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Abstract

In this paper, we study the equilibria of a physiological model describing the continuous culture in which
two microbial populations compete for two substitutable resources. This work is an extension of the stability
analysis of the phenomenological model of mixed microbial growth [M.M. Ballyk, G.S.K. Wolkowicz,
Exploitative competition in the chemostat for two perfectly substitutable resources, Math. Biosci. 118
(1993) 127–180; S.S. Pilyugin, G.T. Reeves, A. Narang, Predicting stability of mixed microbial cultures from
single species experiments: 2. Phenomenological model]. Here, we investigate the influence of the peripheral
enzymes that catabolize the substrate uptake on the stability of the mixed culture. We show that, under
steady state conditions, an increase in the concentration of one substrate inhibits the uptake of the other sub-
strate(s). We present the criteria for existence, uniqueness, and stability of various types of equilibria. We
formulate these criteria in terms of growth isoclines and consumption curves for each of the competing spe-
cies. Since both types of curves can be obtained from a single species experiment, our approach provides a
direct connection between theory and experiment and allows one to infer the dynamics of mixed cultures
from the dynamics of single species cultures. By expressing the stability criteria in terms of intracellular prop-
erties, the model establishes a link between ecology and molecular biology.
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1. Introduction

The problem of competitive coexistence in mixed microbial cultures has attracted the attention
of many researchers over the past decades. Several models of competition for substitutable re-
sources have been published [1–4]. Assuming that the main metabolic pathway of an organism
has a finite capacity, an increase in the metabolism of one substrate should downregulate the
uptake of other substrates. Ballyk and Wolkowicz generalized the existing models by explicitly
including the mutual inhibition of substrate uptake rates [5]. In our previous work [6], we ex-
tended their analysis by relaxing one of their assumptions. However, all the above papers includ-
ing [5] and [6] are phenomenological in the sense that they simply assume the existence of mutual
inhibition without providing a specific mechanism for it. The aim of the present report is to extend
the predictions obtained from the phenomenological model [6] to a physiological model that prop-
erly accounts for such a mechanism.

Our physiological model introduces the peripheral enzymes as new variables. These enzymes cat-
alyze the transport and peripheral catabolism of a substrate, i.e., they move the substrate from the
extracellular space into the interior of the cell, and break it down into one or more molecules that
can be released into the so-called central metabolic pathways for further catabolism. In general, mi-
crobes have a specific and unique set of peripheral enzymes for each substrate. In the absence of a
substrate, the corresponding peripheral enzymes are synthesized at vanishingly small basal rates.
However, as soon as the substrate appears in the environment, the synthesis rate of these enzymes
increases dramatically. The motivation for introducing the peripheral enzymes as variables is the
following. In [6], we presented experimental data showing that during both batch and continuous
growth on amixture of two substrates, the interaction between the two substrates is mutually inhib-
itory. As we show below, these inhibitory effects are exerted through the peripheral enzymes [7].

When microbes are grown in a batch reactor containing a surplus of two substitutable sub-
strates, one of the substrates is typically exhausted before the other, leading to the appearance
of two successive exponential growth phases. During the first exponential growth phase, when
both substrates are present in the medium, the cells consume both or only one of the substrates.
For instance, when E. coli K12 is grown on a mixture of fumarate and pyruvate, both substrates
are consumed during the first phase (Fig. 2(a)). This is called simultaneous substrate utilization.
The specific substrate uptake rates of fumarate and pyruvate during mixed-substrate growth
are less than the specific uptake rates observed during growth on the individual substrates. As
noted in [6], this implies that the interaction between the substrates is mutually inhibitory. When
the mutual inhibition is highly asymmetric, it results in the utilization of only one of the sub-
strates, further accentuating the role of the peripheral enzymes in this interaction. An example
of this occurs when E. coli K12 is grown on a mixture of fumarate and glucose, consumption
of fumarate is almost completely inhibited, so that glucose alone is consumed during the first
phase (Fig. 2(b)). This is called diauxic or preferential substrate utilization, and the substrates con-
sumed during the first and second phases are referred to as the �preferred� and �less preferred� sub-
strates, respectively. Studies in molecular biology have shown that diauxic growth occurs because
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in the presence of �preferred substrate� (glucose), the synthesis of peripheral enzymes for the �less
preferred substrate� (fumarate) is completely abolished [7]. The very same phenomenon also oc-
curs in continuous cultures. In [6], we showed that when Hansenula polymorpha is grown on a
mixture of glucose and methanol, there is a range of dilution rates (0.35 6 D 6 0.5 l/h) in which
glucose is consumed, whereas methanol passes through the reactor without any consumption at
all (see Figure 2 of [6]). Fig. 2(c) shows that methanol uptake is abolished in this range of dilution
rates because the activity of alcohol oxidase, a peripheral enzyme for methanol, is negligibly small.
Thus, the mutually inhibitory interactions observed during single-species growth on a mixture of
substitutable substrates are exerted through the peripheral enzymes associated with the substrates.

In phenomenological models of mixed-culture growth, the mutual substrate inhibition is cap-
tured by assuming that the single-species substrate uptake rates are such that each substrate inhib-
its the uptake of the other substrate. This approach is formally correct, but offers no insight into the
molecular basis of the mutual inhibition. Given our knowledge of the molecular mechanism, it
seems appropriate to formulate models of mixed-culture growth that treat the peripheral enzymes
as additional state variables. In earlier work, we formulated a model of single-species growth on
mixtures of substitutable substrates that took due account of the peripheral enzymes [8,10,11],
and we showed that the model captured and explained all the properties of single-species,
mixed-substrate growth summarized in the experimental literature [12]. We then extended this
physiological model to include two species competing for two substitutable substrates, and con-
ducted an extensive numerical study of the steady states [13]. The goal of this paper is to rigorously
analyze the model. To this end, we use the insights obtained from the analysis of the phenomeno-
logical model in [6], and arrive at a series of results concerning the existence, uniqueness, and sta-
bility of equilibria of the two-species physiological model. We find that under specific assumptions
regarding the kinetics of enzyme synthesis, the stability criteria developed in [6] are preserved de-
spite the additional variables contained in the physiological model. Specifically, we show that

• The substrate concentrations uniquely determine the physiological steady state, that is, the
steady state levels of all intracellular entities such as the transport enzymes and the inducer
molecules.

• The transport enzyme for substrate S1 is downregulated when the concentration of S2 is
increased, and vice versa. This is the molecular mechanism underlying the mutual inhibition.

• The mutual inhibition is relatively weak. Thus, even though an increase in the concentration of a
substrate inhibits the specific uptake rate of the other substrate, it stimulates the specific growth
rate. Using the terminology developed in [6], the substrates S1 and S2 always act synergistically.

• Each growth isocline is a graph of a decreasing function, and each consumption curve is a
graph of an increasing function in terms of the substrate concentrations.

For a detailed review of concepts of the consumption curve, and synergistic/antagonistic inter-
action between substitutable substrates, we refer the reader to [6].

