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Abstract

We present a new method of analyzing the dynamics of self-organizing neural networks with different time scales based on the theory
of flow invariance. We prove the existence and the uniqueness of the equilibrium. A strict Lyapunov function for the flow of a
competitive neural system with different time scales is given and based on it we are able to prove the global asymptotic stability of the

equilibrium point.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cortical cognitive maps developed by self-organization
represent an important class of recurrent neural networks.

This paper investigates the dynamical behavior of self-
organizing neural networks, combining both the dynamics
of neural activity, the short-term memory (STM), and the
dynamics of unsupervised synaptic modifications, the long-
term memory (LTM). An anti-Hebbian rule is used for the
modification of the strengths of feedback synapses between
output units while a normal Hebbian rule is used for the
weights of the feedforward synapses from input units to
output units.

Recently, several articles have discussed neural systems
with time-varying weights, mostly employing a supervised
learning law [3,2,5]. In a prior work [4], the authors
analyzed the global asymptotic stability of a competitive
neural network with a combined LTM and STM-
dynamics. However, the LTM dynamics is restricted to
only the Hebbian learning law to adapt the feedforward
synapses. The present work extends the previous neural
model by allowing a more detailed dynamical behavior.
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We compare the newly obtained stability results with those
in [4], and also assess conservatism of these stability
conditions with respect to those in [4].

In the following, we analyze mathematically a self-
organizing neural network with Hebbian and anti-Hebbian
learning rules. The general neural network equations
describing the temporal evolution of the STM and LTM
states for the jth neuron of a N-neuron network are

N N
STM SXj = —anj =+ Cj Z D!-,f(x,-) —+ Bj Z mi,'yl», (1)
i=1 i=1

LTM 1: sitj = —my + yf(x)), @

LTM 2: D; = —Dj — f(x)f (x)), 3)

where X; is the current activity level, a; the time constant of
the neuron, C; the contribution of the lateral stimulus
term, B; the contribution of the external stimulus term,
f(x;) the neuron’s output, y; the external stimulus, and m;
the synaptic efficiency. ¢ is the fast time-scale associated
with the STM state. Dy represents a synaptic connection
parameter between the ith neuron and the jth neuron. We
assume here, that the recurrent neural network consists of
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both feedforward and feedback connections between the
layers and neurons forming complicated dynamics.

2. Equilibrium and global asymptotic stability analysis of
neuro-synaptic systems

In this section, we present a new condition for the
uniqueness and global asymptotic stability for neuro-
synaptic systems which improves the previous stability
results. The existence and uniqueness of the equilibrium is
given based on flow-invariance while the global asymptotic
stability is shown by a strict Lyapunov function.

The theory of flow-invariance gives a qualitative inter-
pretation of the dynamics of a system, taking into account
the invariance of the flow of the system. In other words a
trajectory gets trapped in an invariant set.

Before we state the stability results based on the concept
of flow-invariance, we will first give some useful definitions
used in nonlinear analysis.

2.1. Definitions

Definition 1. Let F: RN — R" be a Lipschitz continuous
map and let S be a subset of RY. We say that S is flow-
invariant with respect to the system of differential equation

xX'(1) = F(x(1)), (S)

if any solution x(¢) starting in S at = 0 remains in S for all
t=0 as long as x(¢z) is defined. In dynamical systems
terminology, such sets are called positively invariant under
the flow generated by (S).

Definition 2. We say that F:RY — RY is a Lipschitz
continuous map, if and only if there is a constant K>0
such that |F(x) — F(y)|<K|x — y| with x,y € RV.

Definition 3. We say that the system (S) is dissipative in R
if there exists a precompact (bounded) set U c R" such
that for any solution x(z) of (S) there exists 7'>0 such that
x(t) € U for all =T [1].In other words, all solutions of (S)
enter this bounded set U in finite time.

If (S) is dissipative then all solutions of (S) are defined
for t>0, and there exists a compact set 4 C U which
attracts all solutions of (S). The set A4 is invariant under the
flow of (S) and it is called the global attractor of (S) in RY.

2.1.1. Results

Theorem 1. Suppose that f'is locally Lipschitz and bounded,
that is, |f(x)| < M. Also suppose that a;>0 and |y;| <1 for all
i=1,...,N. Then all solutions of (1)—(3) are defined for all
t € (—o0,400). Furthermore, the system (1)—(3) is dissipa-
tive in R*.

Proof. Since f'is locally Lipschitz, then so is the vector field
F(x,m,D) of (1)—(3). Therefore, the solutions are defined

locally. We introduce positive constants

Ky =max q;, K;=max|Cj|, K;3=max |B,
jo i J

Ki=M, Ks=M
and observe that

|%;| < Kil|xj] + Ko M|Dy| 4+ K3lmyl,
|| < Kg + |myl,

|D;| <Ks + |Dyl.

It follows that any local solution of (1)—3) can be extended to
a global solution defined for all # € (—oo, +00). Let >0 and

1 &
L =;Z(|Bj|M—|— |G| MP).

