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Abstract. Huanglongbing (citrus greening) is a bacterial disease that is sig-
nificantly impacting the citrus industry in Florida and poses a risk to the re-

maining citrus-producing regions of the United States. A mathematical model

of a grove infected by citrus greening is developed. An equilibrium stability
analysis is presented. The basic reproductive number and its relation to the

persistence of the disease is discussed. A numerical study is performed to
illustrate the theoretical findings.

1. Introduction. Huanglongbing (HLB) is a vector-transmitted bacterial infection
that is currently affecting all types of citrus in the state of Florida. In Chinese, the
name means “yellow dragon disease” [11], but in the United States it is frequently
referred to as citrus greening disease. Symptoms of the disease include stunted
growth and poor flowering of citrus trees as well as blotchy mottling and yellowing
of their leaves. In addition, the fruit that is produced by infected trees is misshapen
and smaller than normal, with a green tint and a bitter taste [11], making the
fruit inedible. The disease has severely affected the citrus industry in Florida, the
nation’s largest citrus producer and the second largest producer of orange juice
in the world. The presence of HLB has also been detected in other southeastern
states including Texas [15], and all citrus producing regions of the United States
are considered to be at risk. Because of its impact on many sectors of the Florida
economy and the implications for the citrus industry nationwide, citrus greening
has become an important issue to study.

HLB was first discovered in China in the late 1800s [8]. Different strains of the
disease have also created problems in the past in both Africa, around 1930, and in
Brazil, beginning in 2004 [8]. It is believed that the vectors that transmit the disease
arrived in southern Florida in 1998 [11], and citrus greening began spreading north
throughout the state in 2000 [9]. However, it was not until 2005 that symptomatic
trees were first detected [8]. Since then, the disease has been spotted in almost
every county as far north as Alachua. The disease has even affected some citrus
in the Florida panhandle, although so far only at large discount stores that handle
and ship citrus trees [11].
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An insect known as the Asian citrus psyllid, Diaphorina citri, carries the organ-
ism that causes citrus greening, Candidatus Liberibacter asiaticus (Las) [13, 8]. The
psyllids have a life cycle that lasts 45 days on average, including five nymphal stages
that together last 15 days. The bacteria are carried in the saliva of a psyllid; when
an infected psyllid feeds on the leaves of a tree, it passes the disease to the phloem
within the veins of that tree. Similarly, a healthy psyllid can acquire the infection
by feeding on an infected tree. These transmissions are most likely to occur during
the flush, which happens in the state of Florida in the spring and fall [11]. Nymphs
are not able to transmit the disease while they are in the first three life stages,
but after this point they can pass along the disease in as little as one day after
becoming infected [18]. It is also believed that the disease can be spread among the
psyllid population transovarially; a single psyllid will lay around 800 eggs during
its lifetime [11].

The psyllids are the primary source of the spread of the disease. Although psyllids
are generally sedentary as nymphs [9], a mature psyllid can fly over a mile [11],
and high winds can increase the distance a psyllid can travel [16]. Although large
commercial groves generally have more than a few miles between them, there are
many abandoned groves and residential citrus trees between them that facilitate
the spread of the disease [8]. Ornamental trees, such as Murraya paniculata (orange
jasmine) are very popular in the state of Florida and serve as another habitat from
which the psyllids can spread out [11]. In addition, many discount stores ship both
infected plants and fruit throughout the state, enabling the disease to proliferate
quickly. For these reasons the disease has traveled about 30 miles a year in Florida
but only 12 miles a year in Brazil [9]. Grafting together healthy and infected trees
also contributes to the spread [11].

With all of these factors contributing to the advancement of citrus greening, it is
very difficult to keep the disease under control. However, because of the importance
of citrus crops to the state’s economy, several attempts have been made to imple-
ment various control strategies. One option is to rogue (or remove) infected trees.
This helps to prevent more psyllids from acquiring the disease. Unfortunately, be-
cause a tree may be infected for a couple years before any symptoms are detected,
it is difficult to know which trees must be rogued [8]. Especially in commercial
groves, farmers are reluctant to eliminate a healthy-looking tree that is still capable
of producing good fruit. Once a tree is rogued, another can be replanted in its
place. However, it is possible that the remnants of tree roots in the soil may serve
as a reservoir for the disease, as it has been observed that recently planted trees are
more susceptible, creating another setback to this control strategy [16]. Another
method is to treat unhealthy trees with antibiotics. This can be very effective, but
it is also very costly. It is also not a permanent fix; symptoms will return about a
year after being treated [11]. With either control strategy, it is important to know
which asymptomatic trees are actually infected with the disease. One way is to test
plant tissue with the polymerase chain reaction technique (PCR). However, it is not
feasible for every single tree in a grove to be tested this way. Also, the disease is not
evenly distributed within a given tree, and thus the test may not always produce
accurate results. Many farmers use scouts to visually inspect trees for psyllids,
but it is generally difficult to see the miniscule insects that are only three to four
millimeters in diameter [11].

There are a few control strategies that are more realistic and easier to implement,
though less effective. These include spraying insecticides over entire groves as well
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as eliminating grafting [11]. It is also important for citrus stock to be inspected
and screened before it is transported or sold, and it is very beneficial for nurseries
that grow citrus to be screened-in [8]. A quarantine that began June 17, 2010, is
designed to prevent the transportation of citrus throughout the state of Florida [2].

Citrus greening has become very wide-spread and is difficult to eradicate. Be-
cause citrus is such an important part of Florida’s economy, this disease is an issue
of great concern. A recent study by the University of Florida’s Institute of Food and
Agricultural Sciences estimates that from 2006 to 2011 citrus greening has caused
$3.63 billion in lost revenue and over 6,000 lost jobs in the state. The five-year
production level for orange juice is estimated to be 1.7 billion gallons less than
projected [12]. If the disease continues, eventually there will not be enough citrus
produced for the juice plants to operate; many plants have already begun to import
extra citrus from Brazil in order to keep up their production levels [16]. Unfortu-
nately, many believe that the damage may be irreversible in the state of Florida.
However, HLB has also been detected in Georgia, South Carolina, and Louisiana.
In January 2012, the Texas Department of Agriculture and USDA confirmed the
detection of the disease in a commercial grove in Texas [15]. Recently, HLB-infected
trees and the asian citrus psyllids were found in both Arizona and California, and
the psyllids alone were discovered in Hawaii, Mississippi and Alabama.

It is clear that research on the progression of the disease in Florida could be
instrumental in preventing the same outbreak in other states.

In this paper, we develop a model for the spread of citrus greening disease within
a single grove of citrus trees. The model represents healthy and infected individuals
in both the tree and vector populations, and includes the control method of roguing
and replanting. The unique aspect of this model is that it allows for a newly planted
tree to become infected immediately due to the possibility that the soil may be a
reservoir for the disease; this feature has not been considered in other models with
roguing and replanting. We will calculate the basic reproductive number, R0, a
threshold below which the disease can be eradicated but above which the disease will
persist. Extinction and persistence results will be proved, and numerical simulations
will suggest other results. Finally, we will consider a modification to our model that
can result in bistability given the appropriate parameters.