The paper is organized as follows. In Section 2, we present a detailed derivation of the struc-
tured model and show that it exhibits the mutual substrate uptake inhibition under steady state
conditions. In Section 3, we study how the extracellular processes determine the dynamics of
transport enzymes and analyze two limiting cases when the enzymes are fast and slow. Specifi-
cally, we show that if the enzymes are fast, the dynamics of the physiological model is closely
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approximated by the dynamics of the phenomenological model. In Sections 4 and 5, we study
existence, uniqueness, and stability of equilibria of the physiological model. Section 6 contains
the discussion and it concludes the paper.
2. The model

The kinetic scheme of our model is shown in Fig. 1. As a notational convention for the rest of
the paper, the index i will denote the species number, and the index j will denote the substrate
number. Thus, Ci denotes the ith species, Sj denotes the jth substrate, Eij denotes the �lumped� sys-
tem of inducible enzymes catalyzing the uptake and peripheral catabolism of Sj by Ci, Xij denotes
the inducer for Eij, and C�

i denotes all intracellular constituents in the ith species, except Eij and
Xij. The concentrations of these entities are denoted by the lower-case letters ci, sj, eij, xij, and c�i .
Here, ci and sj are based on the volume of the chemostat, and expressed in the units gdw/l and g/l,
respectively; the remaining variables, eij, xij and c�i are mass-fractions of cellular biomass, and
expressed in the units, g/gdw. 1

When formulating a structured growth model that involves both extra- and intracellular entities,
one has to properly formulate the mass-balance equations [14]. Since there is often a confusion
about the mass-balance, we provide a brief description of mass-balance laws here. Let V be the vol-
ume of the reactor, F be the volumetric flow rate, z be the mass-fraction of an intracellular entityZ,
and c be the cell density. If the entity Z is synthesized at a specific rate a and removed at a specific
rate b, then the mass of Z in the reactor is zcV, and it changes according to the mass-balance law
1 It
gdw/l
dðzcV Þ
dt

¼ acV � bcV � zcF :
Dividing out the constant volume V in the above equation, and introducing the dilution rate
D = F/V, we obtain
c
dz
dt

¼ ac� bc� Dzc� z
dc
dt

:

Dividing out the cell concentration c > 0, we finally obtain
dz
dt

¼ a� b� Dþ 1

c
dc
dt

� �
z:
As we show below, the last term accounts for the dilution of Z due to growth.
Regarding the kinetics of the metabolic pathway of Ci, we assume that

1. The specific uptake rate rsij of Sj by Ci satisfies
rsij � V s
ijeij

sj
Ks

ij þ sj
:

is conventional to measure cell content in grams of dry weight (gdw). The cell concentrations are measured in
and the mass-fractions of intracellular variables are measured in g/gdw.
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Fig. 1. Kinetic scheme of the metabolic pathway of Ci. Eij denotes the transport enzyme of Ci catalyzing the uptake of
substrate Sj. Xij denotes the inducer for Eij, and C�

i denotes all intracellular components of Ci other than Eij and Xij.
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2. The specific rate of breakdown of Xij into energy and free biomass C�
i , denoted rxij, is given by
2 T
rxij � kxijxij:
3. The rate of production of free biomass C�
i is a fixed fraction Y ijrxij of rxij.

2 The fraction
ð1� Y ijÞrxij corresponds to overflow metabolism, energy spillage, and maintenance.

4. The specific rate of inducible enzyme synthesis, denoted reij, is given by
reij � V e
ij

xij
Ke

ij þ xij
:

5. The specific rate of constitutive enzyme synthesis, denoted r�ij, is constant r
�
ij � k�ij.

6. The specific rate of enzyme degradation, denoted rdij, is proportional to eij, that is, rdij � kdijeij.

Writing the mass-balance equations for eij, xij, and c�i , we obtain
dsj
dt

¼ D sfj � sj
� �

� rs1jc1 � rs2jc2, ð1Þ

deij
dt

¼ reij þ r�ij � rdij � Dþ 1

ci

dci
dt

� �
eij, ð2Þ

dxij
dt

¼ rsij � rxij � Dþ 1

ci

dci
dt

� �
xij, ð3Þ

dc�i
dt

¼
X2
j¼1

Y ijrxij þ rdij � reij � r�ij
� �

� Dþ 1

ci

dci
dt

� �
c�i , ð4Þ
where sfj denotes the concentration of Sj in the feed, and D is the dilution rate. Adding Eqs. (2)–(4)
and observing that the sum of mass-fractions of all the intracellular components is unity,
X2
j¼1

ðxij þ eijÞ þ c�i ¼ 1, i ¼ 1,2,
he stoichiometric constant 0 6 Yij 6 1 is traditionally referred to as the yield coefficient.
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we find that
dci
dt

¼ rgi � Dð Þci, rgi � Y i1rxi1 þ Y i2rxi2:
where rgi denotes the specific growth rate of the ith species. Evidently, Dþ ð1=ciÞðdci=dtÞ ¼ rgi , so
that the last term in Eqs. (2)–(4) represents the dilution of the corresponding intracellular variable
due to growth.

We make an additional assumption that the kinetics of inducer Xij occurs on a much faster time
scale than the time scale of the reactor and introduce the quasi steady state approximation rxij _¼rsij,
so that
xij ¼
rsij
kxij

,
dci
dt

¼ ðrgi � DÞci, and rgi _¼Y i1rsi1 þ Y i2rsi2, i,j ¼ 1,2:
Under this quasisteady state approximation, we rewrite Eqs. (1)–(4) as
dsj
dt

¼ D sfj � sj
� �

� rs1jc1 � rs2jc2, j ¼ 1,2, ð5Þ

deij
dt

¼ V e
ij

eijrij

�Ke

ij þ eijrij
þ k�ij � kdijeij � rgi eij, i,j ¼ 1,2, ð6Þ

dci
dt

¼ ðrgi � DÞci, i ¼ 1,2, ð7Þ
where
�Ke

ij ¼
Ke

ijk
x
ij

V s
ij

, rij ¼
sj

Ks
ij þ sj

, i,j ¼ 1,2,
and rgi , the specific growth rate of ci, is given by
rgi ¼ Y i1rsi1 þ Y i2rsi2 ¼ Y i1V s
i1ei1ri1 þ Y i2V s

i2ei2ri2, i ¼ 1,2: ð8Þ

The above model was introduced in our earlier report [13], where we presented an extensive numer-
ical study of this model. In this paper, we analyze a generalization of the model (5)–(8). Before
doing so, we give an intuitive explanation of the model to illustrate the fact that the predictions
are indeed consistent with the dynamics observed in single-species, mixed-substrate experiments.

We begin by observing that the entire transient of single-species batch growth can be obtained
by integrating the five equations obtained by fixing i and letting D = 0 in Eqs. (5)–(7). However,
the evolution of the peripheral enzyme levels during the finite time interval corresponding to the
first exponential growth phase is described by only two equations. To see this, it suffices to observe
that during the first exponential growth phase, the concentrations of both substrates are at super-
saturating levels, i.e., sj � Ks

ij. Under these substrate-excess conditions, constitutive enzyme syn-
thesis is negligibly small (k�ij � reij), and the degradation rates of the peripheral enzymes are
negligible compared to their dilution rates (kdij � rgi ). Hence, Eq. (6) can be approximated by
_eij � V e
ij

eijrij

�Ke

ij þ eijrij
�

X2
k¼1

Y kV s
ikeik

 !
eij, j ¼ 1,2: ð9Þ
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These equations, which describe the evolution of the peripheral enzyme levels during the first
exponential growth phase, exhibit the dynamics similar to that of the Lotka-Volterra model for
competing species
_Nj ¼ ajNj �
X2
k¼1

bjkNk

 !
Nj, j ¼ 1,2, ð10Þ
where aj denotes the unrestricted specific growth rate of the jth species, and bjk are parameters that
characterize the intensity of intraspecific and interspecific competition. Now, for certain values of
the parameters, aj and bjk, the Lotka-Volterra equations yield global dynamics corresponding to
extinction of one of the species or coexistence of both species. It is therefore not surprising that
Eq. (9) yield similar dynamics for suitable parameter values. The first case (Fig. 2(c)), in which
both peripheral enzymes �coexist�, mirrors the dynamics of simultaneous substrate utilization.
The second case (Fig. 2(d)), which shows �extinction� of E1 during the first exponential growth
phase, reflects the preferential utilization of S2.

