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Abstract. The dynamics of microbial growth is a problem of fundamental
interest in microbiology, microbial ecology, and biotechnology. The pioneer-
ing work of Jacob Monod, served as a starting point for developing a wealth
of mathematical models that address different aspects of microbial growth in
batch and continuous cultures. A number of phenomenological models have
appeared in the literature over the last half century. These models can cap-
ture the steady-state behavior of pure and mixed cultures, but fall short of
explaining most of the complex dynamic phenomena. This is because the on-
set of these complex dynamics is invariably driven by one or more intracellular
variables not accounted for by phenomenological models.

In this paper, we provide an overview of the experimental data, and intro-
duce a different class of mathematical models that can be used to understand
microbial growth dynamics. In addition to the standard variables such as the
cell and substrate concentrations, these models explicitly include the dynamics
of the physiological variables responsible for adaptation of the cells to envi-
ronmental variations. We present these physiological models in the order of
increasing complexity. Thus, we begin with models of single-species growth in
environments containing a single growth-limiting substrate, then advance to
models of single-species growth in mixed-substrate media, and conclude with
models of multiple-species growth in mixed-substrate environments. Through-
out the paper, we discuss both the analytical and simulation techniques to
illustrate how these models capture and explain various experimental phe-
nomena. Finally, we also present open questions and possible directions for
future research that would integrate these models into a global physiological
theory of microbial growth.

1. Introduction. The growth of microbial species in media containing one or sev-
eral growth-limiting substrates is of immense importance in ecology and bioengi-
neering. For example, microbes play a vital role in the global carbon cycle. Each
year, approximately 50 × 109 tons of carbon is fixed into biomass by autotrophic
bacteria in the upper 10 m of the ocean. Some 30% of this fixed carbon enters
the grazing food chain that consists of zooplankton and fish. But 50% is rapidly
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consumed by the microbial loop within the upper layers, and another 20% sinks 10–
1000 m below sea level where it is slowly remineralized by heterotrophic bacteria.
This “biological pump” is responsible for reducing the atmospheric CO2 concentra-
tion by an estimated 400 ppm [63]. Our ability to understand and combat global
warming therefore hinges upon detailed knowledge of the mechanisms that medi-
ate the carbon flux through bacteria. Microbes play an equally important role in
bioengineering. Examples of particular interest include

1. Bioethanol fermentation: The feedstocks used for bioethanol fermentation
typically consist of a mixture of hexoses (primarily glucose) and pentoses
(primarily xylose). Bioethanol is the by-product obtained when microbes
consume this mixture of hexoses and pentoses.

2. Bioremediation: Gasoline and chemical spills generally yield a complex mix-
ture of water-soluble organic compounds. In gasoline spills, for instance, the
four compounds of concern are benzene, toluenne, ethylbenzene, and xylene.
Bioremediation of gasoline spills involves the consumption of this mixture by
microorganisms.

3. Biopolymer synthesis: Biopolymers, such as polyhydroxybutyrate, are syn-
thesized by exposing microbes to nitrogen-limited conditions.

Evidently, a deeper understanding of microbial growth has diverse and profound
implications.

There is a vast body of work on mathematical models of microbial growth, dom-
inated almost entirely by phenomenological models of growth. These models con-
sider only the substrate and cell concentrations as state variables, and completely
ignore the role of intracellular variables. However, in most instances, the microbial
response to environmental variations is intimately linked to adaptive changes within
the cell. Consider, for instance, the growth of a microbial culture limited by a single
substrate. When such a culture is suddenly exposed to substrate-excess conditions,
the specific growth rate does not increase immediately. Instead, there is a slow
adaptive response, because the cells must first synthesize the enzymes required to
metabolize the additional substrate available in the environment. Phenomenolog-
ical models, such as the Monod model or its many variants, cannot capture these
dynamics, since intracellular enzymes are not a part of the description of the model.
Not surprisingly, the phenomenological models predict instantaneous recovery in the
face of environmental perturbations, whereas the experiments show long recovery
times. Another example revealing the inadequacy of phenomenological models is
the growth of a microbial species on a mixture of two substitutable substrates, i.e.
substrates that fulfil the same nutrient requirements, such as two carbon sources
or two nitrogen sources. Given these two alternative sources of the same nutrient,
microbes often display anthropomorphic choice. They preferentially consume the
nutrient source that supports a higher growth rate. It is only after exhaustion of
the “preferred” substrate that they begin consuming the “less preferred” substrate.
To capture this behavior, the phenomenological models generally assume that the
“preferred substrate” somehow inhibits growth on the “less preferred” substrate.
But this hypothesis sheds no light on the mechanism by which the inhibition is
exerted. It is well known from molecular biology, dating back to the pioneering
studies of Monod and his coworkers in the early 60’s, that the uptake of the “less
preferred” substrate is abolished precisely because the enzymes that catalyze the
uptake of this substrate cannot be synthesized in the presence of the “preferred”
substrate. Models that ignore the dynamics of these transport enzymes may fit the
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Figure 1. (a) General model of microbial growth on a single
growth-limiting carbon source. (b) Special cases of the general
model used to study the role of peripheral enzymes (top) and ri-
bosomes (bottom). In all the figures, S denotes the carbon and
energy source; E denotes the coordinately controlled peripheral
enzymes that catalyze the transport and peripheral catabolism
of S; X denotes the internalized form of the substrate that induces
the synthesis of E; P denotes the pool of precursors produced by
catabolism of X; Ps denotes internally stored compounds; Px de-
notes excreted metabolites; Em denotes the biosynthetic enzymes
GDH, GOGAT. M is the pool of amino acid monomers; R de-
notes the ribosomes (or ribosomal RNA); C− denotes proteins;
and C denotes the total biomass of the cells.

data, but they cannot address the central biological question (why is the synthesis
of these enzymes inhibited?) without first admitting the transport enzymes as state
variables. There is growing recognition among both biologists and mathematicians
of the need for physiological models. In a recent commentary [2], it was observed
that

“Because microbes influence ecosystems through molecular interactions,
for example, involving cell surface receptors, permeases, or enzymes, . . .
microbes’ ecosystem activities, whether they involve carbon cycling or
pathogenesis toward marine animals, should be modeled as molecular
events.”

We have worked toward this goal for several years. Our modeling efforts have
spanned the entire spectrum from dynamics of single-species, single-substrate lim-
ited growth to multiple-species, multiple-substrate limited growth. This paper is a
summary of our results.

The main obstacle standing in the way of physiological model formulation is
identification of the variables. Even the seemingly simple bacterial cell contains
several hundred metabolites and enzymes. Which of these variables are important
for describing the dynamic response of the system? Our main modeling hypothesis
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is that despite the complexity of the metabolic pathways, the dynamics of micro-
bial growth and substrate consumption are governed by a few key intracellular
variables, namely, peripheral enzymes, biosynthetic enzymes, ribosomes, and nu-
cleotide phosphates. This hypothesis is based on the belief that only a handful of
variables are relevant on the time scale of interest (hours to days) - the “fast” vari-
ables rapidly attain quasi steady-state, and the “very slow” variables do not change
at all. Indeed, in what follows, we frequently reduce the complexity of the model
by appealing to the separation of time scales. But in the final analysis, the most
compelling argument supporting our hypothesis is the good agreement between the
model simulations and the experimental data.

We begin by considering the simplest case of single-species, single-substrate cul-
tures (section 2). We have used this simple setting to identify the variables by an
iterative process involving model formulation and comparison with experiments.
The variables thus identified form the foundation upon which we have built models
of mixed-substrate and mixed-culture growth (sections 3 and 4). Our models rep-
resent only the beginning of an attempt to create a unified physiological theory. In
section 5, we discuss several outstanding problems that appear to be ripe for attack
by rigorous mathematical approaches.

2. Single-species, single-substrate cultures. In the literature, the most popu-
lar abstraction of single-substrate growth is the Monod model [32]. It is well known,
however, that this model fails to describe the transient response to abrupt changes
in the environment [35, 26, 50]. The failure of the model stems from the assump-
tion that the substrate uptake and growth rates instantly adjust to variations of
the substrate concentration. In reality, the substrate uptake and growth rates do
not adjust until certain “slow” intracellular variables have adapted to the new en-
vironment. Thus, a key question for understanding the dynamics of single-species,
single-substrate cultures is

What are the “slow” intracellular variables that prevent the substrate up-
take and growth rates from adjusting instantly, and why is their response
so slow?

Based on a careful analysis of the experimental literature, we have identified three
intracellular variables as potential sources of the slow response - the peripheral
enzymes, the biosynthetic enzymes, and the ribosomes. Figure 1a, which shows a
fairly general abstraction of metabolism, illustrates the role of these variables in the
most well-studied example - aerobic growth on a single growth-limiting carbon and
energy source S (such as glucose or galactose). The peripheral enzymes (E), which
catalyze the peripheral catabolism of the substrate, yield the inducer (X), that
induces (stimulates) the synthesis of the peripheral enzymes.1 Catabolism of X by
the central metabolic pathways yields the pool of metabolites or precursors (P ).
The biosynthetic enzymes (Em) catalyze the synthesis of amino acid monomers

1Peripheral catabolism refers to the transport of the substrate into the cell, and its subsequent
chemical modifications before entry into the so-called central metabolic pathways, such as gly-
colysis or the citric acid cycle. Although it often entails multiple reactions, all the enzymes of
peripheral catabolism are, in general, coordinately controlled, i.e., their synthesis rates are coupled
because they are transcribed in tandem. Thus, we find it appropriate to “lump” all the peripheral
enzymes into a single variable.
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(M) from the precursors, and the ribosomes (R) catalyze the synthesis of proteins
(C−) from the monomers. 2

Our goal is to unravel the relative roles of the three “slow” variables E, Em,
and R. To achieve this goal, we have proceeded by systematically increasing the
complexity of the model. Thus far, we have investigated the role of peripheral
enzymes [57] and ribosomes [24] by considering the simpler abstractions shown in
Figure 1b. These results are summarized below. The future work, which concerns
the role of biosynthetic enzymes and energy, is described in Section 5.1.

2.1. The role of peripheral enzymes. In some instances, the substrate uptake
and growth rates respond slowly because the prevailing peripheral enzyme levels
are so small that almost no substrate is transported into the cell, even though the
exogenous substrate concentration is very high. This is dramatically illustrated by
exposing steady-state chemostat cultures to a substrate switch. For example, when
the growth-limiting carbon source of a C. heintzii culture is switched from glucose
to nitrilotriacetic acid (NTA), there is almost no substrate uptake, and hence, no
growth for 20 hours (see Figs. 2a,b). The inability of the cells to import NTA can
be traced to the virtual absence of NTA-monooxygenase, a peripheral enzyme for
NTA (Fig. 2c). This raises the questions

Why is the initial peripheral enzyme so low and why does it take the
cells so long to build up the peripheral enzyme level?