2. A mathematical model and main results.

2.1. Model formulation. We subdivide the citrus tree population into four stages.
S denotes susceptible trees and R represents dead trees. Due to the observed delay
in the appearance of symptoms of citrus greening we split the infected trees I
into an asymptomatic (latent) stage, I1, and a symptomatic stage, I2. For the
psyllid vector population we let V− and V+ represent the uninfected/susceptible
and infected psyllids, respectively. We assume that the grove is subject to a rogue
and replant disease management strategy. In the model, symptomatic and dead
trees are rogued at a rate ρ and the corresponding spots are replanted with new
trees. We assume that a proportion f ∈ [0, 1] of the newly planted trees will be
healthy and a proportion 1− f will become infected immediately. A schematic for
the model is provided in Figure 1.

We assume that infected trees progress from the latent state to the symptomatic
state at the rate γ. The parameter α represents the disease-associated mortality
of the symptomatic trees; the natural death rate of the trees is neglected. The
mortality rate of the psyllids is given by µ which is assumed to be the same for
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Figure 1. Flow diagram for the grove-scale citrus greening model
(1)-(6)

uninfected and infected psyllids. With the above assumptions, the model takes the
following form:

İ1 = β
S

N

V+
V
− γI1 + ρ(1− f)(I2 +R), (1)

İ2 = γI1 − (α+ ρ)I2, (2)

Ṙ = αI2 − ρR, (3)

V̇+ = β
V−
V

I1 + I2
N

− µV+, (4)

Ṡ = b

(
1− N

N0

)
− β S

N

V+
V

+ ρf(I2 +R), (5)

V̇− = rV

(
1− V

K

)
− β V−

V

I1 + I2
N

− µV−. (6)

The total number of trees is given by N = S + I1 + I2 +R while N0 represents the
number of spaces in the grove. We will assume throughout that N ≤ N0. The trees
are assumed to be replanted at a rate that is proportional, with constant b, to the
number of empty spaces in the grove. The total psyllid population is represented by
V = V−+V+ with logistic growth rate r and carrying capacity K. We assume that
there is a fixed number of contacts per unit time between trees and psyllids. The
biting rate β, given as units/time, accounts for the proportion of bites that result in
successful transmission. For example, the infection rate of trees is therefore given
by the product of the biting rate and the probability that a bite involves a healthy
tree and an infected psyllid.

2.2. Equilibria. We begin our analysis of the model by making the following im-
mediate observations. First, due to the specific form of equations (1)-(6), the model
is well-posed; that is, all positive solutions are well-defined and remain positive in
forward time. Second, adding equations (1)-(3) and (5), we find that the total tree
population is governed by

Ṅ = b

(
1− N

N0

)
.
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Similarly, when we add equations (4) and (6), the total vector population satisfies

V̇ = rV

(
1− V

K

)
− µV.

Consequently, all positive solutions of (1)-(6) are bounded and can be extended to
all t ∈ (0,+∞). Additionally, N(t) → N0 and V (t) → V ∗ = (1 − µ

r )K (here, we
assume that µ < r so that V ∗ > 0) exponentially fast as t→ +∞.

Now, we look for steady states (I∗1 , I
∗
2 , R

∗, V ∗+, S
∗, V ∗−) of system (1)-(6). Clearly,

N = N0 and V = V ∗ at equilibrium. Trivially, x0 = (0, 0, 0, 0, N0, V
∗) is an

equilibrium which we designate as the disease-free equilibrium (DFE) . To find
endemic equilibria, we set (1)-(6) equal to zero and obtain

I2 =
γ

α+ ρ
I1, R =

α

ρ
I2, V + =

βV ∗(I1 + I2)

µN0V ∗ + β(I1 + I2)
.

Thus we can express each infected state in terms of I1. Then if I1 = 0 we see that
I2 = R = V+ = 0 and we are in the case of the disease-free equilibrium. Hence
there exists an endemic equilibrium if and only if I1 > 0. If I1 6= 0, (5) yields

S =
N0fγ

β
I1 +

N2
0 fµV

∗

β2( 1
γ + 1

α+ρ )
.

Then recalling that N0 = S + I1 + I2 +R we easily compute

N0 =
N0fγ

β
I1 +

N2
0 fµV

∗

β2( 1
γ + 1

α+ρ )
+

(
1 +

γ

ρ

)
I1.

Therefore the condition for existence of a positive (endemic) equilibrium is:

I1 > 0 ⇔ N2
0 fµV

∗

β2( 1
γ + 1

α+ρ )
< N0 ⇔

β2( 1
γ + 1

α+ρ )

N0V ∗fµ
> 1. (7)

The last inequality is closely related to the basic reproductive number R0 which we
discuss in the following section.

2.3. The basic reproductive number R0. The basic reproductive number R0

represents the average number of secondary infections that result from the intro-
duction of a single infected agent (a tree or a vector) into a susceptible population.
There are various approaches for calculating R0 leading to some ambiguity in its
definition. For instance, van den Dreissche and Watmough define R0 to be the spec-
tral radius of the next generation matrix, FV −1 [17]. In Part 1 of the Appendix we
calculate FV −1 for our system (1)-(6) and find

R0 =
1− f

2
+

√
(1− f)2

4
+

β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
.

We prove below in Theorem 2.1 the existence of an equivalent threshold condition
involving the quantity

T0 =
β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
+ 1− f.

The quantity T0 provides the following biological interpretation. Suppose that a
single infected tree in stage I1 is introduced into a completely susceptible grove.
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The average number of secondary infections resulting from psyllid contact during
the I1 and I2 stages of the tree are, respectively,

β2

V ∗N0µγ
and

β2

V ∗N0µ(α+ ρ)
.

The tree will necessarily be rogued in either the I2 or R stage and will on average
produce 1 − f newly infected I1 trees. Thus the expected number of secondary
infections is exactly T0. In Theorem 2.1, we prove the equivalence of T0 and R0 for
the local stability of the DFE.

Theorem 2.1. (i) R0 < 1 if and only if T0 < 1.
(ii) T0 < 1 if and only if all eigenvalues of the Jacobian matrix of system (1)-(6)
evaluated at DFE have negative real parts.

Proof. It is shown in Part 1 of the Appendix that R0 is the largest positive root of

p(λ) = λ2 − (1− f)λ− β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
.

The leading coefficient of p(λ) is positive and therefore R0 < 1 if and only if

p(1) = f − β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
> 0.

Then p(1) > 0 is clearly equivalent to T0 < 1 and the first assertion follows.
To prove the second assertion, we compute the Jacobian matrix of system (1)-(6)

at the DFE:

J(x0) =



−γ ρ(1− f) ρ(1− f) β
V ∗ 0 0

γ −(α+ ρ) 0 0 0 0
0 α −ρ 0 0 0
β
N0

β
N0

0 −µ 0 0

− b
N0

− b
N0

+ ρf − b
N0

+ ρf − β
V ∗ − β

N0
0

− β
N0

− β
N0

0 2µ− r 0 µ− r


.

We see that J(x0) has a block triangular form and therefore − β
N0

and µ − r are

eigenvalues of J(x0). It follows from our assumption µ < r that these two eigenva-

lues are negative. We let J̃(x0) be the upper left 4 × 4 submatrix of J(x0). Then

the remaining eigenvalues are determined by the characteristic equation of J̃(x0):

p(λ) = (λ+µ)(λ+α+ρ)
(

(λ+ρ)(λ+γ)−γρ(1−f)
)
− β2

V ∗N0
(λ+ρ)(λ+α+ρ+γ).

Any root λ of p(λ) with Re(λ) ≥ 0 is also a root of q(λ) defined by

q(λ) =
p(λ)

(λ+ µ)(λ+ ρ)(λ+ γ)(λ+ α+ ρ)

= 1− β2(λ+ α+ ρ+ γ)

V ∗N0(λ+ µ)(λ+ γ)(λ+ α+ ρ)
− γρ(1− f)

(λ+ ρ)(λ+ γ)
.