In summary, the model states that the dynamics observed in substrate-excess batch cultures are
the outcome of �competitive interactions� between the peripheral enzymes of the substrates.
Indeed,

• Each peripheral enzyme promotes its own synthesis because production of these enzymes is
autocatalytic. This is intuitively evident from Fig. 1. The higher the level of Eij, the larger
the synthesis rate of Xij and Eij.

• Each peripheral enzyme inhibits the synthesis of the peripheral enzyme for the other substrate
by increasing its dilution rate.

The preferential growth pattern occurs because the �preferred� substrate increases the dilution
rate of the peripheral enzyme for the �less preferred� substrate to such an extent that this enzyme
becomes �extinct�. The model provides a simple explanation for certain empirical generalizations
[12]. Substrates that support high growth rates tend to strongly dilute the enzymes for other sub-
strates, and thus are likely to be the �preferred� substrates. However, if their capacity for support-
ing high growth rates is diminished by decreasing their initial concentration in the experiment,
they are unable to dilute the enzymes for the other substrates, resulting in simultaneous substrate
utilization.

In continuous cultures, the uptake of �less preferred substrate� becomes greatly diminished at high
dilution rates. This phenomenon becomes more transparent if we let k�ij ¼ 0. Fig. 3 (lower panel)
shows that the model predicts the steady state profiles observed when the dilution rate is changed
at fixed feed concentrations. As the dilution rate approaches a threshold value, the ability of the cells
to consume the �less preferred substrate� is significantly reduced. Equivalently, the residual concen-
tration of the �less preferred substrate� converges to the corresponding feed concentration which
clearly indicates the lack of consumption. Such threshold value of the dilution rate corresponds
to a transcritical bifurcation at which the peripheral enzyme level for the �less preferred substrate�
becomes zero. Indeed, at steady state, Eq. (6), the mass balance for peripheral enzymes, reads
0 � V e
ij

eijrij

�Ke

ij þ eijrij
� Dþ kdij
� �

eij ) V e
ij

rij

�Ke

ij þ eijrij
¼ Dþ kdij or eij ¼ 0:
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Fig. 2. Substrate utilization patterns observed in batch growth of E. coli K12 on mixtures of two carbon sources (from
[9]). Upper panel: Experimental data showing (a) simultaneous utilization of fumarate and pyruvate, (b) sequential
utilization of glucose and fumarate. Lower panel: Model simulations from [10] showing the initial dynamics of the
peripheral enzymes corresponding to (c) simultaneous substrate utilization, (d) sequential substrate utilization.
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At sufficiently high D, the first relation cannot be satisfied, and the cells switch to the steady state
eij = 0.

Having given intuitive explanations of the model in the special case of single-species growth, we
now consider the following generalization of the multiple-species model (5)–(8)
dsj
dt

¼ D sfj � sj
� �

� c1r1j � c2r2j, j ¼ 1,2, ð11Þ

deij
dt

¼ reijðsj,eijÞ � eijr
g
i ðs1,s2,ei1,ei2Þ ¼ Rijðs1,s2,ei1,ei2Þ, i,j ¼ 1,2, ð12Þ
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dci
dt

¼ ci r
g
i ðs1,s2,ei1,ei2Þ � Dð Þ, i ¼ 1,2, ð13Þ
where we assume that

(H1) The functions reijðsj,eijÞ are such that
oreijðsj,eijÞ
osj

> 0,
o

oeij

reij sj,eij
� �
eij

 !
< 0:
(H2) For any sj > 0,
lim
eij!0

reijðsj,eijÞ ¼ k�ij > 0,
where k�ij represents the rate of constitutive enzyme synthesis. In addition, there exists a unique
value e0ijðsjÞ > 0 such that reijðsj,e0ijðsjÞÞ ¼ 0. We also assume that at high enzyme levels, the en-
zymes are degraded faster than their production rate, e.g. the net production rate is negative
ðreijðsj,eijÞ < 0Þ when eij > e0ijðsjÞ.
(H3) The functions rij are given by eijrij(sj) where rij(s) are such that
rijð0Þ ¼ 0, r0
ijðsÞ > 0, lim rijðsÞ < þ1:
s!1
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For mathematical convenience, we will treat the coefficient V s
ij in (8) as a part of rij, so that
rgi ¼ Y i1ei1ri1 þ Y i2ei2ri2, i ¼ 1,2: ð14Þ
One can easily see that Eqs. (5)–(8) are a special case of (11)–(14).
The assumption (H1) states that an increase in the specific substrate Sj enhances the production

of the corresponding enzyme Eij. Furthermore, the rate of production of Eij is a sublinear function
of the enzyme level eij. In addition, the assumption (H2) states that at low levels, the enzyme Eij is
still produced via the constitutive enzyme synthesis.

In the next two Lemmas, we show that under steady state conditions, the enzyme levels and the
specific growth rates are uniquely determined by the substrate concentrations. In addition, we
show that the specific uptake rates exhibit mutual inhibition, but the specific growth rates are
increasing functions of each substrate.

Lemma 1. At steady state, the values of eij and rgi are uniquely determined by the values s1
and s2.

Proof. First, consider Eq. (12) at steady state, that is,
reijðsj,eijÞ � eijr
g
i ¼ 0 � rgi ¼

reijðsj,eijÞ
eij

,

where sj > 0 is fixed. By assumptions (H1) and (H2), the function wijðsj,eijÞ ¼
reijðsj,eijÞ

eij
is a monoton-

ically decreasing function of eij such that
lim
eij!0

wijðsj,eijÞ ¼ þ1, wij sj,e0ijðsjÞ
� �

¼ 0:
Therefore, wij(sj,eij) is an invertible function from the interval ð0,e0ijðsjÞÞ to the interval (0,+1).
We denote the inverse of wij(sj,eij) by ~eijðrgi ,sjÞ. Assumption (H1) implies that
o~eij rgi ,sj
� �
orgi

< 0,
o~eij rgi ,sj
� �
osj

> 0:
Furthermore, assumption (H2) implies that ~eijðrgi ,sjÞ is defined for all rgi 2 ð0, þ1Þ and

lim

rgi !þ1
~eij rgi ,sj
� �

¼ 0, lim
rgi !0

~eij rgi ,sj
� �

¼ e0ijðsjÞ:
Second, consider Eq. (14) at steady state, that is,
rgi ¼ Y i1~ei1ðrgi ,s1Þri1ðs1Þ þ Y i2~ei2ðrgi ,s2Þri2ðs2Þ, ð15Þ

and treat rgi as the unknown. As rgi increases from 0 to +1 on the left hand side, the right hand
side of (15) decreases from the positive value
Y i1e0i1ðs1Þri1ðs1Þ þ Y i2e0i2ðs2Þri2ðs2Þ

to 0. Thus, for any pair s1 > 0, s2 > 0 Eq. (15) admits a unique positive solution rgi which we denote
by ~rgi ðs1,s2Þ. Finally, it follows that the steady state values of eij are given by ~eijð~rgi ðs1,s2Þ,sjÞ and
thus are uniquely determined by s1 and s2. h
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Definition. The functions ~rgi ðs1,s2Þ are called the steady state specific growth rates. The functions
~eijð~rgi ðs1,s2Þ,sjÞ are called the steady state enzyme levels. The functions
~rijðs1,s2Þ ¼ ~eij ~r
g
i ðs1,s2Þ,sj

� �
rijðsjÞ
are called the steady state specific uptake rates.