In [57], we argued that the answer to both questions is related to the fact that
peripheral enzyme synthesis is inducible – it is stimulated only when the cells are
exposed to the corresponding substrate in the environment. The molecular mech-
anism underlying this parsimonious behavior is implicit in Figure 1a. When the
substrate appears in the environment, the peripheral enzymes facilitate the up-
take of the substrate. The intracellular form of the substrate, X, then induces
the synthesis of more peripheral enzyme. It follows that the initial level of NTA-
monoxygenase is low because the cells have not been exposed to NTA prior to the
switch from glucose to NTA. Furthermore, it takes a long time to build up the
peripheral enzyme level because its synthesis is autocatalytic. This is evident from
the kinetic scheme – the higher the peripheral enzyme level, the larger the inducer
concentration and the peripheral enzyme synthesis rate. Since the initial peripheral
enzyme level is low, so is its synthesis rate, and this state of affairs persists until
the concentration of the enzyme is built up to sufficiently high levels.

To quantify the foregoing argument, we studied the kinetic scheme shown in
Figure 1b (top), which focuses on the inducible nature of peripheral enzyme syn-
thesis. The corresponding mass-balance equations for enzyme-limited growth in a

2Although there are many biosynthetic enzymes involved in amino acid synthesis, only one of
them, namely, glutamate dehydrogenase, provides the large majority (80%) of the amino acids for
protein synthesis. Thus, to a first degree of approximation, it is permissible once again to replace
the multitude of biosynthetic enzymes by a single enzyme, Em.
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Figure 2. Transient response of a C. heintzii culture to a switch
in the identity of the growth-limiting substrate from glucose to
nitrilotriacetic acid (NTA) (data from [4]). The dashed lines in (a)
and (b) show the substrate concentrations and cell densities that
would be obtained in the absence of any substrate consumption
and growth, i.e., ṡ = D(sf −s) and ċ = −Dc. The close agreement
between the dashed curves and the experimental data implies that
there is no perceptible substrate consumption and growth for the
first 20 hours. The full lines show the simulations of our model [57].
(a) Concentration of NTA. (b) Cell density. (c) Activity of NTA-
monooxygenase scaled such that the maximum activity is 1.

chemostat are

ṡ = D(sf − s)− rsc, rs ≡ Vse
s

Ks + s
, (1)

ė = r+
e − r−e − rge, r+

e ≡ Ve
1 + K1x + K2x

2

K3 + K1x + K2x2
, r−e ≡ k−e e, (2)

ẋ = rs − rx − rgx, rx = kxx, (3)

ċ− = Y rx − rgc
−, (4)

ċ = (rg −D)c, (5)

where D and sf denote the dilution rate and the substrate concentration in the
feed. 3 In equations (1–5), it is assumed that

3The variables e, x, and c− represent the mass-fractions of the peripheral enzymes, inducer
molecules, and the rest of the cell biomass so that e + x + c− = 1. For instance, the total
concentration of peripheral enzymes in the chemostat is given by ec, et cetera. Hence, the specific
growth rate rg in (2–4) corresponds to the rate at which these mass-fractions are “diluted” due to
cell growth. The dilution rate D does not appear in (2–4) because the washout of entire cells has
no effect on the internal cell composition.
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(a) The specific substrate uptake rate, rs, is jointly proportional to the peripheral
enzyme level and the extent to which it is saturated with the substrate;
(b) The specific peripheral enzyme synthesis rate, r+

e , is a saturable function of the
inducer concentration,4 and the specific enzyme degradation rate, r−e , is propor-
tional to the enzyme level;
(c) The cell biomass growth rate is proportional to the catabolic rate, rx, with a
constant of proportionality, Y , which corresponds to the yield of biomass on the
substrate;
(d) The specific catabolic rate, kx >> rg is so rapid that the inducer rapidly attains
a quasi-steady state. At such quasi-steady state, x = rs

kx+rg
≈ rs

kx
, or equivalently,

rs ≈ rx.

The quasi-steady state assumption allows to reduce equations (1–5) as follows.
Since e + x + c− = 1, we have

0 = ė + ẋ + ċ− = Y rx − rx + rs − rg,

hence the specific growth rate rg can be expressed as rg = Y rx − rx + rs ≈ Y rs =
Y Vse

s
Ks+s . The reduced model then takes the following form

ṡ = D(sf − s)− Vse
s

Ks + s
c, (6)

ė = r+
e − k−e e− rge, r+

e ≡ Ve
1 + K1x + K2x

2

K3 + K1x + K2x2
, (7)

x =
Vse s

kx(Ks + s)
, (8)

ċ =
(
Y Vse

s

Ks + s
−D

)
c. (9)

As shown in Figure 2, simulations of the model are in quantitative agreement with
the experimental data. At the heart of this agreement is the fact that peripheral
enzyme synthesis is autocatalytic. An intuitive argument supporting this claim was
given above. It is manifested much more clearly in the model. Indeed, substituting
(8) in the expression for r+

e yields

r+
e = Ve

1 + K ′
1e + K ′

2e
2

K3 + K ′
1e + K ′

2e
2
, K ′

1 ≡ K1

(
Vs

kx

s

Ks + s

)
, K ′

2 ≡ K2

(
Vs

kx

s

Ks + s

)2

,

which shows that the peripheral enzyme synthesis rate is indeed an increasing func-
tion of the enzyme level. In the next section, we show that the autocatalytic kinetics
of peripheral enzyme synthesis also plays a crucial role in mixed-substrate cultures.

We presented a detailed bifurcation and stability analysis of the model (6–9)
in [57]. It is worth mentioning here that the dynamics of (6–9) is essentially two-
dimensional due to a conservation law resulting from the constancy of the yield
coefficient. Indeed, letting z = Y s+c, it is easily seen that ż = D(Y sf −z). Hence,

4These kinetics are based on the molecular mechanism of induction in the lac operon. The
coefficients K1 and K2 denote the equilibrium constants for binding of one and two inducer
molecules to the repressor, and K3 denotes the equilibrium constant for binding of the repressor
to the operator. Note that the enzyme is synthesized at a small rate even in the absence of the

inducer ( r+
e

∣∣∣
x=0

= Ve/K3 > 0). This rate corresponds to the constitutive enzyme synthesis.
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Figure 3. (a) Variation of the steady state substrate concen-
tration with respect to the dilution rate (equivalently, the growth
rate). The solid line corresponds to the model (6–9). For compar-
ison, the dashed line shows the same graph for the Monod model.
The variation of the washout equilibria with respect to sf can be
traced graphically by moving the line s = sf up or down. For
instance, for high or low values of sf , the washout equilibrium
is unique. For intermediate values of sf , the model admits three
washout equilibria. (b) The bifurcation diagram of (6–9) for in-
termediate values of sf corresponds to the part of (a) that lies
below s = sf . The washout occurs at both high (D = D3) and
low (D = D2) values of the dilution rate. The Hopf bifurcation at
D = Dh indicates the onset of sustained oscillations. We should
point out that the middle washout steady-state E2 is always un-
stable, while the stability of E1 and E3 changes with D. We point
out that this bifurcation diagram can be equivalently replotted in
terms of c = Y (sf − s).

(6–9) can be further reduced to the limiting system

ṡ = (sf − s)(D − rg), rg ≡ Y Vse
s

Ks + s
(10)

ė = r+
e − (k−e + rg)e, r+

e ≡ Ve
1 + K1x + K2x

2

K3 + K1x + K2x2
, x ≡ rg

Y kx
. (11)

Note that the line s = sf is an invariant set of (10–11) that corresponds to the
microbial washout (c = 0). At the persistence steady state, we have s < sf and
rg = D. Substituting ė = 0 into (11), we can express the steady-state values e =
e(D) and s = s(D) as functions of the dilution rate D. Figure 3a shows the graph of
s = s(D) for the biologically reasonable range of parameters (for details, see [57]).
The part of the graph that lies above the line s = sf corresponds to the microbial
washout and each intersection s(D) = sf corresponds to a transcritical bifurcation
of a washout equilibrium. For intermediate values of the feed concentration sf ,
there are three intersections and thus three distinct washout equilibria E1, E2, E3

as shown in Figure 3b. One particularly important property of the model (6–9) is
the existence of a minimal growth rate (shown as D2 in Fig. 3b). Specifically, for
intermediate values of sf , the washout occurs at both high and low dilution rates.
Interestingly, this feature is commonly observed in the experimental literature.
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If we treat the dilution rate D as a bifurcation parameter, then Figure 3b can
be interpreted as the bifurcation diagram of (10–11). Transcritical bifurcations
corresponding to the washout occur at three values D = Di, i = 1, 2, 3. The
persistence steady state exists for D ∈ (0, D1)

⋃
(D2, D3). The stability of the

persistence steady state is determined by the variational matrix J with

trJ =
∂r+

e

∂e
− 2D − k−e − (sf − s)

∂rg

∂s
, det J = (sf − s)

∂rg

∂s
(D + k−e ).

In [57], we demonstrated that trJ is positive at D = D2 and negative at D = D3,
whereas detJ remains positive for all D2 < D < D3. Due to continuity, trJ
changes sign at some intermediate value Dh ∈ (D2, D3) corresponding to a Hopf
bifurcation. The persistence steady-state is stable for D > Dh and unstable for
D < Dh. We also showed that a Hopf bifurcation may occur even if E2 does not
exist (for details, see [57]) hence, the existence of E2 is sufficient but not necessary
for a Hopf bifurcation.

2.2. The role of ribosomes. The peripheral enzymes, which form the basis of the
model discussed above, are not the sole source of the slow physiological response to
substrate-excess conditions. This is evident from experiments in which a chemostat
is subjected to dilution rate shift-ups. Figure 4 (upper panel) shows that when
a glucose-limited culture of E. coli is subjected to a dilution rate shift-up from
D0 = 0.2 1/hr to D = 0.6 1/hr, the substrate concentration attains supersaturating
levels within 30 minutes (Fig. 4a), but the specific growth rate does not attain
its final value of 0.6 1/hr until 5 hours have elapsed (Fig. 4c). This is similar
to the transient shown in Figure 2. However, the slow response here is due to
a limitation in the RNA/protein synthesis rate rather than the substrate uptake
rate. This is forcefully revealed by the initial response to continuous-to-batch shifts.
In these experiments, cells maintained at steady state in a chemostat are abruptly
exposed to excess substrate concentrations, and the initial rates of various processes
are measured within 10–15 minutes of the exposure. The experiments show that
the specific substrate uptake rate rapidly increases to the maximal levels obtained
near the washout dilution rate (Fig. 5a). However, the specific rate of RNA and
protein synthesis increases only partially if the culture has been growing at low
dilution rates, and does not increase at all if the culture has been growing at high
dilution rates (Fig. 5b). It follows that when cells growing at steady state in a
chemostat are exposed to substrate-excess conditions, the substrate enters the cell
at near-maximal rates, but the catabolic products derived from it are, at best,
only partially channeled into RNA and protein synthesis. The excess substrate,
which accumulates within the cell in the form of precursors, is instantly eliminated
by rapidly increasing the rates of respiration (Fig. 5c), excretion (Fig. 5d), and
storage [28, 59].