We observe that q(λ) is monotone increasing in λ when λ > 0. Therefore since
the leading coefficient of p(λ) is positive we know that p(λ) has no positive real
roots if and only if q(0) > 0. Therefore all real eigenvalues of J(x0) are negative if
and only if q(0) > 0, which is equivalent to

β2

V ∗N0µ

(
1

γ
+

1

α+ ρ

)
+ 1− f < 1;
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that is, T0 < 1. To prove that all complex eigenvalues of J(x0) have negative
real parts we define G(λ) = 1 − q(λ) and suppose p(λ) = 0 with Re(λ) ≥ 0 and
Im(λ) 6= 0. Then G(λ) = 1 where

G(λ) =
β2

V ∗N0(λ+ µ)(λ+ γ)
+

β2γ

V ∗N0(λ+ µ)(λ+ γ)(λ+ α+ ρ)
+

γρ(1− f)

(λ+ ρ)(λ+ γ)
.

We claim |G(λ)| < G(Re(λ)). Indeed,

|G(λ)| ≤
β2

V ∗N0|λ+ µ||λ+ γ|
+

β2γ

V ∗N0|λ+ µ||λ+ γ||λ+ α+ ρ|
+

γρ(1− f)

|λ+ ρ||λ+ γ|

<
β2

V ∗N0(Re(λ) + µ)(Re(λ) + γ)
+

γρ(1− f)

(Re(λ) + ρ)(Re(λ) + γ)

+
β2γ

V ∗N0(Re(λ) + µ)(Re(λ) + γ)(Re(λ) + α+ ρ)

= G(Re(λ)),

where the second inequality is strict since Im(λ) 6= 0. Therefore we have T0 < 1⇔
q(0) > 0⇔ G(0) < 1, which implies G(Re(λ)) < 1 since G is decreasing in λ. Then
|G(λ)| < G(Re(λ)) < 1 gives a contradiction.

2.4. Persistence of the disease when R0 > 1. Theorem 2.1 states that if R0 < 1
the DFE is locally asymptotically stable while R0 > 1 indicates that the DFE is
unstable. In Theorem 2.4 in Section 2.5, we prove a global stability result for the
case R0 ≤ 1. We were not able to analytically establish the local stability of the
endemic equilibrium in the general case but simulations suggest that it is stable
whenever it exists. In Figure 2, we present a numerical simulation of system (1)-
(6) with f = 0.5, r = 1.5, b = N0 = α = ρ = γ = µ = β = V ∗ = 1 and
initial condition (I1(0), I2(0), R(0), V+(0), S(0), V−(0)) = (0.1, 0, 0, 0, 0.9, 1). With
these hypothesized parameter values R0 = 1.5 and the endemic equilibrium is
(I∗1 , I

∗
2 , R

∗, V ∗+, S
∗, V ∗−) = (0.267, 0.133, 0.133, 0.286, 0.467, 0.714). We see from the

simulation that the solution converges to the endemic equilibrium.
In the case where f = 0 the system is more tractable. In the limiting case

N = N0 and V = V ∗, the equations of the model are given by:

İ1 = β
S

N0

V+
V ∗
− γI1 + ρ(I2 +R), (8)

İ2 = γI1 − (α+ ρ)I2, (9)

Ṙ = αI2 − ρR, (10)

V̇+ = β
V−
V ∗

I1 + I2
N0

− µV+, (11)

Ṡ = −β S

N0

V+
V ∗

, (12)

V̇− = V ∗µ− β V−
V ∗

I1 + I2
N0

− µV−. (13)

This system has the unique endemic equilibrium

(I∗1 , I
∗
2 , R

∗, V ∗+, S
∗, V ∗−) =

(
ρN0

γ + ρ
,

γρN0

(α+ ρ)(γ + ρ)
,

αγN0

(α+ ρ)(γ + ρ)
, V ∗+, 0, V

∗
−

)
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Figure 2. Simulation of system (1)-(6) using MATLAB ode45
solver with f = 0.5, r = 1.5, b = N0 = α = ρ = γ = µ = β = V ∗ =
1, and initial condition (I1(0), I2(0), R(0), V+(0), S(0), V−(0)) =
(0.1, 0, 0, 0, 0.9, 1).

where V ∗+ satisfies

V ∗+ =

β
N0

(I∗1 + I∗2 )

µ+ β
N0V ∗ (I∗1 + I∗2 )

< V ∗,

and V ∗− = V ∗ − V ∗+ > 0. In this case we are able to prove the following theorem
concerning global asymptotic stability of the endemic equilibrium.

Theorem 2.2. All positive solutions of the system (8)-(13) with S(0) < N0 con-
verge to the endemic equilibrium (I∗1 , I

∗
2 , R

∗, V ∗+, S
∗, V ∗−).

Proof. First we observe that S(t) is decreasing and bounded below by 0. So S(t)→
S∞ as t→∞ for some 0 ≤ S∞ < N0. Now let M(t) = I1(t)+I2(t)+R(t). Since the
total population is N0 we have that M(t)→M∞ as t→∞ for M∞ = N0−S∞ > 0.
Hence I1(t) = M∞+h(t)− I2−R where h(t)→ 0 as t→∞. Then we consider the
subsystem:

İ2 = γ(M∞ + h(t)− I2 −R)− (α+ ρ)I2, (14)

Ṙ = αI2 − ρR. (15)

Letting Ĩ2 = γρ
(α+ρ)(γ+ρ)M∞ and R̃ = αγ

(α+ρ)(γ+ρ)M∞, we observe that

0 = γ(M∞ − Ĩ2 − R̃)− (α+ ρ)Ĩ2,

0 = αĨ2 − ρR̃.

We then perform a shift by defining i2 = I2 − Ĩ2 and r = R − R̃. Then (14)-(15)
can be written as

ẋ = Ax+ f(t)
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where

x =

[
i2
r

]
, A =

[
−(γ + α+ ρ) −γ

α −ρ

]
, f(t) =

[
γh(t)

0

]
.

Using the variation of parameters, we find that

x(t) =

∫ t

0

e(t−s)Af(s)ds+ etAx0.

Note that the matrix A is Hurwitz since both eigenvalues have negative real parts,
so etA → 0 as t → ∞. This also means that there exist C > 0, α > 0 such that
|e(t−s)Af(s)| ≤ Ce−α(t−s)|f(s)| for all t ≥ s ≥ 0. So for any given ε > 0, there
exists T > 0 such that Ce−αt

∫ τ
0
eαs|f(s)|ds < ε

2 for all t ≥ T . Also, there exists
τ > 0 such that |f(t)| < εα

2C for all t ≥ τ . So∣∣∣∣∫ t

0

e(t−s)Af(s)ds

∣∣∣∣ ≤ ∫ t

0

Ce−α(t−s)|f(s)|ds

=

∫ τ

0

Ce−α(t−s)|f(s)|ds+

∫ t

τ

Ce−α(t−s)|f(s)|ds

≤ Ce−αt
∫ τ

0

eαs|f(s)|ds+
εα

2

∫ t

τ

e−α(t−s)ds

<
ε

2
+
ε

2
(1− e−α(t−τ)) for all t ≥ T

< ε.

