates),

then k1k2 > 0 which implies that Rk1,k2 < 0. If detA > 0 (antagonistic substrates), then k1k2 < 0
which implies that k2 < 0 < k1. This concludes the proof of Theorem 3. h

Remarks

1. If the model (1) and (2) does not include the mutual inhibition of uptake rates (e.g., in the
model of Leon and Tumpson [12]), then the substrates are synergistic for all feed concentra-
tions. In this case, the variational matrix (8) has three real negative eigenvalues and the fourth
eigenvalue k4 ¼ rg2 � D may be positive or negative.

2. The positivity of k4 ¼ rg2 � D is traditionally interpreted as the invasion criterion. Specifically,
k4 ¼ rg2 � D > 0 if and only if the equilibrium /10 can be successfully invaded by the second
species. The instability of /10 resulting from antagonistic interaction between substrates can
be associated with the sub-optimal consumption regime of the first species. Indeed, if rg1 is
locally decreasing along U1 at /10, then there exists a semitrivial equilibrium /0

10 with lower
values of s1 and s2 where the substrates are synergistic.

3. If /10 is unique, it implies that the substrates are locally synergistic. Moreover, it implies
that rg1ðsf1,sf2Þ > D so that /00 is unstable. In this case, our conclusions are the same as in
[16].

4. The stability analysis of Theorem 3 provides a plausible explanation of �hysteresis� effects
observed in single-species growth. For instance, if the substrate feed composition is changed
continuously, a single species culture may exhibit an abrupt switch from one consumption
regime to another [21]. This phenomenon cannot be observed when the growth isocline is a
monotonically decreasing curve. But if the growth isocline is a non-monotone curve such as
shown in Fig. 5(b), then it is possible to vary the feed concentrations to generate the sequence
of the consumption curves such as U1, U2, and U3. When U = U1 or U = U3, there is a unique
stable equilibrium. When U = U2, there are two stable and one unstable semitrivial equilibria.
If the consumption curve varies as U1 ! U2 ! U3 ! U2 ! U1 the observed (stable) equilib-
rium will follow a hysteresis curve with the jumps indicated by the arrows in Fig. 5(b). In
[17], Ballyk and Wolkowicz analyzed the hysteretic switching between the trivial and semitriv-
ial equilibria, whereas in general the switches may occur between two semitrivial equilibria as
shown in Fig. 5(b).
The next result concerns the global convergence of solutions in the single-species case. The ori-
ginal proof was presented in [16] for the case when the semitrivial equilibrium /10 is either unique
or non-existent. Theorem 4 simply extends the proof to the case of multiple semitrivial equilibria.

Theorem 4. If c1 = 0 or c2 = 0, then any solution of (1) and (2) converges to an equilibrium. If /10 is
unique, then all solutions of (1) and (2) with c1 > 0 and c2 = 0 converge to /10. Similarly, if /01 is
unique, then all solutions of (1) and (2) with c1 = 0 and c2 > 0 converge to /01.
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Proof. We will prove the theorem in case c2 = 0 (the case c1 = 0 is analogous). If c2 � 0, then the
system (1) and (2) reduces to
_s1 ¼ Dðsf1 � s1Þ � c1r11ðs1,s2Þ,
_s2 ¼ Dðsf2 � s2Þ � c1r12ðs1,s2Þ,
_c1 ¼ c1ðY 11r11ðs1,s2Þ þ Y 12r12ðs1,s2Þ � DÞ:
Multiplying the first equation by Y11, the second equation by Y12 and then adding both to the
third equation, we find that
d

dt
ðY 11s1 þ Y 12s2 þ c1Þ ¼ DY 11sf1 þ DY 12sf2 � DðY 11s1 þ Y 12s2 þ c1Þ:
Consequently, the affine set
L ¼ fc1 ¼ Y 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þg
is an attracting invariant set of (1) and (2). It is clear that k3 = �D describes the exponential rate
of convergence to this set. The dynamics of (1) and (2) on L is determined by the limiting system,
_s1 ¼ Dðsf1 � s1Þ � fY 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þgr11ðs1,s2Þ ¼ !1ðs1,s2Þ, ð13Þ