The initial response of continuous-to-batch shifts reveals the identity of the pro-
cesses that prevent the growth rate from increasing instantly, but sheds no light on
the reason for their slow response. We gain some insight into the mechanism of the
slow response by examining the entire response of glutamate dehydrogenase (GDH)
and ribosome levels in continuous-to-batch shifts (Figs. 5e,f). These transients sug-
gest that synthesis of GDH and ribosomes is autocatalytic. Their synthesis rates
are small initially, accelerate subsequently, and subside finally after passing through
an inflection point. It is conceivable that these autocatalytic kinetics occur because
of the positive feedback loop shown in Figure 1a. An increase in the activity of
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Figure 4. Transient response to dilution rate shifts . The upper
panel shows the response of a glucose-limited culture of E. coli K12
to a shift-up from D0 = 0.2 1/hr to D = 0.6 1/hr (from [65]). The
lower panel shows a simulation of the response to a shift-up from
D0 = 0.2 1/hr to D = 0.8 1/hr (from [24]). The figures show
the evolution of (a,d) the cell density and substrate concentration,
(b,e) the RNA level, and (c,f) the specific growth and substrate
uptake rates.

GDH results in elevated amino acid levels. Amino acids stimulate the synthesis of
ribosomal RNA and ribosomes [8, 33, 67], which, in turn, stimulates the synthesis
of even more GDH.

To capture these dynamics, we assumed as a starting point that the biosyn-
thetic enzyme, Em, is in excess so that protein synthesis is limited by ribosomes,
and synthesis of ribosomes is autocatalytic [Figure 1b (bottom)]. This led to the
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Figure 5. (a,b,c,d) Initial response of glucose-limited steady-
state continuous cultures to saturating concentrations of glucose.
The dashed line shows the rate of a process when the culture is in
steady state at a particular dilution rate. The full line shows the
rate of the same process immediately after the steady-state culture
has been exposed to saturating concentrations of glucose. The data
in (b) was obtained with glycogenless mutants of E. coli B at 30℃.
All other data was obtained with wild-type K. aerogenes at 37℃.
(e,f) The dynamic response of GDH and RNA in glucose-limited
cultures subjected to continuous-to-batch shifts: The evolution of
both GDH activity and RNA levels has a sigmoidal profile. The
three curves in (f) correspond to three different dilution rates.

equations [24]

ṡ = D(sf − s)− rsc, rs ≡ Vse
s

Ks + s
, (12)

ċ = (rg −D)c, rg ≡ rs − rco2 , rco2 ≡ kco2p, (13)
˙c− = r+

c − r−c − rgc
−, r+

c ≡ Vcr
p

Kc + p
, r−c ≡ k−c c−, (14)

ė = r+
e − r−e − rge, r+

e ≡ Ve
r

Ke + r

1 + K1x + K2x
2

K3 + K1x + K2x2
, r−e ≡ k−e e, (15)

ṙ = r+
r − r−r − rgr, r+

r ≡ k+
r rp̄ , r−r ≡ k−r r, (16)

ẋ = rs − rx − rgx, rx ≡ kxx, (17)

ṗ = rx − rco2 − (r+
c − r−c )− (r+

e − r−e )− (r+
r − r−r )− rgp, (18)



184 A. NARANG AND S. S. PILYUGIN

where we assumed that
(a) The expression for r+

e reflects the fact that the specific enzyme synthesis rate
depends not only on the concentration of the inducer (which stimulates the tran-
scription of the gene into the mRNA corresponding to the enzyme), but also on the
concentration of ribosomes (which translate the mRNA produced by transcription
into the string of amino acids corresponding to the enzyme);
(b) The specific protein synthesis rate, r+

c , is jointly proportional to the catalyst
(ribosome) level and the availability of “raw materials” (p) required for synthesizing
protein;
(c) The specific RNA synthesis rate, r+

r , is proportional to p and r, where the
dependence on r reflects our assumption that RNA synthesis is autocatalytic;
(d) Degradation of proteins and RNA is a first-order process.

In Appendix A, we reduce equations (12–18) assuming that both inducer and
precursor rapidly achieve a quasi-steady state and that the the cell biomass consists
almost entirely of ribosomes and proteins (e, x, p ¿ 1 and r+c− ≈ 1). The reduced
system is

ṡ = D(sf − s)− rsc, (19)

ė = r+
e − r−e − rge, (20)

ṙ = r+
r − r−r − rgr, (21)

ċ = (rg −D) c, (22)
0 ≈ rs − rx, (23)

rg ≈ rx − rco2 , (24)

rg ≈ (r+
r − r−r ) + (r+

c − r−c ). (25)

Equation (25) shows that the specific growth rate of the cells effectively equals the
net rate of synthesis of the major macromolecules in the cell, namely, RNA and
proteins.

In [24], we have demonstrated that simulations of the model (19–25) capture
the dynamics observed in response to a wide variety of perturbations including
continuous-to-batch shifts, dilution rate shifts, and substrate switches (see, for in-
stance, Fig. 4). Here, it will suffice to explain the slow response to dilution rate
shift-ups in terms of the model. In dilution rate shift-up, the cells are already
growing on the growth-limiting substrate in question, so that the peripheral en-
zyme level is relatively high. Consequently, immediately after the shift-up, the
specific substrate uptake rate jumps to maximal levels, resulting in the accumula-
tion of precursors. This saturates the protein synthesis rate (r+

c ≈ Vcr), so that
the protein synthesis cannot increase until the ribosomes are built up to sufficiently
high levels. Since synthesis of ribosomes is autocatalytic, it takes a few hours for the
RNA and protein synthesis rates (and, hence, the specific growth rate) to increase
to the higher level consistent with the new dilution rate.

At first glance, it may seem that the large number of variables in (19–25) pre-
cludes the possibility of useful mathematical analysis. Upon closer inspection,
however, it becomes clear that further reduction of the equations is feasible, and
that this simplification yields deeper insights into the transients. This reduction is
obtained by observing that the saturation constant (Ks) is quite small (∼0.001–
0.01 g/L), but the substrate supply rate (Dsf ) and the substrate consumption rate
(rsc) are both on the order of 0.1–1 g/L-hr. Hence, the substrate concentration
switches from saturating levels (s À Ks) to subsaturating levels (s ¿ Ks) on a
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Figure 6. The orbits of the slow motions corresponding to a sub-
strate switch at D = 0.2 1/hr [24]. (a) The slow motion towards
balanced growth during substrate-excess conditions (s À Ks). The
line with short dashes shows the nullcline for e; the line with long
dashes shows the nullcline for r; the intersection of the two null-
clines represents the concentration of e and r at balanced growth;
the full line shows the approach of e and r toward the state of
balanced growth. (b) The slow motion during substrate-deficient
conditions (s ¿ Ks). The line with short dashes shows the null-
cline for c; the line with long dashes shows the nullcline for r; the
intersection of the two nullclines represents the steady-state con-
centrations of c and r at D = 0.2 1/hr; and the full line shows the
motion of c and r from balanced growth toward the final steady
state.

fast time scale of seconds to minutes. Since the transients typically occur on a time
scale of hours, we may say that during a transient, the substrate is either satu-
rating or subsaturating, and the nearly discontinuous transition between these two
conditions can be neglected without much loss of accuracy. This is vividly revealed
by the data in Figure 2. The substrate concentration almost instantly increases to
supersaturating levels, then remains so for the next 70 hrs, at which point it almost
instantly switches to subsaturating levels. Thus, a transient can be decomposed
into separate time intervals during which the substrate concentration is either sat-
urating or subsaturating. As we show below, the motion during these two limiting
conditions can be studied by examining a reduced system of equations.

If the substrate concentration is saturating (s À Ks), the interior of the cells
“sees”a constant environment even if the substrate concentration is changing. Given
this quasi-constant environment, the physiological variables move toward a sta-
tionary state. Now, the “fast” physiological variables, x and p, are always in a
quasi-steady state. The dynamics under substrate-excess conditions is therefore
determined by the “slow” motion of e and r toward their stationary state. This
slow motion can be analyzed by studying the two-dimensional system of equations
obtained by solving (23–24) for x̄ and p̄ under the constraint s/(Ks + s) ≈ 1, and
substituting these quasi-steady concentrations in (20–21). We refer to this motion
as substrate-excess batch dynamics, since this is precisely the motion exhibited by
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an inoculum introduced into a batch reactor containing a high substrate concen-
tration. In the face of the quasi steady environment corresponding to the high
substrate concentration, the physiological variables of the inoculum move toward
a steady state. The attainment of this physiological steady state marks the begin-
ning of exponential or balanced growth. Figure 6a shows that during the approach
to balanced growth, the orbit intersects the nullcline for E before intersecting the
nullcline for R. It follows that e reaches a maximum before r.

If the substrate concentration is subsaturating (s ¿ Ks), the substrate concen-
tration is so small that all the substrate entering the reactor is consumed as soon
as it enters the reactor. Hence,

0 = D(sf − s)− rsc ⇒ rs ≈ Dsf

c
,

i.e., the specific substrate uptake rate is independent of the enzyme level. Now, p̄
feels the effect of the peripheral enzyme level through the specific substrate uptake
rate [see equations (23–24)]. Since rs is independent of the enzyme level, so is the
quasi-steady state precursor level, p̄. It follows that the dynamics are governed by
the motion of the “slow” variables, r and c, while x and s are in quasi-steady state.
Figure 6b shows the slow motion from balanced growth to the ultimate steady state.
The orbit intersects the nullcline for C before intersecting the nullcline for R. It
follows that c reaches a maximum before r reaches a minimum.

3. Single-species, multiple-substrate cultures. In this section, we consider
the growth of a microbial species on mixtures of substrates. The simplest case
of this formidable problem is the growth on a mixture of two growth-limiting sub-
strates. But even binary mixtures display 4 distinct types of behavior depending on
the nutrient requirements satisfied by the two substrates [6]. The two most common
cases found in the modeling literature are the pairs of substitutable and comple-
mentary substrates.5 Our extensive studies of growth on binary mixtures have
been primarily concerned with mixtures of two substitutable substrates. Although
we have drawn examples from the literature on mixtures of substitutable carbon
sources, the phenomena described below have been observed in binary mixtures of
nitrogen, phosphorus, and sulfur sources (see [21] for a comprehensive review). The
theory described below therefore applies to a broad class of experiments.