Thus x(t) → 0 as t → ∞. Hence I2 → Ĩ2 and R → R̃ as t → ∞. Therefore

I1 → ρ
γ+ρM∞ which we define as Ĩ1. Now Ĩ1 + Ĩ2 > 0 and we have

I1(t) + I2(t) = Ĩ1 + Ĩ2 + g(t)

for some g(t)→ 0 as t→∞. We can then express (11) as

V̇+ =
β

N0
(Ĩ1 + Ĩ2 + g(t))−

(
β

N0V ∗
(Ĩ1 + Ĩ2 + g(t)) + µ

)
V+ = g1(t)− g2(t)V+

where the functions g1(t) and g2(t) clearly approach the positive limits β
N0

(Ĩ1 + Ĩ2)

and β
N0V ∗ (Ĩ1 + Ĩ2) + µ, respectively, as t→∞. It follows that V+ has the limit

Ṽ+ =

β
N0

(Ĩ1 + Ĩ2)

µ+ β
N0V ∗ (Ĩ1 + Ĩ2)

.

Hence Ṽ+ > 0 and so there exists τ > 0 and ξ > 0 such that for all t > τ

Ṡ ≤ − β

N0V ∗
Sξ,

and therefore

S(t) ≤ S(τ)e
−βξ
N0V

∗ (t−τ)
,

where the right side converges to 0 as t→∞. Therefore S∞ = 0 which implies that
Ĩ1 = I∗1 , Ĩ2 = I∗2 , R̃ = R∗, and Ṽ+ = V ∗+.
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We now return to the general model and present a proof for strong uniform
persistence of the disease in the case R0 > 1. Taking N = N0 and V = V ∗ we
consider the limiting system of the infected components:

İ1 = β

(
1− I1 + I2 +R

N0

)
V+
V ∗
− γI1 + ρ(1− f)(I2 +R), (16)

İ2 = γI1 − (α+ ρ)I2, (17)

Ṙ = αI2 − ρR, (18)

V̇+ = β

(
1− V+

V ∗

)
I1 + I2
N0

− µV+, (19)

with solutions restricted to the feasible region Σ = {(I1, I2, R, V +) : 0 ≤ I1+I2+R ≤
N0, 0 ≤ V+ ≤ V ∗}, a positively invariant subset of R4

+.

Theorem 2.3. Suppose R0 > 1. Then there exists ε0 > 0 such that lim inf
t→∞

d(x(t),

∂R4
+) > ε0 for all positive solutions x(t) of (16)-(19).

Proof. It suffices to consider 0 < f ≤ 1 because the result follows from Theorem 2.2
when f = 0. We first prove that there exists ε1 > 0 such that lim supt→∞ I1(t) +
I2(t) +R(t) ≥ ε1 for all positive solutions of (16)-(19). Consider the matrix

A(ε) =


−γ ρ(1− f) ρ(1− f) β

V ∗ (1− ε
N0

)

γ −(α+ ρ) 0 0
0 α −ρ 0

β
N0

(1− βε
V ∗N0µ

) β
N0

(1− βε
V ∗N0µ

) 0 −µ


for ε > 0. Observe that as ε→ 0, A(ε)→ J̃(x0) where J̃(x0) is the upper left four
by four submatrix contained in the Jacobian matrix of the system (1)-(6). Thus by

continuity of eigenvalues, the eigenvalues of A converge to the eigenvalues of J̃(x0).

Since R0 > 1 by Theorem 2.1 there exists an eigenvalue of J̃(x0) that has positive
real part. Therefore there exists ε1 > 0 such that A(ε1) has an eigenvalue with
positive real part.

By way of contradiction, suppose X(t) = (I1, I2, R, V+)(t) is a positive solution
and lim supt→∞ I1(t)+I2(t)+R(t) < ε1. We see from (19) that lim supt→∞ V+(t) <
βε1

V ∗N0µ
. Thus there exists τ > 0 such that for all t > τ

İ1 ≥ β

V ∗

(
1− ε1

N0

)
V+ − γI1 + ρ(1− f)(I2 +R),

İ2 ≥ γI1 − (α+ ρ)I2,

Ṙ ≥ αI2 − ρR,

V̇+ ≥ β

N0

(
1− βε1

N0µV ∗

)
(I1 + I2)− µV+.

We define s = t − τ and let Y (s) = (i1, i2, r, v+)(s) ∈ R̊4
+ be the solution of

Ẏ = A(ε1)Y with initial condition Y (0) = X(τ). Applying Kamke’s Theorem
(Theorem B.1 in [14]), we conclude that X(s) ≥ Y (s) for all s ≥ 0.

Let λ be the eigenvalue of A(ε1) with the largest real part. Since A(ε1) is quasi-
positive, by the Perron-Frobenius Theorem there exists a nonnegative eigenvector v
of A(ε1) with eigenvalue λ. Choose k sufficiently small so that kv ≤ Y (0) entrywise.

Then for Z(s) = keλsv we have Ż = A(ε1)Z and Z(0) ≤ Y (0), which implies
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that Z(s) ≤ Y (s) for all s ≥ 0. Then there exists a component Zi(s) such that
lims→∞ Zi(s) = ∞. Therefore lims→∞ Yi(s) = ∞ implying that lims→∞Xi(s) =
∞, a contradiction. Therefore lim supt→∞ I1(t) + I2(t) + R(t) ≥ ε1 for all positive
solutions x(t) of (16)-(19).

Now let M be the maximal invariant set in ∂R4
+ ∩ Σ. Suppose x̃ ∈ M . Let

x(t) = (I1, I2, R, V+)(t) be the solution to (16)-(19) with x(0) = x̃. Suppose that
V+(t1) > 0 for some t1 ≥ 0. Since x̃ ∈ ∂R4

+ there exists an i ∈ {1, 2, 3} such that
xi(t1) = 0. Suppose I1(t) = 0 for all t ≥ t1. Then

İ2 + Ṙ = −ρ(I2 +R)

so there exists t2 > t1 such that (I2 +R)(t2) < N0. Then İ1(t2) > 0 and continuity
implies that there exists t3 > t2 such that I1(t3) > 0. Then if I2(t3) = 0 we would

have İ2(t3) = γI1(t3) > 0 so I2(t) becomes positive. Similarly, R(t) eventually

becomes positive. But then there exists t4 > t3 such that x(t4) ∈ R̊4
+ which con-

tradicts the invariance of M . So V+(t) = 0 for all t ≥ 0. Then V̇+(t) = 0 implies
that I1(t) = I2(t) = 0 for all t ≥ 0. If f = 1 we conclude that M = {(0, 0, R, 0) :
0 ≤ R ≤ N0}. If f < 1 equation (16) implies further that R(t) = 0 for all t ≥ 0 and
hence M is the origin. We show next that M is a uniform repeller in either case.

Let f < 1 and ε < ε1
3 . Let x(t) be a nonnegative nonzero solution of (16)-

(19) with ||x(0)|| < ε. By the argument above if x(0) ∈ ∂R4
+ the solution even-

tually becomes positive so it suffices to consider positive solutions only. Then
lim supt→∞ I1(t)+I2(t)+R(t) ≥ ε1 implies that there is a T > 0 such that ||x(T )|| >
ε. By Theorem 1 of Fonda [5] there exists η > 0 such that lim inft→∞ d(x(t), 0) ≥ η
for all nonnegative nonzero solutions x(t).