_s2 ¼ Dðsf2 � s2Þ � fY 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þgr12ðs1,s2Þ ¼ !2ðs1,s2Þ: ð14Þ
The system (13) and (14) is strictly cooperative for 0 < sj 6 sfj. Indeed, since
or11
os2

6 0 and or12
os1

6 0,
we have that
o!1

os2
¼ �fY 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þg

or11
os2

þ Y 12r11 > 0,
and
o!2

os1
¼ �fY 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þg

or12
os1

þ DY 11r12 > 0:
Specifically, this implies that any solution of (13) and (14) converges to an equilibrium. Using the
theory of asymptotically autonomous systems [22], we conclude that any solution of the full sys-
tem converges to an equilibrium. As we remarked earlier, whenever /10 is unique, it is the only
stable equilibrium with c2 = 0. Consequently, all solutions of (1) and (2) with c1 > 0 and c2 = 0
converge to /10. h
3.3. The non-trivial equilibrium /11

The non-trivial equilibrium /11 is characterized by the relations
rg1 ¼ rg2 ¼ D, Dðsfj � sjÞ ¼ c1r1j þ c2r2j, j ¼ 1,2:
Specifically, the projection of /11 onto the (s1, s2) plane must be an intersection of the growth iso-
clines G1 and G2.
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Definition. We define the envelope of coexistence as the set of all points in the (s1, s2) plane that lie
between the two consumption curves U1 and U2. The following theorem shows that only those
intersections of G1 and G2 that occur within the envelope of coexistence correspond to the
coexistence equilibrium /11.

Theorem 5. An intersection of two growth isoclines is a projection of a coexistence equilibrium /11

onto the (s1, s2) plane if and only if belongs to the envelope of coexistence.

Proof. Any intersection of G1 and G2 corresponds to a point (s1, s2) such that rg1 ¼ rg2 ¼ D. Setting
_sj ¼ 0 in (1) and solving for c1 and c2, we obtain the following expressions
c1 ¼ D
r22ðsf1 � s1Þ � r21ðsf2 � s2Þ

r11r22 � r12r21
, ð15Þ

c2 ¼ D
r11ðsf2 � s2Þ � r12ðsf1 � s1Þ

r11r22 � r12r21
: ð16Þ
The point of intersection (s1, s2) corresponds to /11 if and only if c1,c2 > 0. Therefore a necessary
condition for coexistence is that s1 < sf1, s2 < sf2 and the numerators in (15) and (16) have the same
sign.

Consider Eq. (16). The sign of its numerator r11ðsf2 � s2Þ � r12ðsf1 � s1Þ is opposite to the sign of
F 1ðs1,s2,sf1,sf2Þ. Consequently, the sign of this expression is constant both above and below the
consumption curve U1. It is clear that
F 1ðs1,0,sf1,sf2Þ ¼ �sf2r11ðs1,0Þ < 0
for all 0 < s1 < sf1. Therefore, the numerator of (16) is positive if the point (s1, s2) is below U1 and
negative if the point (s1, s2) is above U1. A similar argument shows that the numerator of (15) is
positive if the point (s1, s2) is above U2 and negative if the point (s1, s2) is below U2. Therefore, a
necessary condition for coexistence is that the growth isoclines intersect within the envelope of
coexistence as shown in Fig. 6.

To complete the proof, we need to show that whenever the growth isoclines intersect within the
envelope of coexistence, the signs of the numerators and denominators of (15) and (16) agree as
well. We denote an intersection of G1 and G2 by +/+ if both numerators in (15) and (16) are
positive and by �/� if both numerators in (15) and (16) are negative. Consider a point ðŝ1,̂s2Þ
which is a +/+ intersection of G1 and G2. As we argued above, ðŝ1,̂s2Þ must be such that
0 < ŝj < sfj and
r11ðŝ1,̂s2Þðsf2 � ŝ2Þ � r12ð̂s1,̂s2Þðsf1 � ŝ1Þ > 0,

r21ðŝ1,̂s2Þðsf2 � ŝ2Þ � r22ð̂s1,̂s2Þðsf1 � ŝ1Þ < 0:
These inequalities imply that
r12ð̂s1,̂s2Þ
r11ð̂s1,̂s2Þ