Lemma 2. (a) The steady state specific growth rates are increasing functions of each substrate, that
is,
o~rgi ðs1,s2Þ
os1

> 0,
o~rgi ðs1,s2Þ

os2
> 0, i ¼ 1,2:
(b) The steady state specific uptake rates are such that
o~rsi1ðs1,s2Þ
os1

> 0,
o~rsi1ðs1,s2Þ

os2
< 0, i ¼ 1,2,
and
o~rsi2ðs1,s2Þ
os1

< 0,
o~rsi2ðs1,s2Þ

os2
> 0, i ¼ 1,2:
Proof. (a) Replacing rgi by ~rgi ðs1,s2Þ in Eq. (15), we obtain
~rgi ðs1,s2Þ ¼ Y i1~ei1ð~rgi ðs1,s2Þ,s1Þri1ðs1Þ þ Y i2~ei2ð~rgi ðs1,s2Þ,s2Þri2ðs2Þ:

Differentiating both sides with respect to s1, we obtain
o~rgi
os1

ðs1,s2Þ ¼ Y i1
o~ei1
orgi

ð~rgi ðs1,s2Þ,s1Þ
o~rgi
os1

ðs1,s2Þ þ
o~ei1
os1

ðrgi ðs1,s2Þ,s1Þ
� �

ri1ðs1Þ

þ Y i1~ei1ð~rgi ðs1,s2Þ,s1Þr0
i1ðs1Þ þ Y i2

o~ei2
orgi

ð~rgi ðs1,s2Þ,s2Þ
o~rgi
os1

ðs1,s2Þri2ðs2Þ:
Solving for
o~rgi
os1

ðs1,s2Þ, we obtain
o~rgi
os1

ðs1,s2Þ ¼
Y i1

o~ei1
os1

ð~rgi ðs1,s2Þ,s1Þri1ðs1Þ þ ~ei1ð~rgi ðs1,s2Þ,s1Þr0
i1ðs1Þ

� �
1� Y i1

o~ei1
orgi

ð~rgi ðs1,s2Þ,s1Þri1ðs1Þ � Y i2
o~ei2
orgi

ð~rgi ðs1,s2Þ,s2Þri2ðs2Þ
:

By Lemma 1,
o~eij
orgi

ð~rgi ðs1,s2Þ,sjÞ < 0,
o~ei1
os1

ð~rgi ðs1,s2Þ,s1Þ > 0,
thus
o~rgi
os1

ðs1,s2Þ > 0: A similar argument shows that
o~rgi
os2

ðs1,s2Þ > 0.

(b) Using the definition of the specific uptake rate, we find that
o~ri1
os2

ðs1,s2Þ ¼
o~ei1
orgi

ð~rgi ðs1,s2Þ,s1Þ
o~rgi
os2

ðs1,s2Þri1ðs1Þ:



122 S.S. Pilyugin et al. / Mathematical Biosciences 192 (2004) 111–136
By part (a) of this Lemma, the factor
o~rgi
os2

ðs1,s2Þ is positive. By Lemma 1, the factor o~ei1
orgi

ð~rgi ðs1,s2Þ,s1Þ
is negative. Therefore, o~ri1

os2
ðs1,s2Þ < 0. A similar argument shows that o~ri2

os1
ðs1,s2Þ < 0.

Since ~rgi ðs1,s2Þ ¼ Y i1~ri1ðs1,s2Þ þ Y i2~ri2ðs1,s2Þ, we have that
o~rgi
os1

ðs1,s2Þ ¼ Y i1
o~ri1
os1

ðs1,s2Þ þ Y i2
o~ri2
os1

ðs1,s2Þ:
By part (a) of this Lemma,
o~rgi
os1

ðs1,s2Þ > 0. The argument in the previous paragraph implies that
o~ri2
os1

ðs1,s2Þ < 0. Therefore, we conclude that
o~ri1
os1

ðs1,s2Þ ¼
1

Y i1

o~rgi
os1

ðs1,s2Þ � Y i2
o~ri2
os1

ðs1,s2Þ
� �

> 0:
A similar argument shows that o~ri2
os2

ðs1,s2Þ > 0. h
3. Dynamics of enzymes

We begin the analysis of the model (11)–(14) by studying several important properties of the
enzyme dynamics. The next Lemma shows that the enzyme system for the ith species is globally
stable and it exhibits competitive dynamics.

Lemma 3. Suppose that the substrate concentrations sj > 0 are fixed. Let i 2 {1,2} and consider the
dynamics of the system
dei1
dt

¼ rei1ðs1,ei1Þ � ðY i1ei1ri1 þ Y i2ei2ri2Þei1, ð16Þ

dei2
dt

¼ rei2ðs2,ei2Þ � ðY i1ei1ri1 þ Y i2ei2ri2Þei2, ð17Þ
where rij = rij(sj) and sj, j = 1, 2. The system (16) and (17) is strictly competitive and it admits a un-
ique globally asymptotically stable equilibrium in the positive quadrant.

Proof. In the positive quadrant,
o

oei2

dei1
dt

¼ �Y i2ri2ei1 < 0,

o

oei1

dei2
dt

¼ �Y i1ri1ei2 < 0,
therefore (16) and (17) is strictly competitive. Solving for the nullclines in (16) and (17), we obtain
two functions
ei2 ¼ W 1ðei1Þ �
1

Y i2ri2

rei1ðs1,ei1Þ
ei1

� Y i1ei1ri1

� �
,



e

e

W (e  )

W (e  )

i2

i1

1 i1

2 i2

Fig. 4. Phase portrait of (16) and (17). The curves labeled W1(ei1) and W2(ei2) represent the nullclines for ei1 and ei2,
respectively. The nullclines partition the ei1ei2-quadrant into four regions; the arrows show the orientation of the vector
field of (16) and (17) in these regions.
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ei1 ¼ W 2ðei2Þ �
1

Y i1ri1

rei2ðs2,ei2Þ
ei2

� Y i2ei2ri2

� �
:

The functions W1(ei1) and W2(ei2) describe the ei1- and ei2-nullclines respectively. We observe
that

• Both W1 and W2 are decreasing functions by assumption (H1);
• W1 ! +1 as ei1 ! 0 and W1 ! �1 as ei1 !1; similarly W2 ! +1 as ei2 ! 0 and

W2 ! �1 as ei2 !1 by assumption (H2);
• Since s1 and s2 are fixed, Eqs. (16) and (17) admit a unique positive equilibrium as guaranteed

by Lemma 1, that is, the graphs of W1 and W2 intersect exactly once in the positive quadrant;
• dei1/dt < 0 for ei2 >W1(ei1) and dei1/dt > 0 for ei2 <W1(ei1); similarly dei2/dt < 0 for

ei1 >W2(ei2) and dei2dt > 0 for ei1 <W1(ei2).

These observations imply that the only possible phase diagram of (16) and (17) is as shown in
Fig. 4.