Now let f = 1. Suppose that lim supt→∞ V+(t) ≤ ε2 for some positive solu-
tion x(t) and ε2 > 0. Then there exists τ > 0 such that for t > τ and y =
(I1(t), I2(t), R(t))T ,

ẏ ≤ ε2ω +Ay

where

ω =

(
β

V ∗
, 0, 0

)
and A =

 −γ 0 0
γ −(α+ ρ) 0
0 α −ρ

 .
Clearly the principal eigenvalue of A is negative; by the Perron-Frobenius Theorem
there exists λ > 0 and a positive left eigenvector v such that vA = −λv. Define
Ψ(y) = v · y. Then

Ψ̇(y) = v · ẏ ≤ ε2(v · ω) + vAy = ε2(v · ω)− λΨ(x)

from which it follows that

lim sup
t→∞

Ψ(y) ≤ ε2(v · ω)

λ

and hence there exists C > 0 such that lim supt→∞ I1(t) + I2(t) + R(t) ≤ Cε2. If
ε2 <

ε1
C we get a contradiction. Therefore lim supt→∞ V+(t) ≥ ε1

C .
To show M is also a uniform repeller in this case, suppose ε < ε1

2C and x(t) is a

solution such that x(0) ∈ Σ\M and d(x(0),M) < ε. If x(0) ∈ ∂R4
+ then there exists

i ∈ {1, 2, 4} such that xi(0) > 0 and it is straightforward to show that x(t) ∈ R̊4
+ for

some t > 0. So it suffices to consider positive solutions. Now lim supt→∞ V+(t) ≥ ε1
C

implies that there exists T > 0 such that d(x(T ),M) ≥ ||V+(T )|| ≥ ε1
2C > ε. By



716 KARLY JACOBSEN, JILLIAN STUPIANSKY AND SERGEI S. PILYUGIN

Theorem 1 of Fonda [5] there exists η > 0 such that lim inft→∞ d(x(t),M) ≥ η for
all such solutions, in particular for positive solutions.

Therefore for 0 < f ≤ 1 the stable manifold of M does not intersect R̊4
+. Thus

by Theorem 4.3 in [6] the flow is uniformly strongly persistent; that is, there exists
ε0 > 0 such that lim inf

t→∞
d(x(t), ∂R4

+) > ε0 for all positive solutions x(t) of (16)-

(19).

2.5. Extinction of the disease when R0 ≤ 1.

Theorem 2.4. If R0 ≤ 1, then all nonnegative solutions of (1)-(6) converge to the
DFE (0, 0, 0, 0, N0, V

∗).

Proof. Note that R0 ≤ 1 implies that f > 0. Suppose lim supt→∞ I1(t) = m > 0.
Then for every ε > 0 there exists τ1 > 0 such that I1(t) ≤ m + ε for all t ≥ τ1.
Substituting, we have that

İ2(t) ≤ γ(m+ ε)− (α+ ρ)I2(t)

for all t ≥ τ1. Then there exists τ2 > τ1 such that

I2(t) ≤ γ(m+ ε)

α+ ρ
+ ε

for all t ≥ τ2. This means that

I1(t) + I2(t) ≤ m+ 2ε+
γ(m+ ε)

α+ ρ

for all t ≥ τ2. Substituting again, we get that

Ṙ(t) ≤ α
(
γ(m+ ε)

α+ ρ
+ ε

)
− ρR(t)

for all t ≥ τ2. Thus there exists τ3 > τ2 such that

R(t) ≤ α

ρ

(
γ(m+ ε)

α+ ρ
+ ε

)
+ ε

for all t ≥ τ3. So

I2(t) +R(t) ≤ γ(m+ ε) + αε

ρ
+ 2ε

for all t ≥ τ3.
We have that Ṅ(t) = b(1− N

N0
), so N(t)→ N0 as t→∞. Thus there exists τ4 > 0

such that N0 − ε ≤ N(t) for all t ≥ τ4. We also have that V̇ (t) = rV (1− V
K )− µV ,

and thus V (t)→ V ∗ as t→∞. So there exists τ5 > 0 such that V ∗ − ε ≤ V (t) for
all t ≥ τ5. We now substitute this to get that

V̇+(t) ≤ β
m+ 2ε+ γ(m+ε)

α+ρ

N0 − ε
− µV+(t)

for all t ≥ τ2, τ4. Then there exists τ6 > max{τ2, τ4} such that

V+(t) ≤
β(m+ 2ε+ γ(m+ε)

α+ρ )

µ(N0 − ε)
+ ε
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for all t ≥ τ6. Now we can rewrite

İ1(t) ≤ S(t)
N(t)β

β(m+2ε+
γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε) + (1− f)ρ(γ(m+ε)+αε
ρ + 2ε)− γI1(t)

≤ N(t)−I1(t)
N(t) β

β(m+2ε+
γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε) + (1− f)ρ(γ(m+ε)+αε
ρ + 2ε)− γI1(t)

≤ β
β(m+2ε+

γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε) + (1− f)ρ(γ(m+ε)+αε
ρ + 2ε)

−γI1(t)− β β(m+2ε+
γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε)(N0+ε)
I1(t) for all t ≥ τ3, τ5, τ6.

Then there exists τ7 > max{τ3, τ5, τ6} such that

I1(t) ≤
β
β(m+2ε+

γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε) + (1− f)ρ(γ(m+ε)+αε
ρ + 2ε)

γ + β
β(m+2ε+

γ(m+ε)
α+ρ )+εµ(N0−ε)

µ(N0−ε)(V ∗−ε)(N0+ε)

+ ε

for all t ≥ τ7. Recall from Section 2.3 the quantity T0 whose threshold behavior is
equivalent to that of R0. Now as ε→ 0, the inequality becomes

I1(t) ≤
β2(m+

γm
α+ρ

)

µN0V
∗ +(1−f)γm

γ+
β2(m+

γm
α+ρ

)

µN2
0V

∗

=
mγ

(
β2( 1

γ
+ 1
α+ρ

)

µN0V
∗ +(1−f)

)

γ+mγ
N0

(
β2( 1

γ
+ 1
α+ρ

)

µN0V
∗

)

= mT0

1+ m
N0

(T0−(1−f)) = mT0

1− m
N0

(1−f)+ m
N0
T0
.

Note that m = lim supt→∞ I1(t) ≤ lim supt→∞N(t) = N0, so the constant
1− m

N0
(1− f) is always positive. This means that mT0

1− m
N0

(1−f)+ m
N0
T0

is an increasing

function of T0, therefore

I1(t) ≤ m

1 + f m
N0

< m,

since R0 ≤ 1 implies T0 ≤ 1. Thus lim supt→∞ I1(t) < m, a contradiction. So
m = 0. Then lim supt→∞ I2(t) = lim supt→∞R(t) = lim supt→∞ V+(t) = 0 follows
as well from the inequalities obtained throughout the proof. This means that we
must have limt→∞ S(t) = N0 and limt→∞ V−(t) = V ∗. So all nonnegative solutions
converge to the DFE.

2.6. Transient behavior. In the model we have been considering thus far, we
have accounted for roguing of symptomatic as well as dead trees. However, it is
worthwhile to examine the cases when only roguing of symptomatic trees occurs or
when there is no roguing at all. We will show that in either of these situations the
disease is transient; that is,

lim
t→∞

I1(t) = lim
t→∞

I2(t) = lim
t→∞

V+(t) = 0.

The system that we analyze now is the same as our original system, except that
it does not include a roguing term in the equation for Ṙ, and thus also does not
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account for the replanting of a rogued dead tree in either the Ṡ or İ1 equations. We
allow for roguing of I2 trees at rate ρ, which can be zero. Note that since dead trees
are no longer rogued and replanted possibly as infected trees, the R compartment
is not considered to be infected.