<
sf2 � ŝ2
sf1 � ŝ1

<
r22ð̂s1,̂s2Þ
r21ð̂s1,̂s2Þ

:
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Fig. 6. The envelope of coexistence. The signs of both numerators of (15) and (16) are shown as +/+ or �/�.
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Since rijðŝ1,̂s2Þ > 0, we conclude that
r11ðŝ1,̂s2Þr22ð̂s1,̂s2Þ � r12ðŝ1,̂s2Þr21ð̂s1,̂s2Þ > 0,
and thus ðŝ1,̂s2Þ is indeed a projection of /11 onto the (s1, s2) plane. A similar argument applies to
any intersection of type �/�. h

Remarks

1. Since the geometry of the growth isoclines can be quite complicated, a non-trivial equilib-
rium may exist in the absence of one or both semitrivial equilibria. For instance, it is possible
that the growth isoclines intersect within the envelope of coexistence but neither isocline
intersects the corresponding consumption curve. In such cases, neither species can survive
in the chemostat in the absence of its competitor. Furthermore, multiple equilibria /11 can
exist.

2. The projection ð̂s1,̂s2Þ of /11 onto the (s1, s2) plane is determined exclusively by the dilution
rate. If the dilution rate is fixed, the concentrations of both species c1 and c2 are deter-
mined by the feed concentrations sf1 and sf2. Moreover, c1 and c2 are linear functions of
sf1 and sf2.

The local stability of /11 is determined by the variational matrix of (1) and (2) which has the
form
Jð/11Þ ¼

�D� c1
or11
os1

� c2
or21
os1

�c1
or11
os2

� c2
or21
os2

�r11 �r21

�c1
or12
os1

� c2
or22
os1

�D� c1
or12
os2

� c2
or22
os2

�r12 �r22

c1
org

1

os1
c1

org
1

os2
0 0

c2
org

2

os1
c2

org
2

os2
0 0

0
BBBBBBB@

1
CCCCCCCA
, ð17Þ
where rij ¼ rijðŝ1,̂s2Þ, orij
osk

¼ orij
osk

ð̂s1,̂s2Þ, and orgi
osj

¼ Y i1
ori1
osj

þ Y i2
ori2
osj
, for i, j = 1,2.
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Lemma 6. The condition
det

org
1

os1

org
1

os2

org
2

os1

org
2

os2

0
@

1
A � det

r11 r21
r12 r22

� �
> 0 ð18Þ
is a necessary condition for asymptotic stability of /11.

Proof. The determinant of (17) is given by
det Jð/11Þ ¼ c1c2 det

org
1

os1

org
1

os2

org
2

os1

org
2

os2

0
@

1
A � det

r11 r21
r12 r22

� �
:

At /11,c1 > 0 and c2 > 0. If /11 is asymptotically stable, then J(/11) has all four eigenvalues with
negative real parts and thus detJ(/11) must be positive. h

Corollary. If
det

org
1

os1

org
1

os2

org
2

os1

org
2

os2

0
@

1
A � det

r11 r21
r12 r22

� �
< 0,
then /11 is unstable for all combinations of feed concentrations sf1 and sf2 such that c1 > 0 and c2 > 0.

The necessary condition (18), is a generalization of the Gilpin–Justice condition [23] which
states that each competitor must have a higher preference for the substrate that is more beneficial
to its own growth.

If the substrates are completely independent (no inhibition), the sufficiency of the criterion was
demonstrated in [16,23]. In the next section, we show that in the presence of mutual inhibition, the
condition (18) alone is not sufficient to conclude the stability of /11. Specifically, we show that if
the substrates s1 and s2 are locally antagonistic for one species and locally synergistic for the other
species, then one can vary the feed concentrations so that /11 undergoes a Hopf bifurcation. The
possibility of Hopf bifurcations was mentioned in [16].
3.4. Existence of Hopf bifurcations

Theorem 7. Suppose that the coexistence equilibrium /11 is such that
det

org
1

os1

org
1

os2

org
2

os1

org
2

os2

0
@

1
A > 0, det

r11 r21
r12 r22

� �
> 0,
with rrg1 2 R2
� and rrg2 2 R2

þ. Then it is possible to vary each of the feed concentrations sfj in such a
way that two eigenvalues of J(/11) enter the positive half-plane.
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Proof. By Theorem 5, the inequality
det
r11 r21
r12 r22