To study growth on binary mixtures of substitutable substrates, we extended the
model shown in Figure 1b (top) by introducing two substitutable substrates, S1 and
S2, together with their corresponding peripheral enzymes, E1 and E2 (Fig. 7). This
results in the equations [47, 45]

ṡj = D(sf
j − sj)− rs,jc, rs,j ≡ Vs,jej

sj

Ks,j + sj
, j = 1, 2, (26)

ėj = r+
e,j − r−e,j − rgej , r+

e,j ≡ Ve,j

1 + K1,jxj + K2,jx
2
j

K3,j + K1,jxj + K2,jx2
j

, r−e,j ≡ k−e,jej ,(27)

ċ = (rg −D)c, rg ≡
∑

k

Ykrs,k =
∑

k

YkVs,kek
sk

Ks,k + sk
, (28)

5The substrates in a binary mixture are said to be complementary (or essential) if these sub-
strates satisfy entirely distinct nutrient requirements.
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Figure 7. Kinetic scheme for mixed-substrate growth. Here, Ej

denotes the transport enzyme catalyzing the uptake of substrate
Sj , Xj denotes the inducer for Ej , and C− denotes all intracellular
components other than Ej and Xj .

where we assume that xj ≈ rs,j/kx,j , that is, the inducers rapidly attain their quasi-
steady state values. We show below that this simple model successfully captures
most of the observed growth patterns in both batch and continuous cultures.

3.1. Dynamics of batch cultures. When microbes are grown in a batch reac-
tor containing a surplus of two substitutable substrates, one of the substrates is
typically exhausted before the other, leading to the appearance of two successive
exponential growth phases. During the first exponential growth phase, when both
substrates are present in the medium, the cells consume either one or both the
substrates. For instance, when E. coli K12 is grown on a mixture of fumarate and
glucose, only glucose is consumed during the first phase (Figure 8a). This is called
the diauxie or the preferential substrate utilization pattern, and the substrates con-
sumed during the first and second phases are referred to as the “preferred” and
“less preferred” substrates, respectively.6 However, when E. coli K12 is grown on a
mixture of fumarate and pyruvate, both substrates are consumed during the first
phase (Fig. 8b). This is called the simultaneous substrate utilization pattern.

Studies in molecular biology have shown that the existence of different substrate
utilization patterns is a manifestation of the dynamics of the peripheral enzymes for
the growth-limiting substrates [7]. It is known, for instance, that the preferential
substrate utilization pattern occurs because synthesis of the peripheral enzymes
for the “less preferred” substrate is abolished in the presence of the “preferred”
substrate. This inhibition is partly mediated by specific molecular mechanisms
such as cAMP activation and inducer exclusion [48]. However, two lines of evidence
suggest that the specific growth rates supported by the growth-limiting substrates
play a crucial role. Egli notes that, in general [21],

1. The preferential substrate utilization pattern is observed whenever one of the
two substrates supports a high specific growth rate. Moreover, this “rich” sub-
strate is invariably the “preferred” substrate. However, if the initial concen-
tration of the “preferred” substrate is decreased sufficiently, thus diminishing
its ability to support growth, the two substrates are utilized simultaneously.

6Since glucose is consumed before fumarate, one observes two exponential growth phases sep-
arated by a stationary phase lasting a few hours. This led Monod to name the phenomenon the
diauxie or “double growth.”
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Figure 8. Substrate utilization patterns during batch growth on
mixtures of two carbon sources. The upper panel shows the exper-
imental data for growth of E. coli K12 (from [44]). (a) Sequential
utilization of glucose and fumarate. (b) Simultaneous utilization of
fumarate and pyruvate. (c) Initial condition dependent substrate
utilization. The plots (e–f) show the global dynamics of the periph-
eral enzymes corresponding to these substrate utilization patterns
(from [47]).

2. The simultaneous substrate utilization pattern is observed if both substrates,
by themselves, support low to medium growth rates.

The model (26–28) accounts for enzyme induction and the effect of the specific
growth rates (exerted through the enzyme dilution term). It ignores molecular
mechanisms such as catabolite repression and inducer exclusion. However, we have
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shown that although inclusion of these molecular mechanisms changes the quanti-
tative behavior of the model, the qualitative properties remain unchanged [45, 47].

The preferential and simultaneous substrate utilization patterns are not simply
determined by the nature of the two substrates in the substrate-excess batch en-
vironment. For instance, the actual substrate utilization pattern can depend on
the history of the inoculum used in the experiment [11]. Figure 8c shows that if
E. coli K12 is pregrown on glucose before exposure to a mixture of glucose and
pyruvate, only glucose is consumed initially, and the specific growth rate is the
same as that observed during growth on glucose alone (0.74/hr). However, if the
inoculum is grown on pyruvate before exposure to a mixture of glucose and pyru-
vate, both substrates are consumed, and the observed specific growth rate (0.53/hr)
lies between the specific growth rates on glucose (0.74/hr) and pyruvate (0.30/hr).

The foregoing substrate utilization patterns are successfully captured by the
model [45, 47]. We show below that analysis of the model yields simple explanations
of these seemingly complex dynamics. To this end, we note that the entire transient
of batch growth is obtained by integrating differential equations (26–28) with D =
0. But the evolution of the peripheral enzyme levels during the first exponential
growth phase can be described by only two equations. To see this, it suffices to
observe that during the first exponential growth phase, the concentrations of both
substrates are at supersaturating levels, that is, sj À Ks,j and sj/(Ks,j + sj) ≈ 1.
Under these conditions, the specific growth rate and inducer concentration(s) are
approximated by the relations, rg ≡

∑
k Ykrs,k ≈

∑
k YkVs,kek, xj = rs,j/kx,j ≈

Vs,jej/kx,j . Moreover, constitutive enzyme synthesis is typically negligibly small
(1 ¿ K1,jxj , K2,jx

2
j ), and the degradation rates of the peripheral enzymes are also

negligible compared to their dilution due to biomass growth k−e,j ¿ rg. Hence,
equations (27) are closely approximated by equations

ėj = Ve,j
K̄1,jej+K̄2,je2

j

K3,j+K̄1,jej+K̄2,je2
j
− (

∑
k YkVs,kek) ej ,

K̄1,j ≡ K1,j

(
Vs,j

kx,j

)
, K̄2,j ≡ K2,j

(
Vs,j

kx,j

)2

.
(29)

These equations, which describe the evolution of the peripheral enzyme levels dur-
ing the first exponential growth phase, clearly illustrate the competition between
enzymes specific to different substrates. In fact, there exists a direct analogy be-
tween the dynamics exhibited by (29) and the dynamics of the Lotka-Volterra model
for competing species [42],

Ṅj = ajNj −
(∑

k

bjkNk

)
Nj , j = 1, 2, (30)

where ajNj denotes the unrestricted specific growth rate of the jth species, and
bjk are parameters that characterize the intensity of intraspecific and interspecific
competition. The only difference between (29) and (30) is the nonlinear dependence
of the specific enzyme synthesis rate r+

e,j on ej . Since both systems (29) and (30) are
two-dimensional and strongly competitive, all of their solutions converge to some
equilibria. In addition, the presence of positive inter- and intraspecific competition
terms ensures that all nonnegative solutions are bounded so that both systems
(29) and (30) are dissipative. Therefore, the global phase portrait in each case is
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determined exclusively by the relative location and stability of equilibria.7 In the
simpler Lotka-Volterra case, at most one interior equilibrium can exist, and it is
well known that

1. If aj and bjk are such that a stable interior equilibrium exists, then the global
dynamics of (30) corresponds to coexistence of the species. The case where
the interior equilibrium is unstable (a saddle) corresponds to bistable phase
portrait of (30). The outcome of competition depends on the initial condi-
tions.

2. If aj and bjk are such that no stable interior equilibrium exists, then the global
dynamics of (30) corresponds to extinction of one of the species.

It is therefore not surprising that equations (29) can produce similar dynamics for
suitable parameter values. The latter case (Fig. 8d), which shows “extinction” of
E1 during the first exponential growth phase, reflects the preferential utilization of
S2. The former case (Fig. 8e), in which both peripheral enzymes “coexist”, mirrors
the dynamics of simultaneous substrate utilization. The global dynamics shown in
Figure 8f corresponds to preferential consumption of S1 if the culture is pregrown
on S1 (resulting in high initial levels of E1), and simultaneous utilization of both
S1 and S2 if the culture is pregrown on S2 (resulting in high initial levels of E2).
This is precisely what transpires during growth of E. coli on a mixture of glucose
and pyruvate.

Theoretically, equations (29) may yield more complicated phase portraits due to
the nonlinearity of r+

e,j . Indeed, careful analysis of the isoclines corresponding to
equations (29) shows that in addition to the competitive extinction (illustrated in
Fig. 8d), coexistence (Fig. 8e), and bistability (Fig. 8e), a tri-stable phase portrait
may also exist as shown in Figure 9. In the latter case, both preferred utilization
patterns and the simultaneous utilization pattern may be observed with different
preculture conditions.

In summary, the model suggests that the dynamics observed in mixed-substrate
cultures are the outcome of “competitive interactions” between the peripheral en-
zymes of the substrates. Indeed,

1. Each peripheral enzyme promotes its own synthesis because production of
these enzymes is autocatalytic.

2. The peripheral enzyme dynamics is competitive. Each peripheral enzyme
inhibits the synthesis of the peripheral enzyme for the other substrate by
increasing its intracellular dilution rate.

In terms of the model (26–28), the preferential growth pattern occurs because the
“preferred” substrate increases the intracellular dilution rate of the peripheral en-
zyme for the “less preferred” substrate to such an extent that this enzyme becomes
“extinct”. The model also provides a simple explanation for the empirical general-
izations stated above. Substrates that support higher growth rates tend to strongly
dilute the enzymes for other substrates, and thus are likely to be the “preferred”
substrates. However, in some cases, when the initial concentration of the“preferred”
substrate is low in the preculture, the simultaneous substrate utilization may be
observed in the experiment.