İ1 = β
S

N

V+
V
− γI1 + ρ(1− f)I2, (20)

İ2 = γI1 − (α+ ρ)I2, (21)

Ṙ = αI2, (22)

V̇+ = β
V−
V

I1 + I2
N

− µV+. (23)

Ṡ = b

(
1− N

N0

)
− β S

N

V+
V

+ ρfI2, (24)

V̇− = r(V− + V+)

(
1− V− + V+

K

)
− β V−

V

I1 + I2
N

− µV−. (25)

Theorem 2.5. For all nonnegative solutions of the system (20)-(25) and for all
ρ ≥ 0 the disease is transient.

Proof. For this system limt→∞N(t) = N0 and limt→∞ V (t) = V ∗ as shown for

the original system in the proof of Theorem 2.4. Here we have Ṙ = αI2. Since
I2 ≥ 0 and İ2(t) is bounded, an application of Barbalat’s lemma [7] implies that
limt→∞ I2 = 0 so that R does not increase without bound. This similarly forces
limt→∞ I1 = 0 as a result of equation (21). Thus limt→∞ V+ = 0 as well because of
equation (23). So all infected compartments eventually become extinct.

Theorem 2.6. In the system (20)-(25), lim
t→∞

S = S∞ > 0 for any ρ ≥ 0.

Proof. Integrating equation (22), we have that R(t) − R(0) = α
∫ t
0
I2(τ) dτ . Since

R(0) and R(t) are both bounded, their difference is bounded, and thus
∫ t
0
I2(τ) dτ

is bounded. Similarly, equation (21) gives that I2(t)− I2(0) + (α+ ρ)
∫ t
0
I2(τ) dτ =

γ
∫ t
0
I1(τ) dτ , and thus

∫ t
0
I1(τ) dτ is bounded as well. Let ε > 0. Since N(t) ≤ N0

for all t, limt→∞N(t) = N0, and limt→∞ V (t) = V ∗, then there exists T > 0 such
that N0 − ε ≤ N(t) ≤ N0 and V ∗ − ε ≤ V (t) ≤ V ∗ + ε for all t ≥ T . Since ρ ≥ 0 by
equation (24) we have the inequality

Ṡ ≥ −β S
N

V+
V
≥ −β S

(N0 − ε)
V+

(V ∗ − ε)
.

Therefore S(t) ≥ S(0) exp
(
− β

(N0−ε)(V ∗−ε)
∫ t
0
V+(τ) dτ

)
for all t ≥ T . By way of

contradiction, assume that S∞ = 0. Then by the above inequality,

limt→∞
∫ t
0
V+(τ) dτ = ∞. Note that β V−

V
I1+I2
N ≤ β VV

I1+I2
N0−ε for all t ≥ T . Then for

all t ≥ T ∫ t

0

β
V−(τ)

V (τ)

I1(τ) + I2(τ)

N(τ)
dτ

≤
∫ T

0

β
V−(τ)

V (τ)

(I1(τ) + I2(τ))

N(τ)
dτ +

∫ t

T

β
(I1(τ) + I2(τ))

N0 − ε
dτ

≤ βT +
β

N0 − ε

∫ t

T

(I1(τ) + I2(τ)) dτ
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≤ βT +
β

N0 − ε

∫ t

0

(I1(τ) + I2(τ)) dτ,

which is bounded. By equation (23), we have V+(t)−V+(0) =
∫ t
0
β V−(τ)

V
I1(τ)+I2(τ)

N dτ

−µ
∫ t
0
V+(τ) dτ . Since the first integral is bounded by the previous inequality, it fol-

lows that limt→∞ V+(t) = −∞, a contradiction. Thus S∞ > 0.

Theorems 2.5 and 2.6 tell us that when roguing of dead trees does not occur, the
disease will eventually die out leaving only healthy and dead trees. The presence
of remaining healthy trees is a feature similar to that of the standard SIR epidemic
model. This leads to a question about the benefits of roguing and replanting. Is
it worthwhile to rogue infected, symptomatic trees, or should no trees be rogued?
In either case the disease is transient; the difference is the number of trees that
remain healthy. We use simulations to compare the values of S∞, the number of
unaffected trees, in each situation. Consider the hypothesized parameter values
N0 = b = β = α = γ = µ = 1 and r = 1.5 in both cases, with ρ = 1 and f = 0.5 for
the system including roguing and ρ = 0 for the system excluding roguing. We begin
with only susceptible trees and a small number of infected psyllids; the initial con-
ditions are (I1(0), I2(0), R(0), V+(0), S(0), V−(0)) = (0, 0, 0, 0.1, 1, 0.9). This results
in S∞ = 0.2750 with roguing and S∞ = 0.2192 without roguing, so more trees are
unaffected when roguing occurs. With all combinations of parameter values that
we explored, the simulations support the notion that more healthy trees will remain
when symptomatic trees are rogued than when no trees are rogued.

3. Modifications of the model. In formulating the original model, we assumed
that psyllids are equally attracted to all types of trees, including the dead ones,
which may be biologically unrealistic. We now consider a modified version of our
model in which we assume that the psyllids are not attracted to dead trees. That
is, the probability that a tree bitten by a vector is a susceptible tree is defined to
be

φ =
S

S + I1 + I2
.

The new model is then given by:

İ1 = βφ
V+
V
− γI1 + ρ(1− f)(I2 +R), (26)

İ2 = γI1 − (α+ ρ)I2, (27)

Ṙ = αI2 − ρR, (28)

V̇+ = β
V−
V

(1− φ)− µV+, (29)

Ṡ = b

(
1− N

N0

)
− βφV+

V
+ ρf(I2 +R), (30)

V̇− = r(V− + V+)

(
1− V− + V+

K

)
− β V−

V
(1− φ)− µV−, (31)

which we study away from the singularity S = I1 = I2 = 0. The system (26)-(31)
has the same DFE as our original system (1)-(6). It also holds that N = N0 and
V = V ∗ at the equilibrium of (26)-(31). However in the new system we have the
possibility for two positive endemic equilibria. We define the following quadratic
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(a) ρ = 1, f = 0.5

(b) ρ = 0

Figure 3. Simulation of system (20)-(25) using MATLAB ode45
solver with r = 1.5, N0 = b = β = α = γ = µ = 1, initial condition
(I1(0), I2(0), R(0), V+(0), S(0), V−(0)) = (0, 0, 0, 0.1, 1, 0.9), and ρ
as specified in (a) and (b).

equation:

g(φ) =
γα

ρ(α+ ρ)
φ2 −

(
ρ+ γ

ρ
+
γfN0

β

)
φ+

γN0f(β + V ∗µ)

β2

where easy calculation shows that g(φ∗) = 0 for any endemic equilibrium value
φ∗. In Theorem 3.1, we will prove the existence of the two positive equilibria
given certain parameter values. Additionally, computation reveals that the next
generation matrix of (26)-(31) is identical to the next generation matrix of (1)-(6)
calculated in Part 1 of the Appendix. Therefore for the modified system we also
have

R0 =
1− f

2
+

√
(1− f)2

4
+

β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
.
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It is easy to show that R0 > 1 when f = 0 and there exists a unique, globally at-
tractive endemic equilibrium; the proof is similar to that of Theorem 2.2. However,
in the case f > 0, we have the following result. For use in Theorem 3.1 we define

φcrit =
α+ ρ

2α

(
ρ+ γ

γ
+
fρN0

β

)
.