J =1
There exist constants 0<6; </ such that
u ajh .
DG+ IBIM <, j=1.....N.

i=1

Consider a solution (x(¢), m(¢), D(¢)) of (1)—(3) with r>=0. If
Wl,‘j(l)S - M — 5j, then

()= — (=M — 6;) — [f (xj(D))lly;|=0;>0.

Similarly, if m;(1)> M + §;, then

1 < — (M +0)) + |[f ()il < — 0, <0.

Therefore, foranyj = 1,..., N, there exists a T /S >0 such that
my(t) € [—(M + 0)), M + 0;] C [-(M + h), M + h]

for all > T]S. A similar argument shows that for any
j=1,..., N, there exists a T};O such that

Dyj(1) € [—(M? + 6;), M* + 5,1 € [—(M* + h), M* + h]

for all r>Tj. Let T%' =max;{T"°,T}} and consider x;(¢)
with 1> T%" If x(t)>L; + h and t=>T*' then

N
(< —a(Li+h) + B > (M +6)

i=1
N
+1G1> (M + ),
i=1
therefore

N
. ajh
X< — Cljh + 5j E (|C]| + |Bj|)< — 17 <0.

i=1
Similarly, if x;(t)< — (L; + h) and t>T"' then
h
()= “’7 0.
Consequently, there exists 77 > T*' such that
xj(0) € [=(L; + 1), Lj + 1]

for all 1>T7}. Let T = max; T}, then

x(0).m(@).D@) e H=[]1; < [[15 <[]
J J J
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for all t>T. Here, I} =[—(L; + h), L; + h], I} =[—(M + h),
M +h], and I} = [— (M2 + h), M> + h]. We conclude that
(1)—(3) is dlss1pat1ve in RN, O

Corollary 1. The system (1)—(3) admits a compact global
attractor A C H.

Corollary 2. Since H is a direct product of intervals, it is a
contractible set. In addition to being contractible, H is
forward invariant under the flow ¢, of (1)-(3), that is,
¢, H— H for any t=0. Using the Brower fixed point
theorem [6] and compactness of H, we conclude that there
exists an equilibrium e € H of (1)—(3).

In the following, we will assume that C; = B; = 1.

Theorem 2. Let e = (x°, m°, D°) be an equilibrium of (1)—(3).
Let k be Lipschitz constant for f and M = maxi{lfi(gbi)|,
(¢, + xON}. If 1>k, 2>M(1 + Mk) and a;>N - (M +
14+3M%*k+k)/2 then e is an asymptotically globally
attracting equilibrium of (1)-(3).

Proof. Let ¢;=x; — X!, y; = my —mY), and &; = Dy — D0
Substituting ¢;, ; and ¢; into (1)-(3), we obtain

N
b= —ai;+ Y Ef (d;+ X))
i=1

N N
- Zf(x?)f(xjo)fz(d);) + Z Vi, 4

i=1 i=1
‘/'/gj = _‘ﬁ/ +fj(¢j)yi’ (5)
&j = =& —F (@ + X (D) (X)), (6)

where f(¢)) =f(xjo + ¢)) —f(xjo)- Let
I~ o, ] s I 2
=329 +§ZZ%+§ZZ%~ )
]:

Differentiating ¥ with respect to the flow of (1)-(3) and
considering the inequality |ab|<i(a® +b%),Va,b € R, we
find that

N N N N N
V=" + ) g+ > &y

J=1 j=1 =1 j=1 =l
N N N N
> ajle;lP - ZZ'W'Z—ZZIQ/IZ
=1 i=l j=1 i=1 j=l1
N/ N ' N N '
303 MG+ D D Wyl
i=1 j=1 =1 j=1
N ]N N jN
+ Y0 Y MG + ZZ Ty

i=1

~.
Il
-

+ M2k|l1E5

M=
-

i=1

ajle;* — Z gw,, Z gm

N N N
+, Z (|5U|2+|¢j|2)+52Z(|wy|2+|¢jlz)

i=1 =1 j=I
N N k N N /
FMAY DI040 D W I8
j= j=1 i=l

N N
M—kz > (P + 1)

M+ 14+3M°k+k\, ,
J 2 |¢/|

~.
Il

ZIMZ

—_—

~.
Il

~.
Il
I
-

€517 <O0. ®)

We conclude that V is a strict Lyapunov function for
(1)-(3) and that the origin is an asymptotically globally
attracting equilibrium of (1)—(3). Therefore, ¢ is an asymp-
totically globally attracting equilibrium of (1)—(3). O

3. Conclusions

In this paper we prove global asymptotic stability of self-
organizing neural networks with Hebbian and anti-Hebbian
learning rules. Based on the flow invariance technique we can
show the conditions that the LTM and STM trajectories are
bounded. We also presented a strict Lyapunov function and
based on it we have shown global asymptotic stability of the
equilibrium point. Besides proving the existence and unique-
ness of the equilibrium, we are presenting milder and more
general conditions than for a simpler neural system based on
a Hebbian adaptation rule for the feedforward synapses.
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