� �
> 0
implies that the projection ð̂s1,̂s2Þ of the coexistence equilibrium /11 is located below U1 and above
U2, that is,
g2ðsf1,sf2,̂s1Þ < ŝ2 < g1ðsf1,sf2,̂s1Þ:

Now let us keep sf1 fixed and vary the value z ¼ sf2. We denote the resulting point by /11(z). Due to
Lemma 1, both functions giðsf1,z,̂s1Þ are strictly increasing in z. Consequently, there exist values
z� < sf2 < zþ such that ŝ2 ¼ g1ðsf1,z� ,̂s1Þ ¼ g2ðsf1,zþ ,̂s1Þ, and
g2ðsf1,z,̂s1Þ < ŝ2 < g1ðsf1,z,̂s1Þ

for all z� < z < z+. It follows that /11(z) is a coexistence equilibrium for all z such that z� < z < z+.
Moreover, our assumptions and Lemma 6 imply that detJ(/11(z)) > 0 for all z� < z < z+.

When z = z�, the point ð̂s1,̂s2Þ is an intersection of both growth isoclines G1 and G2 and the
consumption curve U1, i.e. it is a semitrivial equilibrium /10. Since rrg1 2 R2

�, the substrates are
locally antagonistic for species 1. Using the results of Theorem 3, we conclude that J(/11(z�)) has
two negative eigenvalues k1, k2 < 0, one positive eigenvalue k3 > 0, and one zero eigenvalue k4 = 0
(due to the fact that rg2ðŝ1,̂s2Þ ¼ D). Now consider the limiting case z # z�. On the one hand,
detJ(/11(z)) > 0. On the other hand three eigenvalues of J(/11(z)) must converge to k1, k2, and k3
as z # z�. We conclude that the fourth eigenvalue of J(/11(z)) must be strictly positive as z # z�.

When z = z+, the point ð̂s1,̂s2Þ is an intersection of both growth isoclines G1 and G2 and the
consumption curve U2, i.e. a semitrivial equilibrium /01. Sincerrg2 2 R2

þ, the substrates are locally
synergistic for species 2. Using the results of Theorem 3, we conclude that J(/11(z+)) has three
negative eigenvalues k1, k2, k3 < 0, and one zero eigenvalue k4 = 0 (due to the fact that
rg1ð̂s1,̂s2Þ ¼ DÞ. Now consider the limiting case z " z+. On the one hand, detJ(/11(z)) > 0. On the
other hand three eigenvalues of J(/11(z)) must converge to k1, k2, and k3 as z " z�. We conclude
that the fourth eigenvalue of J(/11(z)) must be strictly negative as z " z+.

To summarize, detJ(/11(z)) remains strictly positive for all z� < z < z+, the eigenvalues of
J(/11(z)) are continuous functions of z and no eigenvalue of J(/11(z)) becomes zero for z� < z < z+.
Furthermore, J(/11(z)) has four negative eigenvalues as z " z+ and J(/11(z)) has two positive and
two negative eigenvalues as z # z�. We conclude that there must exist three values of zh� < zh0 < zhþ
such that two of the eigenvalues of J(/11(z)) become complex conjugate with a positive real part at
z ¼ zh�, this pair of eigenvalues crosses the imaginary axis at z ¼ zh0 (which is a necessary condition
for the Hopf bifurcation), and become a pair of real negative eigenvalues at z ¼ zhþ.