An important conclusion of the phase plane analysis is that the positive equilibrium of (16) and
(17) is globally asymptotically stable and the variational matrix
Ei ¼
oðRi1,Ri2Þ
oðei1,ei2Þ

ð18Þ
of (16) and (17) at this equilibrium has two strictly negative real eigenvalues. 3 h

Remark. The pair of steady state enzyme values ð~ei1,~ei2Þ is the positive solution of the system
Ri1ðs1,s2,~ei1,~ei2Þ ¼ 0, Ri2ðs1,s2,~ei1,~ei2Þ ¼ 0: ð19Þ

The partial derivatives of ~eij with respect to sj can be obtained by implicit differentiation in (19),
that is,
he eigenvalues are real because the system (16) and (17) is competitive.
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0 ¼ Ri þ Ei �
oð~ei1,~ei2Þ
oðs1,s2Þ

, Ri ¼
oðRi1,Ri2Þ
oðs1,s2Þ

, Ei ¼
oðRi1,Ri2Þ
oðei1,ei2Þ

:

Therefore,
oð~ei1,~ei2Þ
oðs1,s2Þ

¼ �E�1
i Ri: ð20Þ
Recall that the steady state value of the ith specific growth rate is given by
~rgi ðs1,s2Þ ¼ Y i1~ei1ðs1,s2Þri1ðs1Þ þ Y i2~ei2ðs1,s2Þri2ðs2Þ:
Using (20), we find that
oð~rg1,~r
g
2Þ

oðs1,s2Þ
¼

Y 11~e11r0
11 Y 12~e12r0

12

Y 21~e21r0
21 Y 22~e22r0

22

� �
�

Y 11r11 Y 12r12

0 0

� �
E�1
1 R1 �

0 0

Y 21r21 Y 22r22

� �
E�1
2 R2:

ð21Þ
Using the results of Lemma 3, we can prove that single species cultures (e.g., monocultures) can
only exhibit equilibrium behavior in the long term. The dynamics of monocultures is governed by
the following system:
_s1 ¼ D sf1 � s1
� �

� ce1r1ðs1Þ, ð22Þ

_s2 ¼ D sf2 � s2
� �

� ce2r2ðs2Þ, ð23Þ

_c ¼ cðrg � DÞ, ð24Þ

_e1 ¼ re1ðs1,e1Þ � rge1, ð25Þ

_e2 ¼ re2ðs2,e2Þ � rge2, ð26Þ
where we dropped the subscript i in all appropriate terms and used the dot to denote the time
derivative. The specific growth rate in (24) is given by rg = Y1e1r1(s1) + Y2e2r2(s2).

Theorem 4. If the dynamics of the enzymes is either fast or slow on the time scale of the chemostat,
then all solutions of (22)–(26) converge to an equilibrium.

Proof. Suppose that the enzyme dynamics is fast. Then the enzyme levels rapidly settle at their
quasi steady state levels ð~ei1ðs1,s2Þ, ~ei2ðs1,s2ÞÞ. We use this QSSA and reduce Eqs. (22)–(26) to
obtain
_s1 ¼ D sf1 � s1
� �

� c~r1ðs1,s2Þ, ð27Þ

_s2 ¼ D sf2 � s2
� �

� c~r2ðs1,s2Þ, ð28Þ

_c ¼ cð~rg � DÞ, ð29Þ
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where ~rjðs1,s2Þ ¼ ~ejðs1,s2ÞrjðsjÞ, and ~rg ¼ Y 1~r1 þ Y 2~r2. Lemma 2 implies that the reduced system
(27)–(29) belongs to the class of phenomenological models studied in the first part of this paper
[6]. Therefore, every solution of (27)–(29) converges to an equilibrium.

Now suppose that the enzyme dynamics is slow. First, we consider the dynamics of the
subsystem (22)–(24) assuming that the enzymes are constant. This limiting case also belongs to the
class of phenomenological models studied in [6]. Using the global convergence of such systems, we
introduce the following quasi steady state assumption:
F ¼ sf1 � s1
� �

e2r2 � sf2 � s2
� �

e1r1 ¼ 0, Y 1e1r1 þ Y 2e2r2 ¼ D, ð30Þ
which states that (22)–(24) is at the positive equilibrium for a given combination (e1,e2) of the en-
zyme levels. Using (30), we treat s1 ¼ ŝ1ðe1,e2Þ and s2 ¼ ŝ2ðe1,e2Þ as implicit functions of e1 and e2.
The quasi steady state assumption (30) reduces the system (22)–(26) to two equations
_e1 ¼ re1ð̂s1ðe1,e2Þ,e1Þ � De1, ð31Þ

_e2 ¼ re2ð̂s2ðe1,e2Þ,e2Þ � De2: ð32Þ

Implicitly differentiating (30) with respect to e2, we find that
Y 1e1r0
1

oŝ1
oe2

þ Y 2e2r0
2

oŝ2
oe2

¼ �Y 2r2,

oF
os1

oŝ1
oe2

þ oF
os2

oŝ2
oe2

¼ � oF
oe2

:

Since oF
os1

¼ �e2r2 � ðsf2 � s2Þe1r0
1 < 0 and oF

os2
¼ ðsf1 � s1Þe2r0

2 þ e1r1 > 0, we have that
D ¼ det
Y 1e1r0

1 Y 2e2r0
2

oF
os1

oF
os2

 !
> 0,
and therefore
oŝ1
oe2

¼
�Y 2r2

oF
os2

þ Y 2e2r0
2
oF
oe2

D
¼ � Y 2r2e1r1

D
< 0:
A symmetrical argument shows that oŝ2
oe1

< 0. Since each function rej in (31) and (32) is strictly
increasing in ŝj due to assumption (H2), we conclude that the reduced system (31) and (32) is
strictly competitive in the positive quadrant. Therefore, all solutions of (31) and (32) converge
to an equilibrium. h

Remark. When the enzyme dynamics is fast on the time scale of the chemostat, the physiolog-
ical model is well approximated by the phenomenological model. Therefore, all analytical
results regarding existence, uniqueness, and stability of equilibria and global convergence of
solutions that we presented in [6] can be directly extended to the case of the physiological
model.
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4. Existence and uniqueness of equilibria

In the physiological model (11)–(13), we distinguish three types of equilibria,

• the trivial equilibrium, denoted /00, where c1 = c2 = 0;
• the semitrivial (single species) equilibria, denoted /10 if c1 > 0, c2 = 0 and /01 if c1 = 0, c2 > 0;
• the non-trivial (coexistence) equilibrium, denoted /11, where c1 > 0, c2 > 0.

Definition. In the context of the physiological model (11)–(13), we define the growth isocline Gi of
the ith species as the locus of all points (s1, s2) such that ~rgi ðs1,s2Þ ¼ D with sj P 0, and the
consumption curve Ui of the ith species as the locus of all points (s1, s2) such that
sf1 � s1
~ri1ðs1,s2Þ

¼ sf2 � s2
~ri2ðs1,s2Þ

, ð33Þ
with 0 6 sj 6 sfj. The envelope of coexistence is the set of all points in the (s1, s2) plane that lie be-
tween the curves U1 and U2.

Lemma 5. (a) The growth isocline Gi is a graph of a smooth function s2 = qi(D,s1) which is mono-
tonically increasing in D and monotonically decreasing in s1. For any positive D there exist values
0 6 s�ji ðDÞ < sþji ðDÞ, j = 1,2 such that qi(D, s1) is defined for all s�1iðDÞ < s1 < sþ1iðDÞ and
lim
s1!s�

1i
ðDÞ

qiðD,s1Þ ¼ sþ2iðDÞ, lim
s1!sþ

1i
ðDÞ

qiðD,s1Þ ¼ s�2iðDÞ:
Furthermore, s�1iðDÞ ¼ 0 if and only if sþ2iðDÞ < þ1, and s�2iðDÞ ¼ 0 if and only if sþ1iðDÞ < þ1.
(b) The consumption curve Ui is a graph of a smooth function s2 ¼ giðsf1,sf2,s1Þ which is

monotonically increasing in s1 and sf2 and monotonically decreasing in s
f
1. In addition, s2 ¼ giðsf1,sf2,s1Þ

is defined for all 0 6 s1 6 sf1 and
lim
s1!0

gi s
f
1,s

f
2,s1

� �
¼ 0, lim

s1!sf
1

gi s
f
1,s

f
2,s1

� �
¼ sf2:
Proof. (a) The equation defining Gi is obtained by substituting ~rgi into Eq. (15)
D ¼ Y i1~ei1ðD,s1Þri1ðs1Þ þ Y i2~ei2ðD,s2Þri2ðs2Þ:

Equivalently,
1 ¼ hi1ðD,s1Þ þ hi2ðD,s2Þ, hijðD,sjÞ ¼
Y ij

D
~eijðD,sjÞrijðsjÞ: ð34Þ
By Lemma 1, hij(D, 0) = 0 and hij(D, sj) is monotonically increasing in sj and monotonically
decreasing in D for all D > 0 and sj > 0. For any D > 0, Eq. (34) implicitly defines a smooth func-
tion s2 = qi(D, s1) which is monotonically decreasing in s1. Substituting s2 = qi(D, s1) into (34) and
differentiating with respect to D, we find that
ohi1
oD

ðD,s1Þ þ
ohi2
oD

ðD,qiðD,s1ÞÞ þ
ohi2
os2

ðD,qiðD,s1ÞÞ
oqi
oD

ðD,s1Þ ¼ 0:
Since
ohij
oD < 0 and ohi2

os2
> 0, we conclude that oqi

oD ðD,s1Þ > 0.
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Consider the equation hij(D,x) = 1. If this equation admits a positive solution x, then we define
sþji ðDÞ ¼ x. If hij(D,x)<1 for all x>0, we define sþji ðDÞ ¼ þ1. Now consider the equation
hi1ðD,yÞ þ hi2ðD,sþ2iðDÞÞ ¼ 1. If there exists a non-negative solution y, we define s�1iðDÞ ¼ y,
otherwise we define s�1iðDÞ ¼ 0. Similarly, we define s�2iðDÞ. A straightforward argument shows
that the quantities s	ji ðDÞ are as claimed. This concludes the proof of (a).

The proof of part (b) is identical to the proof of Lemma 1 in [6]. h

Remarks

1. As s1 is decreased along the growth isocline Gi, then depending on the value of D, the growth
isocline Gi either intersects the s2-axis at ð0,sþ2iðDÞÞ (if sþ2iðDÞ is finite) or it has a vertical asymp-
tote at s1 ¼ s�1iðDÞ P 0 (if sþ2iðDÞ is infinite). As s1 is increased along the growth isocline Gi,
then depending on the value of D, the growth isocline Gi either intersects the s1-axis at
ðsþ1iðDÞ,0Þ (if sþ1iðDÞ is finite) or it has a horizontal asymptote at s2 ¼ s�2iðDÞ P 0 (if sþ1iðDÞ is infi-
nite). Biologically, the fact that sþ1iðDÞ is finite means that the first substrate s1 can alone sus-
tain the steady state specific growth rate ~rgi of the ith species at the level D, and thus ci can
persist in the chemostat even if s2 = 0. Similarly, ci can persist on s2 alone if and only if
sþ2iðDÞ is finite.

2. The inequalities
o~rgi
osj

P 0 for i, j = 1,2 obtained in Lemma 2 imply thatr~rgi 2 R2
þ. Consequently,

the substrates s1 and s2 are always locally synergistic in the model (11)–(13). For the exact def-
inition of synergistic vs. antagonistic interaction between the substrates, we refer the reader to
the first part of this paper [6].

Theorem 6

(a) The trivial equilibrium is unique and it exists for all combinations of the dilution rate D and the
feed concentrations sfj,j ¼ 1,2.

(b) The semitrivial equilibrium /10 exists if and only if ~rg1ðsf1,sf2Þ > D and it is unique whenever it
exists. Similarly, the semitrivial equilibrium /01 exists if and only if ~rg2ðsf1,sf2Þ > D and it is unique
whenever it exists.

(c) The non-trivial equilibrium /11 exists whenever the growth isoclines G1 and G2 intersect within
the envelope of coexistence. Existence of both /10 and /01 is necessary for existence of /11.

Proof

(a) Since c1 = c2 = 0 at /00, Eq. (11) implies that sj ¼ sfj,j ¼ 1,2. The enzyme levels eij are uniquely
defined by Lemma 1.

(b) Eqs. (11)–(13) imply that the projection of /10 onto the (s1, s2) plane must be an intersection of
G1 and U1. By Lemma 5, G1 is a graph of a decreasing function, and U1 is a graph of an
increasing function, therefore G1 and U1 can intersect at most once. The coordinates (s1, s2)
of such intersection uniquely determine eij by Lemma 1. Thus, /10 is unique whenever it exists.
By Lemma 2, ~rg1ðs1,s2Þ is an increasing function of both s1 and s2. As the point (s1, s2) travels
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along U1 from (0,0) to ðsf1,sf2Þ, the value of ~rg1ðs1,s2Þ continuously increases from ~rg1 ¼ 0 to
~rg1 ¼ ~rg1ðsf1,sf2Þ. Consequently, G1 intersects U1 if and only if ~rg1ðsf1,sf2Þ > D. A similar argument
applies to the existence and uniqueness of /01.

(c) The proof of the first part of this assertion is identical to the proof of Theorem 5 in [6]. Now
suppose that /11 exists, that is, G1 and G2 intersect within the envelope of coexistence. The
results of Lemma 5 (a) imply that each growth isocline Gi must then intersect the correspond-
ing consumption curve Ui and thus both /10 and /01 must exist. h

Remarks

1. It is possible that multiple coexistence equilibria /11 exist because the growth isoclines G1 and
G2 can intersect more than once. We have constructed examples of both phenomenological and
physiological models with two distinct coexistence equilibria.

2. The relative geometry of growth isoclines and the consumption curves established in Lemma 5
also provides sufficient conditions for existence of /11. For instance, it follows that /11 exists
whenever
• both /10 and /01 exist with ~r

g
2 > D at /10 and ~r

g
1 > D at /01 in which case each competitor can

invade the reactor in presence of the other competitor;
• both /10 and /01 exist with ~rg2 < D at /10 and ~rg1 < D at /01 in which case neither competitor

can invade the reactor in presence of the other competitor.
5. Stability of equilibria

Lemma 7. The trivial equilibrium /00 is stable if and only if ~rgi ðsf1,sf2Þ < D for i = 1,2.

Proof. The variational matrix of (11)–(13) at /00 is given by
Jð/00Þ ¼

�D 0

0 �D

0 0

0 0

0 0

0 0

�~r11 �~r21
�~r12 �~r22

oðR11,R12Þ
oðs1,s2Þ

oðR11,R12Þ
oðe11,e12Þ

0 0

0 0

0 0

0 0

oðR21,R22Þ
oðs1,s2Þ

0 0

0 0
oðR21,R22Þ
oðe21,e22Þ

0 0

0 0

0 0

0 0

0 0

0 0

0 0

0 0

~rg1 � D 0

0 ~rg2 � D

0BBBBBBBBBBBB@

1CCCCCCCCCCCCA
:

The first two eigenvalues of J(/00) are k1 = k2 = �D. Each of the blocks
E1 ¼
oðR11,R12Þ
oðe11,e12Þ

and E2 ¼
oðR21,R22Þ
oðe21,e22Þ
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contributes two negative eigenvalues so that k3, k4, k5, k6 < 0. The last two eigenvalues are given
by k7 ¼ ~rg1ðsf1,sf2Þ � D and k8 ¼ ~rg2ðsf1,sf2Þ � D. We conclude that /00 is stable if and only if
~rg1ðsf1,sf2Þ < D and ~rg2ðsf1,sf2Þ < D. h

Corollary. The trivial equilibrium is stable if and only none of the semitrivial equilibria exist.