Theorem 3.1. Two distinct positive endemic equilibria of (26)-(31) exist if and
only if
(i) φcrit < 1 and
(ii)

β2

fµN0

(
1

γ
+

1

α+ ρ

)
< V ∗ <

β

µ

[
φcrit

(
1− µ

2ρ
+
β(ρ+ γ)

2ργfN0

)
− 1

]
.

Furthermore, (ii) implies that R0 < 1.

Proof. For φ ∈ (0, 1) we have that φ is an equilibrium value if and only if g(φ) = 0.
So it suffices to show that g has two roots in (0, 1) if and only if (i) and (ii) hold.
Observe that g(0) > 0 and that the critical value of g(φ) is given by φcrit. Then g
will have two roots in (0, 1) if and only if g(1) > 0, 0 < φcrit < 1 and g(φcrit) < 0.
It is trivial that 0 < φcrit. We have

g(1) =
γN0V

∗µf

β
−
(

1 +
γ

α+ ρ

)
.

Then g(1) > 0 if and only if

β2

fµN0

(
1

γ
+

1

α+ ρ

)
< V ∗

as in condition (ii). Note that it is trivial from this inequality that (ii) implies
R0 < 1. We prove now that g(φcrit) < 0 if and only if the right-hand inequality of
(ii) holds. Indeed,

g(φcrit) < 0 ⇔ γfN0(V ∗µ+ β)

β2
<

(
γfN0

β
+
ρ+ γ

ρ

)
φcrit −

γα

ρ(α+ ρ)
φ2crit

⇔ V ∗ <
β2

γfN0µ

[(
γfN0

β
+
ρ+ γ

ρ

)
φcrit −

γα

ρ(α+ ρ)
φ2crit

]
− β

µ

⇔ V ∗ <
β2

γfN0µ
φcrit

[
γfN0

β

(
1− µ

2ρ

)
+
ρ+ γ

2ρ

]
− β

µ

⇔ V ∗ <
β

µ

[
φcrit

(
1− µ

2ρ
+
β(ρ+ γ)

2ργfN0

)
− 1

]
.

We next examine the stability of the equilibria in the case that multiple positive
endemic equilibria exist, which is when R0 < 1. Consider the parameter values
f = β = 0.1, ρ = 0.01, r = 1.5, and b = N0 = α = γ = µ = V ∗ = 1, which result
in the value R0 = 0.9199. We find that the DFE as well as one of the endemic
equilibria will be stable, as all eigenvalues of the Jacobian evaluated at each of
these equilbria have negative real parts. However, the other endemic equilibrium is
unstable; for this particular equilibrium, the Jacobian has a positive real eigenvalue.
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We next examine the stability of the equilibria in the case that multiple positive
endemic equilibria exist, which is when R0 < 1. Consider the hypothesized param-
eter values f = β = 0.1, ρ = 0.01, r = 1.5, and b = N0 = α = γ = µ = V ∗ = 1,
which result in the value R0 = 0.9199. We find that the DFE as well as one of
the endemic equilibria will be stable, as all eigenvalues of the Jacobian evaluated
at each of these equilbria have negative real parts. However, the other endemic
equilibrium is unstable; for this particular equilibrium, the Jacobian has a positive
real eigenvalue.

Simulations in Figure 4 show that, depending on the initial conditions used in
combination with the above parameter values, the solutions (I1(t), I2(t), R(t), V+(t),
S(t), V−(t)) will converge to one of the two stable equilibria. First, with the initial
condition (0, 0, 0.5, 0, 0.5, 1), convergence is to the DFE (0, 0, 0, 0, 1, 1). If instead
we use the initial condition (0, 0, 0.9, 0, 0.1, 1) the solution converges to the endemic
equilibria at (0.01, 0.01, 0.977, 0.081, 0.003, 0.919).

4. Discussion. The model developed in this paper describes the population dy-
namics for a grove in the presence of citrus greening disease. The model incorporates
a control strategy of roguing and replanting infected trees. Models for other plant
virus diseases have included roguing, such as those for banana bunchy top [1] and
citrus tristeza virus [4]. Chan and Jeger [3] also developed a model including healthy,
latently infected, infectious and post-infectious plants and investigated the popu-
lation dynamics with and without roguing. Analysis of their model with roguing
showed that the basic reproductive number and the equilibrium healthy population
did not depend on whether roguing was done in the post-infectious category. How
do different roguing methods affect our model? To answer this we considered a
control method where roguing of the I2 and R trees is done at rates ρ1 and ρ2, re-
spectively. The case where ρ2 = 0 was analyzed in Section 2.6 where we concluded
that the disease is transient and a positive population of healthy trees will remain
indefinitely. While we don’t have a complete analytical understanding of the model
when ρ1 > 0 and ρ2 = 0, simulations suggest that the level of remaining healthy
trees is larger when roguing is performed in I2 than with no roguing at all.

If both ρ1 > 0 and ρ2 > 0 then the disease is no longer transient and an endemic
equilibrium will exist when R0 > 1. Substituting ρ1 and ρ2 appropriately in system
(1)-(6), the reproductive number is recalculated to be:

R0 =
1− f

2
+

√
(1− f)2

4
+

β2

µV ∗N0

(
1

γ
+

1

α+ ρ1

)
.

For our model, as for Chan and Jeger’s model, R0 does not depend on the rate
of roguing of the dead trees. Although the disease will be maintained in the case
when R0 > 1, it may be that S∗, the endemic equilibrium healthy tree population,
is higher even in the presence of disease as compared to the case with no roguing
where the disease dies out. That is, there may be a tradeoff between allowing the
disease to persist and maintaining a profitable level of healthy trees. Therefore it
is worth considering the dependence of S∗ on ρ1 and ρ2. Indeed, S∗ is determined
to be:

S∗ =
fN2

0

β

1 + µV ∗

β

(
1 + αγ

ρ2(α+ρ1+γ)

)
fN0

β + 1
γ + 1

α+ρ1

(
1 + α

ρ2

)
 .
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(a) (0, 0, 0.5, 0, 0.5, 1)

(b) (0, 0, 0.9, 0, 0.1, 1)

Figure 4. Simulation of system (26)-(31) using MATLAB ode45
solver with f = β = 0.1, ρ = 0.01, r = 1.5, b = N0 = α = γ = µ =
V ∗ = 1, and initial condition (I1(0), I2(0), R(0), V+(0), S(0), V−(0))
as specified in (a) and (b).

Unlike the result of Chan and Jeger we see that the equilibrium healthy population
depends on whether roguing is done in both the infectious, symptomatic stage and in
the post-infectious stage. From this expression we can determine that S∗ increases
as ρ1 and ρ2 increase (see Part 2 of the Appendix).

These results for varying roguing methods depend on the novel feature of our
model which is the inclusion of the positive probability 1− f that a replanted tree
will immediately become infected. That is, the trees in the R stage are a potential
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source of infection due to the soil and remaining root system being a reservoir for
the disease. As expected, we find that R0 decreases as f increases. Dependence
of the basic reproductive number on other parameters also agrees with what we
predict biologically; R0 increases as the biting rate increases or the mean lifetime
of a psyllid or an infected tree increases. Less expected is that R0 is unbounded
as V ∗ or N0 approaches zero. However, modifying the system slightly to include a
saturating contact rate gives a bounded R0 of a very similar form. With conditions
on R0 we were able to establish extinction and uniform persistence results, and
perform numerical simulations which suggest additional stability conclusions.