This argument shows that one can vary sf2 so that a pair of complex eignevalues of J(/11(z))
enter the positive half-plane. A similar result can be attained by varying sf1. h

Remarks

1. Due to the computational complexity, we did not verify the sufficient (non-linear) condition
for the Hopf bifurcation. Therefore, we can only argue that the Hopf bifurcation will occur
for a generic case of (1) and (2). In all of the numerical examples (not shown here), the Hopf
bifurcation was always supercritical.
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2. It remains an open question whether the condition that the eigenvalues of J(/11(z)) have the
same signs as z # z� and z " z+ would be sufficient to eliminate the possibility of a Hopf
bifurcation.
4. The notion of substrate preference

Suppose that the mixed culture has current substrate concentrations (s1, s2). This means that the
amount of substrate sj at this point is reduced by the quantity sfj � sj. We define the utilization
ratio as
m ¼ sf1 � s1
sf2 � s2

:

For given substrate concentrations (s1, s2), the rate at which ci consumes sj is given by rij. We de-
fine the uptake preference ratio of the species ci as
qi ¼
ri1
ri2

:

We say that ci prefers to consume more of s1 than of s2 if q1 > 1. Similarly, ci prefers to consume
more of s2 than of s1 if q1 < 1. The quantity qi provides a quantitative measurement of the mag-
nitude of such consumption preference of species ci.

The consumption curve Ui can be expressed as the set of all substrate concentrations (s1, s2)
where the utilization ratio and the uptake preference ratio of ci are equal, that is, qi = m. The
inequality qi < m implies that consumption preference of species ci is lower than the current utili-
zation ratio, and therefore ci prefers to utilize more of s2 than it is currently utilizing and less of s1
than it is currently utilizing. Such single species culture will evolve towards the lower values of m.
Similarly, the single species culture with qi > m will evolve towards the higher values of m. In this
context, the consumption curve Ui represents that state of balance between consumption and
utilization.

In Theorem 5, we proved that c1 and c2 can coexist at an equilibrium provided that (s1, s2) be-
longs to the envelope of coexistence. In fact, Eqs. (15) and (16) imply that c1 and c2 can coexist,
that is,
signc1 ¼ sign
m� q2

q1 � q2

> 0, signc2 ¼ sign
q1 � m
q1 � q2

> 0,
if either q1 < m < q2 or q2 < m < q1. Therefore, the envelope of coexistence can be interpreted as the
set of all substrate concentrations where m 2 (q1,q2), that is, the utilization ratio is intermediate to
the uptake preference ratios. In fact, the following argument shows that in the long term all coex-
istence solutions must persist within the envelope of coexistence. Assuming that c1,c2 > 0 and
0 < sj < sfj, we find that the time derivative of m can be expressed as
_m ¼ c1r12
sf2 � s2

ðq1 � mÞ þ c2r22
sf2 � s2

ðq2 � mÞ:
The terms c1r12, c2r22 and sf2 � s2 are strictly positive. Therefore, outside of the envelope of coex-
istence, m is a monotone function which is increasing if m < min(q1,q2) and decreasing if
m > max(q1,q2).
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5. Application

Our results allow one to infer the stability of competition equilibria from the single species data
by superimposing the consumption curves and the growth isoclines for each of the competing spe-
cies on the same (s1, s2) plot. The experimental procedures for obtaining these curves were de-
scribed in detail in section 2.1. Here we discuss how our method would perform in several
hypothetical situations. 2 We also discuss the limitations of the method.

Let us begin by considering two simplest hypothetical experimental measurements in which two
species c1 and c2 were individually grown on the mixture of two substrates s1 and s2. Suppose that
we measured the consumption curves and the growth isoclines and superimposed them on the
same (s1, s2) plot and as a result obtained one of the cases shown in Fig. 7.

We begin by marking appropriate intersections of the consumption curves and the growth iso-
clines. For instance, /10 is the intersection of U1 and G1 and it corresponds to the semitrivial equi-
librium where c1 is the resident species. Similarly, /01 is the intersection of U2 and G2 and it
corresponds to the semitrivial equilibrium where c2 is the resident species. We mark the intersec-
tion of G1 and G2 as /11 because in both cases it occurs within the envelope of coexistence and
thus corresponds to a coexistence equilibrium. Note that in both cases shown in Fig. 7, the mutual
inhibition of substrate uptake rates must be sufficiently weak because both growth isoclines are
graphs of monotonically decreasing functions. Each growth isocline Gi divides the (s1, s2) plane
into regions where rgi < D and rgi > D. Furthermore, the region that includes the origin always
corresponds to the former case since rgi ð0,0Þ < D. It is now geometrically obvious that
rgi ðsf1,sf2Þ > D,i ¼ 1,2 in Fig. 7 and thus the trivial equilibrium is unstable. In addition, the gradient
vectors rrgi are orthogonal to the growth isoclines Gi and these vectors must point into the region
where rgi > D. Therefore, we conclude that both vectorsrrgi are strictly positive at any point along
the respective growth isocline Gi. Among other things, this means that the substrates s1 and s2 are
locally synergistic both at /10 and /01. This is not really surprising because otherwise these sem-
itrivial equilibria would be unstable and thus experimentally unattainable.