In the next Lemma, we analyze the stability of the semitrivial equilibrium /10.
4

Lemma 8. Suppose that /10 exists. The necessary condition for stability of /10 is that ~r
g
2 evaluated

at /10 is strictly less than D.

Proof. The variational matrix of (11)–(13) at /10 is given by
4 T
Jð/10Þ ¼

�A �S1 0 �B

R1 E1 0 0

R2 0 E2 0

C T 0 G

0BBB@
1CCCA, ð35Þ
where
A ¼
Dþ c1e11r0

11 0

0 Dþ c1e12r0
12

� �
; G ¼

0 0

0 ~rg2 � D

� �
; B ¼

~r11 ~r21
~r12 ~r22

� �
;

C ¼
c1Y 11e11r0

11 c1Y 12e12r0
12

0 0

� �
; S1 ¼

c1r11 0

0 c1r12

� �
; T ¼

c1Y 11r11 c1Y 12r12

0 0

� �
;

Ri ¼
oðRi1;Ri2Þ
oðs1; s2Þ

; Ei ¼
oðRi1;Ri2Þ
oðei1; ei2Þ

:

A direct examination of (35) shows that one eigenvalue of J(/10) is given by k8 ¼ ~rg2 � D and
two more eigenvalues k6 and k7 are eigenvalues of E2 thus k6, k7 < 0 as we established in section
3. The remaining five eigenvalues of J(/10) are the eigenvalues of the submatrix
Q ¼

�D� c1e11r0
11 0

0 �D� c1e12r0
12

�c1r11 0

0 �c1r12

�~r11
�~r12

R1 E1

0

0

c1Y 11e11r0
11 c1Y 12e12r0

12 c1Y 11r11 c1Y 12r12 0

0BBBBB@

1CCCCCA:
Let
N ¼

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

Y 11 Y 12 0 0 1

0BBBBBB@

1CCCCCCA:
he stability analysis of /01 is completely analogous and is not presented here.
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Then
NQN�1 ¼
�W �R 0

R1 E1 0

0 0 �D

0B@
1CA,
where
W ¼
Y 12~r12 þ c1e11r0

11 �Y 12~r11
�Y 11~r12 Y 11~r11 þ c1e12r0

12

� �
, R ¼

c1r11 0

0 c1r12

� �
:

Clearly, one eigenvalue of Q is given by k5 = �D. The remaining four eigenvalues are the eigen-
values of the submatrix
Q0 ¼
�W �R

R1 E1

� �
:

In the remainder of the proof, we compute the sign of detQ 0. Since E1 is non-singular,
detQ0 ¼ detðE1Þ detðW � RE�1

1 R1Þ. Furthermore,
�E�1
1 R1 ¼

oð~e11,~e12Þ
oðs1,s2Þ
implies that
�RE�1
1 R1 ¼

c1r11
o~e11
os1

c1r11
o~e11
os2

c1r12
o~e12
os1

c1r12
o~e12
os2

 !
,

and thus
W � RE�1
1 R1 ¼

Y 12~r12 þ c1
o~r11
os1

�Y 12~r11 þ c1
o~r11
os2

�Y 11~r12 þ c1
o~r12
os1

Y 11~r11 þ c1
o~r12
os2

 !
:

Using elementary row operations, we can show that
det W � RE�1
1 R1

� �
¼ det

c1
o~rg

1

os1
c1

o~rg
1

os2

�~r12 þ c1
Y 11

o~r12
os1

~r11 þ c1
Y 11

o~r12
os2

0@ 1A,
so that
detðW � RE�1
1 R1Þ ¼ c1

o~rg1
os1

~r11 þ
c1
Y 11

o~r12
os2

� �
þ c1

o~rg1
os2

~r12 �
c1
Y 11

o~r12
os1

� �
:

Since c1 ¼ Y 11ðsf1 � s1Þ þ Y 12ðsf2 � s2Þ at /10, the quantity b ¼ sf
2
�s2
Y 11

satisfies the relations
c1
Y 11

� bY 12

� �
¼ sf1 � s1, bY 11 ¼ sf2 � s2: ð36Þ
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Now we rewrite detðW � RE�1
1 R1Þ as
detðW � RE�1
1 R1Þ ¼ c1

o~rg1
os1

~r11 þ
c1
Y 11

o~r12
os2

� b
o~rg1
os2

� �
þ c1

o~rg1
os2

~r12 �
c1
Y 11

o~r12
os1

þ b
o~rg1
os1

� �
:

Equivalently,
detðW � RE�1
1 R1Þ ¼ c1

o~rg1
os1

~r11 þ
c1
Y 11

� bY 12

� �
o~r12
os2

� bY 11
o~r11
os2

� �
þ c1

o~rg1
os2

~r12 �
c1
Y 11

� bY 12

� �
o~r12
os1

þ bY 11
o~r11
os1

� �
:

Using (36), the above expression can be written as
detðW � RE�1
1 R1Þ ¼ c1

o~rg1
os1

~r11 þ sf1 � s1
� � o~r12

os2
� sf2 � s2
� � o~r11

os2

� �
þ c1

o~rg1
os2

~r12 � sf1 � s1
� � o~r12

os1
þ sf2 � s2
� � o~r11

os1

� �
:

In the proof of Theorem 3 in [6], we obtained the same expression and demonstrated that it
actually equals
det W � RE�1
1 R1

� �
¼ c1r~rg1 � eF 1

,

where eF 1 2 R2
þ is the tangent vector to the consumption curve U1. Since r~rg1 2 R2

þ,
detðW � RE�1

1 R1Þ > 0 and the substrates act synergistically. Using the fact that det(E1) > 0, we
find that detQ 0 > 0. The trace of Q 0 is given by
tr Q0 ¼ �D� c1e11r0
11 � c1e12r0

12 þ trE1 < 0:
Therefore, the eigenvalues k1, . . . ,k4 of Q 0 must be such that
k1 � � � k4 ¼ detQ 0 > 0, k1 þ � � � þ k4 ¼ trQþ D < 0:
Only two combinations are possible: either Rki < 0 for i = 1, . . . , 4 or Rki < 0 for i = 1,2 and
Rki > 0 for i = 3,4. h

Conjecture. Rki < 0 for i = 1, . . . , 4. If this conjecture holds, then /10 has seven eigenvalues
k1, . . . ,k7 with negative real parts, and the last eigenvalue is given by k8 ¼ ~rg2 � D. Then /10 is sta-
ble if and only if ~rg2 � D < 0.

In the next Lemma, we analyze the stability of /11 assuming that its existence has been
established.

Lemma 9. Suppose that /11 exists. The necessary condition for stability of /11 is that one of the
following hold:

1. The (s1, s2) projection of /11 lies below U1 and above U2 and the vector pair ðr~rg1,r~rg2Þ has positive
orientation;
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2. The (s1, s2) projection of /11 lies above U1 and below U2 and the vector pair ðr~rg1,r~rg2Þhas negative
orientation.