7The case of three and more enzymes, which we do not consider here, can be slightly more
complex due to the possibility of oscillatory solutions. For instance, a complete dynamical analysis
of three-dimensional Lotka-Volterra systems yields a possibility of stable positive periodic solutions
[66].
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Figure 9. A tri-stable phase portrait of (29). The nullclines for
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3.2. Steady states of continuous cultures. The most comprehensive study of
mixed continuous cultures was reported by Egli and coworkers, who studied the
growth of the methylotrophic yeasts, H. polymorpha and Kloeckera sp. 2201, on
mixtures of glucose and methanol [18, 20]. In substrate-excess batch cultures, these
microbes typically prefer to consume glucose before methanol. When the dilution
rate was changed at fixed feed concentrations in continuous cultures, Egli et al.
observed that

1. Both substrates are almost completely consumed at low dilution rates, but
only glucose is consumed at high dilution rates. At such dilution rates, the
residual concentration of methanol approaches its concentration in the feed
which clearly indicates the lack of consumption (Fig. 10b). The dilution
rate at which the pattern switches from the simultaneous to the preferential
substrate utilization pattern is called the transition dilution rate.

2. The onset of the transition dilution rate is marked by a pronounced reduction
in the activity of alcohol oxidase, a peripheral enzyme for methanol (Fig. 10c).

3. The transition dilution rate is higher than the washout dilution rate corre-
sponding to single-substrate growth on methanol. In other words, consump-
tion of methanol in the mixed-substrate culture persists at dilution rates well
above the dilution rate at which the microbes are washed out of the reactor
while growing on methanol alone.

Figure 10 (right panel) shows that all three phenomena can be explained within
the framework of the model (26–28). We begin by explaining why the transition
dilution rate exists. Before doing so, it is useful to understand the existence of
the washout dilution rate since the onset of the transition dilution occurs for very
similar reasons. To this end, observe that at steady state, the mass balance for the
cell density yields

0 = (rg −D)c =⇒ rg = D or c = 0,

At low dilution rates, the steady-state satisfies the relation, rg = D. As D increases,
so does the specific growth rate until the cells reach the maximum specific growth
rate consistent with the feed concentration. If D is increased any further, the
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Figure 10. Variations of the steady-state concentrations with
respect to the dilution rate at fixed feed concentrations. Left
panel: Experimental data for growth of H. polymorpha on sev-
eral mixtures of glucose and methanol (from [18, 20]). The total
feed concentration of glucose and methanol was fixed at 5 g/L, but
the proportion of glucose in the feed was varied from 0% glucose
(pure methanol) to 100% glucose. (a) Cell density. (c) Methanol
concentration. (e) Peripheral enzyme (alcohol oxidase) level for
61% glucose in the feed. Right panel: Simulations of our model
(from [47]). (b) Cell density. (d) Concentration of ”less preferred”
substrate, S2. (f) Peripheral enzyme level for the ”less preferred”
substrate. The arrows in the figures point in the direction of in-
creasing proportion of the “preferred” substrate, S1, in the feed.

relation rg = D can no longer be satisfied, and the cell concentration switches to
the washout steady state c = 0 via a transcritical bifurcation. The washout dilution
rate is the critical value of D that corresponds to this transcritical bifurcation. The
existence of the transition dilution rate follows from a similar argument. Indeed,
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Figure 11. Variations of the steady-state concentrations with re-
spect to the feed composition at a fixed dilution rate. Variation of
(a) the concentration of methanol and (b) the activity of alcohol
oxidase, a peripheral enzyme for methanol during growth of Kloeck-
era sp. 2201 on a mixture of glucose and methanol (from [19]).
(c) Variation of the substrate concentrations during growth of
E. coli ML308 on a mixture of glucose and galactose (from [39]).

at steady state, equation (29), the mass balance for peripheral enzymes, reads

Ve,j

K̄1,jej + K̄2,je
2
j

K3,j + K̄1,jej + K̄2,je2
j

= Dej ⇒ Ve,j
K̄1,j + K̄2,jej

K3,j + K̄1,jej + K̄2,je2
j

= D or ej = 0,

At sufficiently high D, the first relation cannot be satisfied, and the cells switch to a
different physiological steady state with ej = 0 via a transcritical bifurcation. The
transition dilution rate is the value of D corresponding to such bifurcation. It is
also clear that the transition dilution rate must be higher than the washout dilution
rate: If the peripheral enzyme level becomes zero, then so does the corresponding
substrate consumption rate, and the cells are washed out of the reactor because
their specific growth rate is zero.

When the feed composition is changed at a fixed dilution rate, it is observed that
(Fig. 11)

1. The peripheral enzyme levels and the residual substrate concentrations in-
crease monotonically with the fraction of the substrate in the feed.

2. When the peripheral enzyme levels increase, the substrate concentration is
constant. When the peripheral enzyme levels saturate, the substrate concen-
tration increases.

These steady-state profiles are also predicted by the model (26–28). To understand
these variations in terms of the model, we begin by observing that the steady states
were obtained at dilution rates so small that nearly all of the substrate entering
the chemostat is consumed (sj ¿ sf

j ). Under these conditions, (26) and (28) imply
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that
c = Y1(s

f
1 − s1) + Y2(s

f
2 − s2) ≈ Y1s

f
1 + Y2s

f
2 ,

Then it follows from (26) that rs,j = D(sf
j − sj)/c ≈ Dsf

j /c, and thus

rs,j ≈
Dsf

j

Y1s
f
1 + Y2s

f
2

=
(

D

Yj

)
γj , where γj ≡

Yjs
f
j

Y1s
f
1 + Y2s

f
2

. (31)

Therefore, the specific substrate uptake rate of Sj is proportional to γj that rep-
resents the fraction of cells produced from Sj .8 Now, since xj ≈ rs,j/kx,j ≈
Dγj/(kx,jYj), equation (27) implies that the steady-state peripheral enzyme levels
are given by

ej =
r+

e,j

D+k−e,j

= Ve,j

D+k−e,j

1+K̂1,jγj+K̂2,jγ2
j

K3,j+K̂1,jγj+K̂2,jγ2
j

,

K̂1,j ≡ K1,j

(
D

kx,jYj

)
, K̂2,j ≡ K2,j

(
D

kx,jYj

)2

.
(32)

Since typically K3,j À 1, the steady-state peripheral enzyme levels are increas-
ing functions of γj . It follows from (31) that when ej increases linearly with γj ,
the substrate concentration is constant. When ej saturates at large γj , the ratio,
sj/(Ks,j + sj), and hence sj , increases with γj .

4. Multiple-species, multiple-substrate cultures. One of the most important
questions in microbial ecology is that of the coexistence of mixed microbial commu-
nities supplied with mixtures of various nutritional resources. A major theoretical
result based on simple phenomenological models of continuous culture is the princi-
ple of competitive exclusion stating that at most one microbial species can survive
in a chemostat containing a single growth-limiting substrate [29, 30, 55, 64]. This
theory extends to a very general set of functions modeling the growth response of
microbes at different substrate concentrations. If the experimental growth curves
for each individual species are known, the theory predicts that the species that
survives at any given dilution rate and feed concentration must have the lowest
break-even concentration [1, 58]. These theoretical conclusions have been con-
firmed by experiments [25]. To study competition for multiple substrates, a series
of phenomenological models have been introduced that recognize the existence of
distinct resources, and the different types of interactions between the resources
[5, 10, 40, 61]. For instance, Leon and Tumpson [40] assumed that the resources
are non-interacting, that is, none of the resources affect the uptake of any other
resource. A model in which two substitutable resources may inhibit each others’
uptake has been studied by Ballyk and Wolkowicz [5]. In their work, Ballyk and
Wolkowicz presented a very detailed analysis of the model, including both local
and global stability analysis. They provided important theoretical insights into the
global behavior of mixed microbial cultures but formulated the results in a way that
cannot be easily related to the experimental data. An important step towards rec-
onciling theoretical predictions and experimental observations was made by Tilman,

8The experimental data is generally shown as a function of σj , the fraction of Sj in the feed.
However, since γj is an increasing function of σj ,

γj =
Yjσj

Y1σ1 + Y2σ2
, σj ≡

sf
j

sf
1 + sf

2

,

the general trends (increasing or decreasing) are the same regardless of the parameter used to plot
the data.
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who developed an elegant graphical theory of two-species growth on arbitrary mix-
tures of substrates [61, 62]. Specifically, Tilman demonstrated that the existence
and stability of coexistence equilibria corresponding to a given combination of the
feed concentrations and the dilution rate can be deduced from single-species data.
In light of the above theoretical findings and given our goal of developing a unifying
physiological theory of microbial growth, we were naturally led to ask the questions,

Given the experimental data on the mixed-substrate growth of individual
species, can we predict the outcome of an experiment in which all these
species are inoculated in the chemostat? How do these predictions relate
to the underlying physiological principles governing microbial growth?

As a starting point, we considered the growth of two species on a mixture of two
substitutable substrates. In [52, 53], we showed that if the interaction between the
two species is purely competitive, all the key properties of the mixed-culture steady
states can indeed be predicted from the single-species data.

The foregoing question was motivated by the desire to predict mixed-culture
growth from the experimental data for single-species growth on mixtures of sub-
strates. However, as shown above, the single-species model (26–28) successfully
captures the experimental data. Thus, it seems pertinent to ask whether the model
itself can be used to study mixed-culture behavior. To this end, we studied the
competition between two species, each of which consumes the same pair of substi-
tutable substrates in accordance with the kinetic scheme shown in Figure 7. We
asked the question,

Under what operating conditions can two species coexist in a chemostat
limited by two substrates?

In [56], we constructed an operating diagram that shows all the dilution rates and
feed concentrations at which two species can coexist.

4.1. Deducing mixed-culture dynamics from single-species data. To demon-
strate that mixed-culture growth can be predicted from single-species data, we
began by considering a simple phenomenological model of mixed growth [52].

The phenomenological model has the form

ṡj = D(sf
j − sj)− c1r

s
1j(s1, s2)− c2r

s
2j(s1, s2), j = 1, 2, (33)

ċi = ci

(
rg
i (s1, s2)−D

)
, i = 1, 2, (34)

where rg
i denotes the specific growth rate of the ith species and rs

ij denotes the
specific substrate uptake of the jth substrate by the ith species. We assumed that the
two substrates are substitutable, so that rg

i (s1, s2) = Yi1r
s
i1(s1, s2) + Yi2r

s
i2(s1, s2).