What are the differences between (a) and (b) in Fig. 7? We observe that in case (a), /10 belongs
to the region where rg2 > D and /01 belongs to the region where rg1 > D. This means that both of
these single species equilibria are unstable towards the invasion by the other species. In case (b),
both single species equilibria are stable towards the invasion by the other species. Finally, how
much can we say about stability of the coexistence equilibrium /11? In both cases, /11 lies below
U1 and above U2. Therefore, the determinant
2 A
measu
appro
det
r11 r21
r12 r22

� �
is positive in both cases. It is also clear that in case (a), the vector rrg2 has a greater slope than the
vector rrg1. Hence the vector pair ðrrg1,rrg2Þ has a positive orientation, e.g. the determinant
lthough the experimental literature is abundant with data on single species growth, we could not find two separate
rements obtained with the same combination of substitutable substrates. This illustrates the lack of systematic
ach to studying mixed microbial cultures.
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det
oðrg1,r

g
2Þ

oðs1,s2Þ
is also positive. Thus, in case (a), the coexistence equilibrium /11 satisfies the necessary condition
for stability. In case (b), the orientation of ðrrg1,rrg2Þ is negative and thus the coexistence equilib-
rium /11 is unstable.

Due to its graphical nature, our method allows one to depict all essential information regard-
ing the growth and consumption properties of both species in the same simple plot. But the
method is limited because only stable equilibria can be observed in a single species experiment.
It is therefore feasible that in some cases only parts of a given consumption curve and/or growth
isocline can be obtained in a single species experiment. For instance, the dashed part of the
growth isocline in Fig. 5(b) corresponds to an unstable single species equilibrium, hence we will
be unable to obtain it in the experiment. Instead, by varying the ratio of the substarte feed con-
centrations we are going to observe the hysteretic loop of single species equilibria as shown in
Fig. 5(b). Interestingly, we might be able to observe a part of this unstable growth isocline by
adding a second microbial species and varying the feed concentrations to stabilize the coexistence
equilibrium as shown in Theorem 7. In other words, there may be instances when we can obtain
some single species data from the mixed culture experiments that we would not be able to obtain
otherwise.
6. Conclusions

In this paper, we analyzed the existence and stability properties of equilibria exhibited by a
mixed continuous culture in which two microbial species compete for two perfectly substitutable
substrates. Most importantly, we wanted to understand the interplay between the mutual inhibi-
tion of the specific substrate uptake rates and the dynamic outcomes of microbial competition in
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the mixed cultures. In addition, this work laid out the foundation for studying the stability of
mixed microbial cultures in the context of more complex physiological models.

We took a non-parametric approach to the problem that does not require any specific assump-
tions regarding the particular functions that model the rates of substrate uptake and microbial
growth. We derived a set of general predictions based on the relative geometries of two types
of curves, namely, the consumption curves Ui and the growth isoclines Gi that are defined for each
of the microbial species. Both of these curves can be conveniently plotted on the (s1, s2) plane of
substrate concentrations.

For a single species case, we demonstrated that all semitrivial equilibria are represented by
intersections of the corresponding consumption curve and the growth isocline. We have also
proved that the stability of such equilibria is determined exclusively by a particular type of
local substrate interaction: synergistic or antagonistic. The substrates are synergistic if increas-
ing both substrate levels along the consumption curve U results in the increase of the specific
growth rate rg of the resident species, and they are antagonistic otherwise. Using this termi-
nology, we showed that a semitrivial equilibrium is stable if and only if the substrates are
synergistic. In addition, we proved that all single species solutions must converge to an equi-
librium. Finally, we demonstrated that a semitrivial equilibrium is locally unstable towards the
invasion by the second microbial species if and only if the specific growth rate rg of the invad-
ing species exceeds the specific growth rate of the resident species (which is equal to the dilu-
tion rate D).