Proof. The variational matrix of (11)–(13) at /11 is given by
Jð/11Þ ¼

�A �S1 �S2 �B

R1 E1 0 0

R2 0 E2 0

C T 1 T 2 0

0BBB@
1CCCA, ð37Þ
where
A ¼
Dþ c1e11r0

11 þ c2e21r0
21 0

0 Dþ c1e12r0
12 þ c2e22r0

22

� �
; B ¼

~r11 ~r21
~r12 ~r22

� �
;

C ¼
c1Y 11e11r0

11 c1Y 12e12r0
12

c2Y 21e21r0
21 c2Y 22e22r0

22

� �
; S1 ¼

c1r11 0

0 c1r12

� �
; S2 ¼

c2r21 0

0 c2r22

� �
;

T 1 ¼
c1Y 11r11 c1Y 12r12

0 0

� �
; T 2 ¼

0 0

c2Y 21r21 c2Y 22r22

� �
;

Ri ¼
oðRi1;Ri2Þ
oðs1; s2Þ

; Ei ¼
oðRi1;Ri2Þ
oðei1; ei2Þ

:

The characteristic polynomial p(k) of (37) can be written as
pðkÞ ¼ det

�A� kI �S1 �S2 �B

R1 E1 � kI 0 0

R2 0 E2 � kI 0

C T 1 T 2 �kI

0BBB@
1CCCA: ð38Þ
After a series of elementary row operations, we obtain
pðkÞ ¼ det kðAþ kIÞ þ BC � ðkS1 þ BT 1ÞðE1 � kIÞ�1R1

n
�ðkS2 þ BT 2ÞðE2 � kIÞ�1R2

o
� detðE1 � kIÞ � detðE2 � kIÞ: ð39Þ
It is clear that p(k) = k8 + O(k7) for k � 1. Therefore, a necessary condition for stability is that
p(0) > 0. Conversely, a sufficient condition for instability is that p(0) < 0.

Now we study the sign of p(0). According to (39),
pð0Þ ¼ detðBC � BT 1E�1
1 R1 � BT 2E�1

2 R2ÞdetðE1Þ detðE2Þ: ð40Þ
In Section 3, we have demonstrated that det(Ei) > 0. According to (21),
detðBC � BT 1E�1
1 R1 � BT 2E�1

2 R2Þ ¼ c1c2 detðBÞ det
oð~rg1,~r

g
2Þ

oðs1,s2Þ
:
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Fig. 5. (a) Both /10 and /01 exist, and ~rg2 > D at /10 and ~rg1 > D at /01 so that both /10 and /01 are unstable. The
growth isoclines G1 and G2 must intersect within the envelope of coexistence. Furthermore, the intersection /11 satisfies
the necessary condition for stability (41). (b) Both /10 and /01 exist, and ~rg2 < D at /10 and ~rg1 < D at /01 so that both
/10 and /01 are stable. The growth isoclines G1 and G2 must intersect within the envelope of coexistence. Furthermore,
the intersection /11 violates the condition (41) and thus /11 is unstable.
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Since c1, c2 > 0, the necessary condition p(0) > 0 for stability of /11 can be expressed as
detðBÞ det oð~r
g
1,~r

g
2Þ

oðs1,s2Þ
> 0: ð41Þ
As we demonstrated in [6], the sign of det(B) is determined by the position of /11 relative to U1

and U2. Specifically, det(B) > 0 if the projection of /11 onto the (s1, s2) plane lies below
U1 and above U2, and det(B) < 0 if such projection lies below U2 and above U1. The sign of the
second determinant in (41) corresponds to the orientation of the vector pair ðr~rg1,r~rg2Þ. h

Remark. Now we can strengthen the existence criteria formulated at the end of Section 4. If both
/10 and /01 exist with ~rg2 > D at /10 and ~rg1 > D at /01 (refer to Fig. 5(a)) then there exists a non-
trivial equilibrium /11 which satisfies the necessary condition for stability (41). If both /10 and /01

exist with ~rg2 < D at /10 and ~rg1 < D at /01 (refer to Fig. 5(b)) then there exists an unstable non-
trivial equilibrium /11.
6. Discussion

In this paper, we have analyzed the existence, uniqueness, and stability of equilibria of the phys-
iological model of mixed microbial growth on a mixture of two substitutable substrates. This
physiological model explicitly includes the dynamics of the peripheral enzymes that are involved
in the uptake and initial metabolism of the substrates. We argued that the use of such physiolog-
ical models is necessary in trying to understand the dynamic responses of continuous cultures to
various environmental perturbations.

The biological significance of the physiological model is that it provides the explicit mech-
anism for competition between enzymes specific to distinct substrates. In our model, each en-
zyme level is determined by the balance of the rate at which this enzyme is synthesized and
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the rate at which the cell biomass increases (e.g., the specific growth rate). An upregulation of
one enzyme level results in the overall increase of the specific growth rate and thus other en-
zymes become more dilute. The same mechanism is responsible for the mutual downregulation
of the substrate uptake rates which we studied in our previous work in the context of a phe-
nomenological model [6].

In the analysis of the model, we made three rather general assumptions (H1)–(H3) regarding
the kinetics of substrate uptake, enzyme synthesis, and cell growth. The most important assump-
tion was (H1) postulating that the enzyme synthesis rate is a sublinear function of the enzyme level
which increases with the concentration of the specific substrate. Based on this assumption, we
have demonstrated that

1. For any fixed combination of substrate concentrations, the enzyme levels converge to a unique
globally stable equilibrium. This result depends strongly on the assumption (H1). If one needs
to formulate a model where the enzyme equations can have more than one attractor (multista-
bility), then this assumption would have to be modified.

2. At steady state, the enzyme levels are enhanced by their specific substrate and inhibited by the
non-specific substrate(s). The inhibition is weak so that increasing each substrate results in a
higher specific growth rate. Using this property, we showed that each growth isocline Gi is a
graph of a decreasing function in the (s1, s2) plane.

3. We showed that the consumption curve Ui that describes the balanced steady state growth of
the ith species is a graph of an increasing function in the (s1, s2) plane.

4. Each semitrivial equilibrium is represented by the intersection of the corresponding growth iso-
cline and the consumption curve. It is unique whenever exists. The stability of the semitrivial
equilibria is determined by the ability of one species to invade the reactor where the other spe-
cies is resident.

5. The non-trivial (coexistence) equilibrium /11 is represented by an intersection of two growth
isoclines if and only if it occurs within the envelope of coexistence, that is, in the region
between the two consumption curves. A necessary condition for coexistence is that both sem-
itrivial equilibria exist. Multiple non-trivial equilibria may exist.

6. The necessary condition for /11 to be stable is given by (41). This condition is a generalization
of the Gilpin–Justice criterion [1]. If both semitrivial equilibria exist and are unstable, then
there exists at least one coexistence equilibrium that satisfies the necessary condition for
stability.

All of these criteria are related to the geometric properties of the growth isoclines and the con-
sumption curves that can be obtained experimentally. For a given dilution rate D, the growth iso-
cline can be obtained by measuring both residual substrate concentrations s1 and s2 while varying
the feed concentrations sf1 and sf2. For a given combination of the feed concentrations sf1 and sf2, the
consumption curve can be obtained by measuring both residual substrate concentrations s1 and s2
while varying the dilution rate D in the reactor inhabited with a single microbial species. These
experiments can also be used to validate the model.

In the study of local stability of semi- and non-trivial equilibria of the physiological model, we
did not provide any sufficient conditions for stability. These mathematical questions currently re-
main open.
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We have also studied the global dynamics of single species cultures. We analyzed the lim-
iting case when the enzyme dynamics is fast or slow on the time scale of the chemostat. If the
enzymes are fast, then the physiological model can be reduced to the phenomenological model
by a quasi steady state assumption that replaces the actual enzyme levels by their steady state
analogues. If the enzymes are slow, we used global convergence of the phenomenological
model to prove that the enzyme dynamics is competitive, and therefore, globally conver-
gent.

Finally, we found that the physiological model under assumption (H1) exhibits the dynamics
that is similar to that of the phenomenological model with weak mutual inhibition of substrate
uptake rates. We have found no cases when the dynamics of enzymes would affect the stability
of the phenomenological model. In fact, assumption (H1) must be relaxed to allow for multista-
bility of the enzyme equations, in order for the physiological model to have more complex
dynamics.
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