Here, the coefficients Yij , i, j = 1, 2 denote the growth yields of the ith species on
the jth substrate respectively, and we assume that all these yields are constant. In
addition, we assume that each substrate stimulates its own uptake

∂rs
i1

∂s1
(s1, s2) ≥ 0,

∂rs
i2

∂s2
(s1, s2) ≥ 0, (35)

but inhibits the uptake of the other substrate
∂rs

i1

∂s2
(s1, s2) ≤ 0,

∂rs
i2

∂s1
(s1, s2) ≤ 0. (36)

This property of mutual inhibiton was inherent in the physiological model (26–28)
for two substitutable substrates: Substrate Si inhibited the uptake of substrate
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Figure 12. (a) The growth isocline for E. coli ML308 growing on
a mixture of glucose and galactose at D = 0.3 1/hr. The curve was
derived from the data shown in Figure 11c. (b) The consumption
curve for H. polymorpha growing on a mixture of 61% glucose and
39% methanol. The curve was derived from the data shown in Fig-
ure 10b. (c) Determination of the existence, uniqueness, and stabil-
ity of the steady-states from the growth isoclines and consumption
curves for the two species. The growth isoclines for species 1 and 2
are labeled G1 and G2, respectively. The consumption curves for
species 1 and 2 are labeled Φ1 and Φ2, respectively. The semitriv-
ial steady-state, c1 > 0, c2 = 0 is denoted by the point φ10; the
semitrivial steady-state, c2 > 0, c1 = 0 is denoted by the point
φ01; and the nontrivial (coexistence) steady-state, c1 > 0, c2 > 0 is
denoted by the point φ11. Coexistence is stable for the disposition
of the curves shown in the figure.

Sj , j 6= i by enhancing the intracellular dilution rate of Ej . In the phenomeno-
logical model (33 –34), we simply assume the mutual inhibition property without
prescribing a mechanism for it.9

The phenomenological model (33–34) admits three types of steady states: Trivial
(c1 = c2 = 0), semitrivial (c1 > 0, c2 = 0 and c1 = 0, c2 > 0), and nontrivial
(c1, c2 > 0). Our main result was that the existence, uniqueness, and stability of

9Although equations (33–34) are algebraically identical to the model studied by Ballyk and
Wolkowicz [5], we analyzed the model under a less restrictive set of assumptions and used a
different analytic approach.
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these steady-states can be inferred from two curves, that are completely determined
by the experimentally observed steady-states of single-species growth on S1 and S2.
These curves are defined as follows

1. The growth isocline of the ith species, denoted Gi, is the locus of all steady-
state substrate concentrations, (s1, s2), obtained when this species alone is
grown on a mixture of S1 and S2 at a fixed dilution rate, but varying feed
concentrations (Fig. 12a). For the phenomenological model, Gi is given by
the relation

rg
i (s1, s2) = D, (37)

which follows from (34).
2. The consumption curve of the ith species, denoted Φi, is the locus of all steady

state substrate concentrations, (s1, s2), obtained when this species alone is
grown on a mixture of S1 and S2 at fixed feed concentrations, but varying
dilution rates (Fig. 12b). For the unstructured model, Φi is given by the
relation

sf
1 − s1

rs
i1(s1, s2)

=
sf
2 − s2

rs
i2(s1, s2)

≥ 0, (38)

which follows from (33) with cj = 0, j 6= i. Given the assumptions (35–
36) regarding the specific substrate uptake rates, it can be shown that the
consumption curve is a monotonically increasing function passing through
the points, (0, 0) and (sf

1 , sf
2 ).

Using the definitions of these curves, it is easy to see that
1. The projection of any semitrivial steady-state (ci > 0, cj = 0, j 6= i) onto the

(s1, s2) plane lies at the intersection of the corresponding growth isocline, Gi,
and the consumption curve, Φi.

2. The nontrivial (coexistence) steady state(s), c1, c2 > 0, exist if and only if the
two growth isoclines intersect within the envelope of coexistence, defined as
the region in the (s1, s2) plane enclosed by the two consumption curves. If an
(s1, s2)-projection of a nontrivial steady-state falls outside of the envelope of
coexistence, at least one of the resulting two cell densities is negative.

3. The dynamics of both single-species cultures are completely determined by
the intersections of the corresponding growth isocline and the consumption
curve. Indeed, suppose for a moment that c2 ≡ 0. Then the model (33–34)
reduces to three equations

ṡ1 = D(sf
1 − s1)− c1r

s
11(s1, s2),

ṡ2 = D(sf
2 − s2)− c1r

s
12(s1, s2),

ċ1 = c1

(
Y11r

s
11(s1, s2) + Y12r

s
12(s1, s2)−D

)
.

Letting z = Y11s1 + Y12s2 + c1, we find that ż = D(Y11s
f
1 + Y12s

f
2 − z), thus

the above equations enjoy the asymptotic consevration law z = Y11s
f
1 +Y12s

f
2 .

Hence, the above system can be effectively reduced to two equations

ṡ1 = D(sf
1 − s1)−

{
Y11(s

f
1 − s1) + Y12(s

f
2 − s2)

}
rs
11(s1, s2), (39)

ṡ2 = D(sf
2 − s2)−

{
Y11(s

f
1 − s1) + Y12(s

f
2 − s2)

}
rs
12(s1, s2). (40)

It is easy to see that the system (39–40) is strictly cooperative for 0 < sj ≤ sf
j .

Therefore, all positive solutions converge to some equilibria whose stability



198 A. NARANG AND S. S. PILYUGIN

is determined by the intersections of G1 and Φ1. Imortantly, a single-species
culture cannot exhibit any type of oscillatory behavior.10

The existence and uniqueness of the mixed-culture steady states is also completely
determined by the growth isoclines and consumption curves for the two species.
It is interesting that the stability of the steady states is also determined by these
curves. To this end, it is useful to classify the interaction between the substrates
for a given species. Specifically, the substrates are said to be locally synergistic
(resp. locally antagonistic) for the ith species if increasing both substrate levels
along the consumption curve Φi increases (resp. decreases) the specific growth rate
rg
i . Stability analysis of the equations (33–34) shows that

1. The semitrivial steady states are stable if and only if the substrates are locally
synergistic and the other competitor cannot invade the chemostat.

2. The nontrivial steady states are stable only if the following inequality is sat-
isfied at the steady state[

−∂rg
1/∂s2

∂rg
1/∂s1

−
(
−∂rg

2/∂s2

∂rg
2/∂s1

)]
·
[
rs
11

rs
12

− rs
21

rs
22

]
> 0. (41)

The first term is the difference between the slopes of the two growth isoclines
at the nontrivial steady state. The second term is positive if and only if Φ1

lies above Φ2. If the latter is true, (41) says that coexistence is stable only if
the difference between the slopes of the growth isoclines is positive (Fig. 12).

It turns out that inequality (41) is necessary but not sufficient for the stability of a
nontrivial equilibrium. In [52], we have demonstrated that Hopf bifurcations may
occur in the region where (41) holds, provided that the substrates S1 and S2 are
locally synergistic for one species and locally antagonistic for the other.

The foregoing results concerning the existence, uniqueness, and stability of the
steady states are preserved even if additional physiological structure is added to
the model. In [53], we extended the phenomenological model (33–34) by explicitly
considering the physiological structure for each of the microbial species as shown
in Figure 7. The equations of this physiological model are

ṡj = D(sf
j − sj)− c1r

s
1j − c2r

s
2j , j = 1, 2, (42)

ėij = re
ij(sj , eij)− eijr

g
i (s1, s2, ei1, ei2), (43)

ċi = (rg
i (s1, s2, ei1, ei2)−D) ci, i = 1, 2, (44)

where rg
i ≡ Yi1r

s
i1 + Yi2r

s
i2 = Yi1ei1σi1 + Yi2ei2σi2, i = 1, 2. In [53], we presented

the local stability analysis of (42–44) based on the following assumptions,
(H1): The functions re

ij(sj , eij) are such that

∂re
ij(sj , eij)

∂sj
> 0,

∂

∂eij

(
re
ij(sj , eij)

eij

)
< 0.

For any sj > 0,
lim

eij→0
re
ij(sj , eij) = e∗ij(sj) > 0,

and there exists a unique value e0
ij(sj) > 0 such that re

ij(sj , e
0
ij(sj)) = 0.

(H2): The functions rs
ij are given by eijσij(sj), where σij(s) are such that

σij(0) = 0, σ′ij(s) > 0, lim
s→∞

σij(s) < +∞.

10This proof was originally presented in [5] for the case when the semitrivial steady-state is
unique.
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Using hypotheses (H1) and (H2), we obtained the following results
1. Under steady-state growth conditions, the substrate concentrations uniquely

determine the physiological state of the cell, including the mass fractions of
the peripheral (transport) enzymes and the inducer molecules. Specifically, we
showed that for all combinations (s1, s2) of the substrate concentrations, the
peripheral enzyme levels eij exhibit a unique positive steady state. Denoting
this physiological steady state by eij = eij(s1, s2), we redefined the notions
of the growth isocline and the consumption curve. For instance, the growth
isocline Gi for the ith species is the locus of all substrate concentrations such
that

Yi1ei1(s1, s2)σ1(s1) + Yi2ei2(s1, s2)σ2(s2) = D.

2. The growth isocline, Gi, is a graph of a decreasing function in the (s1, s2)
plane, while the consumption curve Φi is a graph of an increasing function in
the (s1, s2) plane connecting the origin to the point (sf

1 , sf
2 ).

3. There exists at most one semitrivial steady state for a given i, and it lies at the
intersection of the corresponding growth isocline and the consumption curve.
The stability of the semitrivial steady state is determined by the ability of
the resident species to defend the chemostat against occupation by the other
species.

4. The nontrivial (coexistence) steady-state is represented by an intersection of
two growth isoclines if and only if it occurs within the envelope of coexistence,
that is, the region between the two consumption curves. We also showed that
the necessary condition for the stability of the nontrivial equilibrium of (42–
44) is identical to (41). Finally, we demonstrated that model (42–44) may
admit multiple nontrivial equilibria.

These conclusions were heavily based on hypothesis (H1) which essentially war-
ranted the uniqueness of the physiological steady-state. If the assumption (H1) is
not valid, for instance, when one of the functions re

ij(sj ,eij)

eij
is no longer monotoni-

cally decreasing in the corresponding eij , then multiple physiological steady states
may exist. We have already discussed this possibility in section 3.1. This case
requires an extensive additional analysis which we are currently conducting.