Another modification to consider is incorporating psyllid migration. This cer-
tainly has a practical application, as psyllid movement is critical to the transport
of disease between groves. Emigration of the insects out of the grove could be in-
corporated into the death rate µ. To account for migration into the grove, we could
include a constant immigration rate. The case where a positive fraction of the im-
migrating psyllids are infected would no longer yield a DFE. However, when only
healthy psyllids migrate to the grove, the V ∗ value would change while all other
results would remain the same.

Recent field research has suggested that vertical transmission of the disease
among psyllids is not only present, but perhaps very influential in the spread of
the disease [10]. To allow for this possibility, we could incorporate a parameter π
that represents the proportion of offspring of infected psyllids that are born infected,
while the proportion 1 − π are born healthy. Preliminary analysis shows that this
modification effectively changes the parameter µ to (1 − π)µ, but all subsequent
results remain the same.

All parameter values used in the simulations are hypothesized. Some parameter
values can be estimated easier than others; for instance, knowing an approximate
length of an infected tree’s asymptomatic stage allows a rough estimate of the
parameter γ. However, recent observations indicate this stage length may have as
wide a range as six months to six years [10]. There is even less known about the
biting rate of psyllids or the potential of soil to act as a reservoir for the disease, and
thus it is much more difficult to estimate parameters such as β and f . Forthcoming
data might allow estimation of parameters to provide more realistic simulations in
future work.

Appendix.

Part 1. The basic reproductive number R0 represents the average number of sec-
ondary infections that result from the introduction of one infected individual into
a susceptible population. Mathematically, R0 has been defined to be the spectral
radius of the next generation matrix [17]. That is, we rewrite the vector field of
(1)-(6) as

ẋi = Fi(x)− Vi(x), i = 1, ..., 6,

where Fi(x) represents the rate of new infections appearing in state i and Vi =
V −i − V

+
i , where V +

i is the rate of individuals entering state i by all other means
and V −i is the rate of individuals leaving state i. We let

F =

[
∂Fi
∂xj

(x0)

]
, V =

[
∂Vi
∂xj

(x0)

]
1 ≤ i, j ≤ 4
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where x0 is the DFE. Thus F is the matrix of derivatives corresponding to new
infections in the infected compartments while V is the matrix of derivatives corre-
sponding to all other modes of entering or exiting an infected compartment. Van
den Driessche and Watmough [17] then define

R0 = ρ(FV −1).

We compute the next generation matrix FV −1 for system (1)-(6). Calculation gives

F =


0 ρ(1− f) ρ(1− f) β

V ∗

0 0 0 0
0 0 0 0
β
N0

β
N0

0 0

 ,

V =


γ 0 0 0
−γ α+ ρ 0 0
0 −α ρ 0
0 0 0 µ

 ,
and

V −1 =


1
γ 0 0 0
1

α+ρ
1

α+ρ 0 0
α

ρ(α+ρ)
α

ρ(α+ρ)
1
ρ 0

0 0 0 1
µ

 .
Therefore

FV −1 =


1− f 1− f 1− f β

µV ∗

0 0 0 0
0 0 0 0

β
N0

(
1
γ + 1

α+ρ

)
β

N0(α+ρ)
0 0

 .
Clearly, FV −1 has two zero eigenvalues. The remaining eigenvalues are determined
by

λ2 − (1− f)λ− β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
= 0.

Thus, the spectral radius of FV −1 is:

ρ(FV −1) = R0 =
1− f

2
+

√
(1− f)2

4
+

β2

µV ∗N0

(
1

γ
+

1

α+ ρ

)
.

Part 2.

Proposition 1. Let R0 > 1. Then the endemic equilibrium level of healthy trees

S∗ =
fN2

0

β

1 + µV ∗

β

(
1 + αγ

ρ2(α+ρ1+γ)

)
fN0

β + 1
γ + 1

α+ρ1

(
1 + α

ρ2

)


is increasing with respect to ρ1 and ρ2.
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Proof. We first prove that S∗ increases as ρ1 increases. We have

S∗ =
fN2

0

β

 1 + µV ∗

β + µV ∗αγ
βρ2(α+ρ1+γ)

fN0

β + 1
γ + 1

α+ρ1

(
1 + α

ρ2

)


=
fN2

0

β

[
a+ b

x+γ

c+ d
x

]
=
fN2

0

β

[
ax2 + (aγ + b)x

cx2 + (cγ + d)x+ dγ

]
,

where x = α+ρ1, a = 1 + µV ∗

β , b = µV ∗αγ
βρ2

, c = fN0

β + 1
γ , and d = 1 + α

ρ2
. Note that

x, a, b, c, and d are positive for ρ1 ≥ 0. After differentiating and some simplification
we determine

∂S∗

∂ρ1
=
fN2

0

β

[
(ad− bc)x2 + 2adγx+ dγ(aγ + b)

(cx2 + (cγ + d)x+ dγ)2

]

≥ fN2
0

β

[
x[(ad− bc)x+ 2adγ]

(cx2 + (cγ + d)x+ dγ)2

]
.

Therefore it suffices to show that (ad − bc)x + 2adγ > 0. Recalling the expression
for R0 from the Discussion we observe that, similar to the proof of Theorem 2.1,
R0 > 1 if and only if

β2
(

1 + γ
α+ρ1

)
µV ∗N0fγ

> 1.

Using this inequality we calculate

(ad− bc)x+ 2adγ =

[
1 +

µV ∗

β
+
α

ρ2
− µV ∗N0fγα

β2ρ2

]
(α+ ρ1)

+ 2γ

(
1 +

µV ∗

β

)(
1 +

α

ρ2

)
>

[
1 +

µV ∗

β
+
α

ρ2
− α

ρ2

(
1 +

γ

α+ ρ1

)]
(α+ ρ1)

+ 2γ

(
1 +

µV ∗

β
+
α

ρ2
+
µV ∗α

βρ2

)
>

[
1 +

µV ∗

β
− αγ

ρ2(α+ ρ1)

]
(α+ ρ1) +

2αγ

ρ2

=

(
1 +

µV ∗

β

)
(α+ ρ1) +

αγ

ρ2
> 0.

It is proved similarly that S∗ is increasing with respect to ρ2. Indeed, we have

S∗ =
fN2

0

β

[
1 + µV ∗

β + µV ∗αγ
β(α+ρ1+γ)ρ2

fN0

β + 1
γ + 1

α+ρ1
+ α

(α+ρ1)ρ2

]
=
fN2

0

β

[
g + h

ρ2

j + k
ρ2

]
=
fN2

0

β

[
gρ2 + h

jρ2 + k

]
,

where g = 1 + µV ∗

β , h = µV ∗αγ
β(α+ρ1+γ)

, j = fN0

β + 1
γ + 1

α+ρ1
, and k = α

α+ρ1
. Note that

g, h, j, and k are positive. Hence

∂S∗

∂ρ2
=
fN2

0

β

(
gk − hj

(jρ2 + k)2

)
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and it suffices to show that gk − hj > 0. Since R0 > 1 we use the inequality above
again to obtain

gk − hj =

(
1 +

µV ∗

β

)
α

α+ ρ1
− µV ∗αγ

β(α+ ρ1 + γ)

(
fN0

β
+
α+ ρ1 + γ

γ(α+ ρ1)

)
=

α

α+ ρ1
− µV ∗αN0fγ

β2(α+ ρ1 + γ)

=
α

α+ ρ1

1− µV ∗N0fγ

β2
(

1 + γ
α+ρ1

)


> 0.
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