In the case when both species are present in the reactor, we demonstrated that an intersection of
the growth isoclines G1 and G2 corresponds to a non-trivial (coexistence) equilibrium if and only if
this intersection occurs within the envelope of coexistence. We also showed that the Gilpin–Justice
condition [23]
det
oðrg1,r

g
2Þ

oðs1,s2Þ
ðq1 � q2Þ > 0
(which is equivalent to (18)) is necessary but not sufficient for stable coexistence. In particular,
we showed that under special circumstances the coexistence equilibrium may change its stability
via a Hopf bifurcation when the substrate feed concentrations are varied. In the most general
setting, we were unable to provide a sufficient condition for the stability of the coexistence
equilibrium, or equivalently, a condition that would rule out the possibility of a Hopf
bifurcation.

We believe that this work provides several significant contributions to the theory of mixed
microbial cultures. First of all, we generalized the graphical approach of Tilman [13,14] and ex-
tended the analytical approach of Ballyk and Wolkowicz [16,17] to a broader class of uptake func-
tions and non-monotone growth isoclines. This mixed approach will serve as a foundation for
studying more complex physiological models of mixed microbial growth. Secondly, we were able
to add several new results to the nearly complete analysis in [16]. In particular, we obtained the
necessary and sufficient conditions for the stability of semitrivial equilibria. We also provided a
constructive proof for the existence of Hopf bifurcations. Finally, we extended the analysis of hys-
teresis in single-species cultures presented in [17] and provided a plausible explanation of switch-
ing behavior in single-species cultures [21].
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[18] T. Egli, O. Käppeli, A. Fiechter, Mixed substrate growth of methylotrophic yeasts in chemostat culture: Influence

of dilution rate on the utilization of a mixture of methanol and glucose, Arch. Microbiol. 131 (1982) 8.
[19] T. Egli, C. Bosshard, G. Hamer, Simultaneous utilization of methanol–glucose mixtures by Hansenula polymorpha

in chemostat: Influence of dilution rate and mixture composition on utilization pattern, Biotechn. Bioeng. 28 (1986)
1735.

[20] U. Lendenmann, M. Snozzi, T. Egli, Simultaneous utilization of diauxic sugar mixtures by Escherichia coli, in: 6th
International Symposium on Microbial Ecology, Abstracts, 1992, p. 254.

[21] K. Kovarova-Kovar, T. Egli, Growth kinetics of suspended microbial cells: From single substrate-controlled
growth to mixed-substrate kinetics, Microbiol. Molecular Biol. Rev. 62 (3) (1998) 646.

[22] H.R. Thieme, Asymptotically autonomous differential equations in the plane, Rocky Mount. J. Math. 24 (1994)
351.

[23] M.E. Gilpin, K.E. Justice, Nature, London 236 (1972) 273.
[24] A. Narang, A.E. Konopka, D. Ramkrishna, New patterns of mixed-substrate utilization during batch growth of

Escherichia coli K12, Biotech. Biotechnol. 55 (1997) 747.



S.S. Pilyugin et al. / Mathematical Biosciences 192 (2004) 85–109 109
[25] U. Brinkmann, W. Babel, Simultaneous utilization of heterotrophic substrates by Hansenula polymorpha MH30
results in enhanced growth rates, App. Microbiol. Biotechnol. 37 (1992) 98.

[26] K. Kovarova, A. Kach, V. Chaloupka, T. Egli, Cultivation of Escherichia coli with mixtures of 3-phenylpropionic
acid and glucose, Biodegradation 7 (1996) 445.


	Predicting stability of mixed microbial cultures from single species experiments: 1. Phenomenological model
	Introduction
	The model
	Experimental basis for model assumptions
	Consumption curves and growth isoclines

	Equilibria and their stability
	The trivial equilibrium  phi 00
	The semitrivial equilibria  phi 10 and  phi 01
	The non-trivial equilibrium  phi 11
	Existence of Hopf bifurcations


	The notion of substrate preference
	Application
	Conclusions
	Acknowledgments
	References