4.2. The operating diagram for coexistence of species. In [56], we deter-
mined the operating diagram of the model (42–44), and presented a computational
procedure that allows to explicitly compute the dilution rates and feed concentra-
tions at which two species, C1 and C2, coexist in the chemostat supplied with two
substitutable substrates S1 and S2. At a coexistence steady-state, the algebraic
system

rs
11c1 + rs

21c2 = D(sf
1 − s1),

rs
12c1 + rs

22c2 = D(sf
2 − s2),

must admit a positive solution (c1, c2). Moreover, the residual substrate concen-
trations are negligibly small compared to the feed concentrations (sj ¿ sf

j ) at all
but the highest dilution rates and/or the smallest feed concentrations. Under these
conditions, the coexistence steady-state satisfies the vectorial relation

c1rs
1 + c2rs

2 = Dsf , where rs
i = (rs

i1, r
s
i2)

T , sf = (sf
1 , sf

2 )T ,

with ci > 0. Hence, the vector sf must lie in the positive cone spanned by the
vectors rs

1 and rs
2. In [56], we chose the parameter values such that C1 prefers S1,
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Figure 13. (a) Species 2 vanishes at sufficiently small dilution
rates. (b) The smaller the feed concentration, sf

2 , the smaller the
interval of coexistence. (c) Operating diagram showing the feed
concentration ratios at which the two species can coexist. At any
given dilution rate, species 1 cannot exist, if sf

2 is so high compared
to sf

1 that arctan(sf
2/sf

1 ) lies above the curve θ1. Likewise, species 2
cannot exist, if sf

2 is so low compared to sf
1 that arctan(sf

2/sf
1 ) lies

below the curve θ2. Coexistence is feasible only if sf
2/sf

1 is such
that arctan(sf

2/sf
1 ) lies between the curves θ1 and θ2.

and C2 prefers S2 (e.g. rs
11 > rs

21, and rs
12 < rs

22). Then we suggested a concise
way of depicting the operating diagram: Let θi(D) and θs denote the angles formed
by rs

i and sf with the sf
1 -axis. It is easy to see that the above choice of substrate

preference corresponds to the inequality θ1(D) < θ2(D). Therefore, the operating
diagram can be represented by a region in the (D, θ)-plane defined by the inequality
θ1(D) < θs < θ2(D).

The simulations showed that when both species are grown in the reactor, C2

vanishes at a sufficiently low dilution rate. Thus, both species coexist only if the
dilution rate lies within a certain interval (Fig. 13a). The smaller the feed concen-
tration of S2, the preferred substrate for C2, the smaller the width of the interval.
At sufficiently small sf

2 , the width of the interval vanishes, so that C2 cannot exist
at any dilution rate (Figure 13b). Similar behavior is observed if the feed concen-
tration of S1 is decreased. At sufficiently small sf

1 , C1 cannot exist at any dilution
rate. Thus, the operating diagram has the form shown in Figure 13c. If sf

1 À sf
2 ,

species 2 cannot exist at any dilution rate; likewise, if sf
1 ¿ sf

2 , species 1 cannot
exist at any dilution rate. Coexistence is feasible for some range of dilution rates
only if the ratio of the feed concentration lies within a certain range.

5. Discussion. Although the above models provide a useful starting point, much
remains to be done. In this section, we describe some of the outstanding problems
that must be resolved to develop a truly comprehensive physiological theory of
microbial growth.

5.1. Single-species, single-substrate cultures.

5.1.1. The role of energy. Figure 1a shows that the precursor pool, P , has several
possible fates - RNA/protein synthesis, respiration, storage and excretion. The
question then arises
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What determines the relative rates of RNA/protein synthesis, respira-
tion, storage, and excretion?

This question is important in its own right. Moreover, as we show below, the char-
acteristics of mixed-substrate growth rest crucially upon a proper understanding of
this question.

The experimental evidence suggests that microbial cells control and regulate
these metabolic processes in a seemingly rational manner. Under starvation condi-
tions, cells increase the respiration rate relative to the growth rate. Under carbon-
excess conditions, they synthesize carbohydrates at the expense of RNA and pro-
teins. It is believed that nucleotide phosphates such as ATP and ADP, the “energy
currency” of the cell, play a supervisory role in organizing these reactions. The
nucleotide phosphates are global variables, inasmuch as they are involved in vir-
tually all the intracellular reactions. To study the role of energy conversions in
organizing cell growth, one could modify the kinetic scheme shown in Figure 1a by
coupling all the processes to ATP synthesis or consumption. For instance, periph-
eral catabolism of the substrate, and synthesis of RNA, proteins, and carbohydrates
are energy-consuming processes coupled to the conversion of ATP to ADP. On the
other hand, respiration, excretion, and the generation of P from X and Ps are
energy-releasing processes coupled to the conversion of ADP to ATP. Since ATP is
a “fast” variable, the rate of energy synthesis and consumption are approximately
equal on the time scale of interest. This “energy balance” imposes a constraint on
the relative rates of the key processes. It is conceivable that additional constraints,
such as “redox balances”, may be necessary to obtain full agreement with the data.
Such an extended model could yield the relative rates of biosynthesis, respiration,
storage, and excretion.

5.2. Single-species, multiple-substrate cultures. We have shown above that
a simple model of growth on mixtures of substitutable substrates captures the dy-
namics of batch cultures and the steady states of continuous cultures. However,
there are open questions regarding the dynamics of continuous cultures. Insofar as
mixtures of complementary substrates are concerned, there are hardly any physio-
logical models.

5.2.1. Mixtures of substitutable substrates. Two types of experiments have been
performed to study the dynamics of mixed-substrate growth in a chemostat. We
show below that the first type of transient can be understood in terms of our existing
model, but the second reveals a deficiency of the model.

We begin by describing the transients that fall within the scope of our existing
model. Harte and Webb studied the response of glucose-limited cells of K. aerogenes
to substrate switches [3, 27]. The cells were allowed to reach steady state in a
chemostat at a feed concentration of 100 mg/L. After steady state was reached,
the feed was changed to a mixture of glucose (100 mg/L) and maltose (100 mg/L).
Since the feed concentration was increased, the cell density is expected to increase.
However, it turns out that the rate of increase depends on the dilution rate at which
the experiment is performed (Fig. 14a). At low dilution rates, uptake of maltose
commences immediately after the shift, and the cell density increases without any
lag. At intermediate dilution rates, there is a lag before maltose uptake and growth.
At high dilution rates, there is neither maltose uptake nor growth. This data can
be understood in terms of our existing model. During steady-state growth on
glucose, the concentration of the inducer for maltose is zero. Hence, (27) implies
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Figure 14. Dynamics of growth on mixtures of substitutable
substrates. (a) Transient response of glucose-limited cultures of
K. aerogenes to feed switches from glucose (100 mg/L) to glucose
(100 mg/L) plus maltose (100 mg/L). The data shows that the
larger the dilution rate at which the feed is switched, the longer
the lag before the OD increases. (b) Induction of NTA metabolism
in C. heintzii growing in continuous culture after switching the
feed from a medium containing glucose as the sole carbon source
to a medium containing glucose and NTA. The data shows that
the higher the percentage of glucose in the feed, the smaller the
time required to induce NTA metabolism. (c) Induction times cor-
responding to various proportions of glucose in the feed.

that immediately after the substrate switch, the activity of the peripheral enzyme
for maltose is

eMAL =
Ve,MAL

K3,MAL

(
D + k−e,MAL

) .

According to this expression, the higher the dilution rate, the smaller the activity
of the peripheral enzymes for maltose. It follows that the higher the dilution rate at
which the feed is switched from pure glucose to a mixture of glucose and maltose,
the longer it takes to accumulate the peripheral enzymes for maltose. At dilution
rates exceeding the transition dilution rate for maltose, the peripheral enzyme levels
are so small that there is no observable uptake of maltose.

Bally and Egli [4] studied another type of substrate switch resulting in dynamics
that are beyond the scope of our current model. They allowed glucose-limited cells
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of C. heintzii to reach steady state, after which the feed was abruptly switched to a
mixture of glucose and nitrotriacetic acid (NTA). Since the cells have not seen NTA
until after the switch, one expects a lag before the peripheral enzymes for NTA are
induced. Furthermore, intuition suggests that the larger the concentration of glu-
cose in the feed, the larger the induction time. The experiments show precisely the
opposite result (Fig. 14b). When the feed is switched to pure NTA, the induction
time is 20 hours. When the feed is switched to 50% glucose and 50% NTA, the
induction time drops dramatically to 4 hours, and with 90% glucose, there is no
induction lag at all. This data shows that under these conditions, glucose supports,
rather than inhibits, the induction of the peripheral enzymes for NTA. To under-
stand this counterintuitive result, recall that when the feed is switched from pure
glucose to pure NTA, the uptake of NTA is negligibly small (see Fig. 2), so that the
cells are presumably in a “starvation” state. However, when the feed is switched
from pure glucose to a mixture of glucose and NTA, uptake of NTA is vanishingly
small, but glucose is consumed significantly. It is conceivable that the energy and
precursors derived from catabolism of glucose mitigate the starvation state, and ei-
ther stimulate the synthesis, or inhibit the degradation, of the peripheral enzymes
for NTA. It turns out that this is indeed the case. Bally and Egli showed that if the
feed is switched from NTA to a medium containing no carbon source, thus depriving
the cells of energy and precursors, the degradation rate of the peripheral enzymes
for NTA is 0.3-0.9 1/hr. However, when the feed is switched from pure NTA to
pure glucose, the degradation rate of the peripheral enzymes for NTA is only 5%
per hour. The foregoing results cannot be reconciled with our current model since
it does not even consider the energy levels as variables. To capture these results, it
is necessary to incorporate the energy levels in the manner described above. The
degradation rates of the enzymes can then be defined in terms of the energy status
of the cells. These modifications could lead to agreement with the data.

5.2.2. Mixtures of complementary substrates. In most experiments with comple-
mentary mixtures, the growth-limiting substrates are the carbon and nitrogen
sources. It is intuitively obvious that a culture is carbon limited if the carbon-
to-nitrogen (C:N) ratio in the medium is small, and nitrogen limited if the C:N
ratio is large. The central question that then arises is

What physiological changes do the cells undergo as the medium is changed
from carbon- to nitrogen-limited conditions and vice versa?

In the modeling literature, growth on complementary substrates is commonly de-
scribed by phenomenological models that assume the mixed-substrate specific growth
rate of the form

rg(s1, s2) = min {rg
1(s1), rg

2(s2)} ,

where rg
i (sj) are increasing functions of sj describing the specific growth rate under

Sj-limited conditions [40, 61, 31]. These phenomenological models have been subse-
quently generalized using the cell-quota formulation originally due to Droop [14, 15]
partially decoupling the processes of substrate uptake and growth [34, 38, 13]. All
of the above models have the property that at steady state the cells are either car-
bon limited or nitrogen limited unless rg

1(s1) = rg
2(s2). This curve describes a sharp

interface between the regimes of different substrate limitations. As we show below,
this contradicts the experimental data.

Durner and Egli determined the steady-states in a chemostat when the feed con-
centration of the nitrogen source (ammonia) and the dilution rate are held fixed,
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Figure 15. Variations of the steady-state concentration during
growth of P. oleovarans on a medium containing octanoate and am-
monia as the sole carbon and nitrogen sources (from [16, 17]). The
dilution rate was fixed at 0.2 1/hr, and the carbon:nitrogen (C:N)
ratio in the feed was varied. (a) The concentration of octanoate
(resp. ammonia-N) is an increasing (resp. decreasing) function of
the C:N ratio. However, there is an intermediate range of C:N ra-
tios (10 ≤ C:N ≤ 17) at which both octanoate and ammonia are
almost completely consumed. This is the so-called dual-substrate-
limited regime. (b) In the dual-substrate-limited regime, the in-
crease in dry cell weight is entirely due to accumulation of polyhy-
droxyalkanoates (PHA). (c) The negative correlation between the
dilution rate and the range of C:N ratios at which the culture is
dual substrate limited.

but the feed concentration of the carbon source (octanoate) is progressively in-
creased [16, 17]. Figure 15a shows that as expected, growth is carbon limited (the
residual concentration of the carbon source is negligibly small) when the C:N ratio
of the feed is small, and nitrogen limited when the C:N ratio of the feed is large.
It is clear, however, that the transition from carbon to nitrogen limitation is not
sharp. There is a wide range of C:N ratios at which the cells are both carbon and
nitrogen limited. This transition zone is called the dual-substrate-limited regime.

The existence of the dual-substrate-limited regime is intimately connected with
the cell’s ability to store nutrients. At the lower boundary of the dual-substrate-
limited regime, the residual concentration of the nitrogen source is vanishingly small
(Fig. 15a). Hence, further provision of carbon by increasing the C:N ratio of the feed
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cannot support additional RNA and protein synthesis. Yet Figure 15a shows that
the cells still consume the additional carbon since the residual concentration of the
carbon source remains negligibly small. Moreover, the additional carbon consumed
must result in the synthesis of some component of biomass because the cell density
continues to increase (Fig. 15b). It turns out that the additional carbon consumed
is completely channeled into the storage component, polyhydroxyalkanoates (PHA).
Synthesis of PHA persists until the cell’s capacity for storing PHA is saturated, at
which point cells are unable to consume additional carbon in the feed, and it simply
passes through the reactor. Thus, storage provides a kind of “buffer” that smoothes
the transition from carbon to nitrogen limited growth.

Interestingly, the width of the dual-substrate-limited regime depends on the di-
lution rate at which the experiment is performed. The larger the dilution rate, the
smaller the width of the transition zone (Fig. 15c). As the dilution rate approaches
the maximum specific growth rate, the width becomes zero.

The behavior can be captured by a slight modification of the kinetic scheme
shown in Figure 1a. It turns out the ammonia is required for synthesis of amino
acids (M), which in turn are required for synthesis of proteins (C−) and RNA
(R). Now, under nitrogen-limiting conditions, the exogenous ammonia levels are
low, the synthesis rates of amino acid, proteins, and RNA synthesis are necessarily
small. Since the exogenous carbon is in excess, the cells respond by channeling
the excess carbon into carbohydrate (Ps). Now, the primary goal of a model is
to predict Figure 15c, that is, the operating diagram that describes the regime of
dual substrate limitation in terms of the dilution rate and feed concentrations. It
seems to us that the achievement of this goal hinges upon the ability to predict
the relative rates of storage and RNA/protein synthesis. As mentioned above,
energetics certainly plays a critical role in determining the relative rates of these
processes under carbon-limited conditions. The crux of the problem here is to
ascertain whether the energetic constraints also determine the relative rates of these
processes under nitrogen and dual-substrate-limited conditions.

5.3. Multiple species, multiple-substrate cultures. In [52, 53], we studied
models of pure competition. The pure competition models assume that differ-
ent microbial species interact only by consuming and utilizing the substrates thus
making these substrates unavailable to other competitors. In reality, interactions
between distinct species can be more complicated. A particularly interesting type
of interaction is commensalism in which one of the competing species excretes a
metabolite that supports the growth of the other species. It is also conceivable that
the interaction is amensalistic - one species excretes a toxic product that inhibits
the growth of the other species.

The effects of such nonpure competition on the dynamics of mixed cultures can
be studied by modifying equations (42–44). For example, suppose that in the model
(42–44), species C1 excretes a product S3 that supports the growth of species C2.
We can include this new feature in the model by considering two additional mass
balance equations for S3 and the corresponding peripheral enzyme E23 of the form

ṡ3 = εrg
1c1 −Ds3 − rs

23c2, rs
23 = e23σ23, (45)

ė23 = R23(s1, s2, s3, e21, e22, e23), (46)

and change the specific growth rate rg
2 to

rg
2 = Y21r

s
21 + Y22r

s
22 + Y23r

s
23,
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where the last term represents the increment in the specific growth of species 2 due
to consumption of S3. In [56], we studied this modification of the model numerically,
but it lends itself equally well to analytical methods. Observe that if ε = 0, the
new model has the same behavior as (42–44), which we have already studied in
considerable detail. The new model with small ε > 0 could be analyzed by using
local perturbation techniques, and then appealing to continuation arguments to
extend the analysis to a broader parameter region.

Acknowledgment. The authors are grateful to Profs. Yang Kuang and Hal Smith
for their valuable comments. A part of this work was completed while S. S. P. was
visiting the Mathematical Biosciences Institute at The Ohio State University.

Appendix A. Derivation of the reduced equations (19–25). Defining the
dimensionless variables in (12–18) as

ŝ ≡ s

sr
, ĉ ≡ c

sr
, x̂ ≡ x

xr
, ê ≡ e

er
, r̂ ≡ r

rr
, p̂ ≡ p

pr
, ĉ− ≡ c−

c−r
t̂ ≡ t

tr
,

where

sr = sf , cr = sf , xr =
√

VsVe

kx
, er =

√
Ve

Vs
,

rr =
√

VsVe

Vc
, pr =

√
VsVe

kco2
, c−r = 1, tr = 1√

VsVe
,

we obtain the dimensionless equations,

dŝ

dt̂
= D̂(1− ŝ)− r̂sĉ, (47)

dĉ

dt̂
=

(
r̂g − D̂

)
ĉ, (48)

dê

dt̂
= r̂+

e − r̂−e − r̂g ê, (49)

dr̂

dt̂
= r̂+

r − r̂−r − r̂g r̂, (50)

τx
dx̂

dt̂
= r̂s − r̂x − τxr̂gx̂, (51)

τp
dp̂

dt̂
= r̂x − r̂co2 −

(
r̂+
c − r̂−c

)− rr

(
r̂+
r − r̂−r

)− er

(
r̂+
e − r̂−e

)− τpr̂g p̂, (52)

ĉ− = 1− rr r̂ − er ê− xrx̂− prp̂, (53)

with dimensionless rates

r̂s ≡ ê ŝ
K̂s+ŝ

1
1+p̂/K̂i

, r̂+
e ≡ r̂

K̂e+r̂

1+K̂2x̂2

K3+K̂2x̂2 , r̂−e = k̂−e ê, r̂+
r ≡ k̂+

r p̂r̂,

r̂−r = k̂−r r̂, r̂x ≡ x̂, r̂co2 ≡ p̂, r̂+
c ≡ r̂ p̂

K̂c+p̂
,

r̂−c ≡ k̂−c ĉ−, r̂g ≡ r̂s − r̂co2 ,

and dimensionless parameters

D̂ ≡ Dtr, K̂s ≡ Ks

sr
, K̂i ≡ Ki

pr
, K̂e ≡ Ke

rr
, K̂2 ≡ K2x

2
r, k̂−e ≡ k−e tr,

k̂+
r ≡ k+

r

kco2
, k̂−r ≡ k−r tr, τx ≡ 1

kxtr
, τp ≡ 1

kco2 tr
, K̂c ≡ Kc

pr
, k̂−c ≡ k−c tr.
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The quasi-steady-state assumption implies that τx, τp, er, xr, pr ¿ 1. Hence, equa-
tions (51–53) can be approximated with

0 ≈ r̂s − r̂x,

0 ≈ r̂x − r̂co2 −
(
r̂+
c − r̂−c

)− rr

(
r̂+
r − r̂−r

)
,

1 ≈ ĉ− + rrr.

It follows from the first two equations that

r̂g ≡ r̂s − r̂co2 ≈
(
r̂+
c − r̂−c

)
+ rr

(
r̂+
r − r̂−r

)
.

In other words, X and P rapidly achieve quasi-steady state, and the specific growth
rate during the subsequent motion is effectively the sum of the net specific protein
and RNA synthesis rates. Thus, we arrive at the equations

dŝ

dt̂
= D̂(1− ŝ)− r̂sĉ,

dĉ

dt̂
=

(
r̂g − D̂

)
ĉ,

dê

dt̂
= r̂+

e − r̂−e − r̂g ê,

dr̂

dt̂
= r̂+

r − r̂−r − r̂g r̂,

0 ≈ r̂s − r̂x,

0 ≈ r̂x − r̂co2 − rg,

ĉ− ≈ 1− rr r̂.

The reduced equations (19–25) are obtained from these equations by reverting to the
original (dimensional) variables. This quasi-steady state is well defined, because the
approximate“slow”manifold is unique and globally attracting. To see this, consider
the approximate “fast” equations

ẋ =
Vse σ(s)
1 + p

Ki

− kxx, (54)

ṗ = kxx− kco2p− Vcr
p

Kc + p
− k+

r rp + k−r r + k−c c−, (55)

and treat the variables s, e, r, c− > 0 as (slowly varying) parameters. Then it
follows that

1. If x = 0 and p ≥ 0, then ẋ > 0 due to (54). If p = 0 and x ≥ 0, then ṗ > 0
due to (55). Hence both x and p remain strictly positive at all times.

2. If p ≥ 0 and x becomes too large, namely, if x > Vseσ
kx

, then ẋ < 0 due
to (54). Hence, x remains bounded at all times. Since x remains bounded,
equation (55) implies that p also remains bounded.

3. For any combination s, e, r, c− > 0, the Jacobian of (54–55) has the form

J =
∂(ẋ, ṗ)
∂(x, p)

=
( − −

+ −
)

. (56)

This observation implies that
(a) Since the divergence of (54–55) (equivalently, the trace of J) is negative

for all x, p ≥ 0, the system (54–55) cannot have periodic solutions. Since
all positive solutions are bounded, every positive solution must converge
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to a steady state. In addition, the signs of the off-diagonal entries of J
are such that the orbits in the (x, p) plane rotate counterclockwise.

(b) At any steady state of (54–55), we have that tr J < 0 and det J > 0.
Thus all steady states must be stable. Therefore, only one positive steady
state of (54–55) must exist.

We conclude that for any combination s, e, r, c− > 0, the fast system (54–55)
admits a unique globally attracting quasi-steady state (x, p). Hence, the QSSA is
well defined for all s, e, r, c− > 0.
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