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Abstract

We present a new method of analyzing the dynamics of self-organizing neural networks with different time scales based on the theory

of flow invariance. We prove the existence and the uniqueness of the equilibrium. A strict Lyapunov function for the flow of a

competitive neural system with different time scales is given and based on it we are able to prove the global asymptotic stability of the

equilibrium point.

r 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Cortical cognitive maps developed by self-organization
represent an important class of recurrent neural networks.

This paper investigates the dynamical behavior of self-
organizing neural networks, combining both the dynamics
of neural activity, the short-term memory (STM), and the
dynamics of unsupervised synaptic modifications, the long-
term memory (LTM). An anti-Hebbian rule is used for the
modification of the strengths of feedback synapses between
output units while a normal Hebbian rule is used for the
weights of the feedforward synapses from input units to
output units.

Recently, several articles have discussed neural systems
with time-varying weights, mostly employing a supervised
learning law [3,2,5]. In a prior work [4], the authors
analyzed the global asymptotic stability of a competitive
neural network with a combined LTM and STM-
dynamics. However, the LTM dynamics is restricted to
only the Hebbian learning law to adapt the feedforward
synapses. The present work extends the previous neural
model by allowing a more detailed dynamical behavior.
e front matter r 2006 Elsevier B.V. All rights reserved.
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We compare the newly obtained stability results with those
in [4], and also assess conservatism of these stability
conditions with respect to those in [4].
In the following, we analyze mathematically a self-

organizing neural network with Hebbian and anti-Hebbian
learning rules. The general neural network equations
describing the temporal evolution of the STM and LTM
states for the jth neuron of a N-neuron network are

STM: � _xj ¼ �ajxj þ Cj

XN

i¼1

Dijf ðxiÞ þ Bj

XN

i¼1

mijyi, (1)

LTM 1: _mij ¼ �mij þ yif ðxjÞ, (2)

LTM 2: _Dij ¼ �Dij � f ðxiÞf ðxjÞ, (3)

where xj is the current activity level, aj the time constant of
the neuron, Cj the contribution of the lateral stimulus
term, Bj the contribution of the external stimulus term,
f ðxiÞ the neuron’s output, yi the external stimulus, and mij

the synaptic efficiency. � is the fast time-scale associated
with the STM state. Dij represents a synaptic connection
parameter between the ith neuron and the jth neuron. We
assume here, that the recurrent neural network consists of
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both feedforward and feedback connections between the
layers and neurons forming complicated dynamics.

2. Equilibrium and global asymptotic stability analysis of

neuro-synaptic systems

In this section, we present a new condition for the
uniqueness and global asymptotic stability for neuro-
synaptic systems which improves the previous stability
results. The existence and uniqueness of the equilibrium is
given based on flow-invariance while the global asymptotic
stability is shown by a strict Lyapunov function.

The theory of flow-invariance gives a qualitative inter-
pretation of the dynamics of a system, taking into account
the invariance of the flow of the system. In other words a
trajectory gets trapped in an invariant set.

Before we state the stability results based on the concept
of flow-invariance, we will first give some useful definitions
used in nonlinear analysis.

2.1. Definitions
Definition 1. Let F :RN ! RN be a Lipschitz continuous
map and let S be a subset of RN . We say that S is flow-

invariant with respect to the system of differential equation

x0ðtÞ ¼ F ðxðtÞÞ, (S)

if any solution xðtÞ starting in S at t ¼ 0 remains in S for all
tX0 as long as xðtÞ is defined. In dynamical systems
terminology, such sets are called positively invariant under
the flow generated by (S).

Definition 2. We say that F :RN ! RN is a Lipschitz
continuous map, if and only if there is a constant K40
such that jF ðxÞ � F ðyÞjpK jx� yj with x; y 2 RN .

Definition 3. We say that the system (S) is dissipative in RN

if there exists a precompact (bounded) set U � RN such
that for any solution xðtÞ of (S) there exists TX0 such that
xðtÞ 2 U for all tXT [1].In other words, all solutions of (S)
enter this bounded set U in finite time.

If (S) is dissipative then all solutions of (S) are defined
for tX0, and there exists a compact set A � U which
attracts all solutions of (S). The set A is invariant under the
flow of (S) and it is called the global attractor of (S) in RN .

2.1.1. Results

Theorem 1. Suppose that f is locally Lipschitz and bounded,
that is, jfðxÞjpM. Also suppose that ai40 and jyijp1 for all

i ¼ 1; . . . ;N. Then all solutions of (1)–(3) are defined for all

t 2 ð�1;þ1Þ. Furthermore, the system (1)–(3) is dissipa-

tive in R3N .

Proof. Since f is locally Lipschitz, then so is the vector field
F ðx;m;DÞ of (1)–(3). Therefore, the solutions are defined
locally. We introduce positive constants

K1 ¼ max
j

aj ; K2 ¼ max
j
jCjj; K3 ¼ max

j
jBjj,

K4 ¼M ; K5 ¼M2

and observe that

j _xjjpK1jxjj þ K2MjDijj þ K3jmijj,

j _mijjpK4 þ jmijj,

j _DijjpK5 þ jDijj.

It follows that any local solution of (1)–(3) can be extended to
a global solution defined for all t 2 ð�1;þ1Þ. Let h40 and

Lj ¼
1

aj

XN

i¼1

ðjBjjM þ jCjjM
3Þ.

There exist constants 0odjoh such that

XN

i¼1

djðjCjj þ jBjjMÞo
ajh

2
; j ¼ 1; . . . ;N.

Consider a solution ðxðtÞ;mðtÞ;DðtÞÞ of (1)–(3) with tX0. If
mijðtÞp�M � dj , then

_mijðtÞX� ð�M � djÞ � jf ðxjðtÞÞjjyijXdj40.

Similarly, if mijðtÞXM þ dj, then

_mijp� ðM þ djÞ þ jf ðxjðtÞÞjjyijp� djo0.

Therefore, for any j ¼ 1; . . . ;N, there exists a TS
j X0 such that

mijðtÞ 2 ½�ðM þ djÞ;M þ dj � � ½�ðM þ hÞ;M þ h�

for all tXTS
j . A similar argument shows that for any

j ¼ 1; . . . ;N, there exists a Tt
jX0 such that

DijðtÞ 2 ½�ðM
2 þ djÞ;M

2 þ dj � � ½�ðM
2 þ hÞ;M2 þ h�

for all tXTt
j . Let Ts;t ¼ maxjfT

s;Tt
jg and consider xjðtÞ

with tXTs;t. If xjðtÞXLj þ h and tXTs;t then

_xjðtÞp� ajðLj þ hÞ þ jBjj
XN

i¼1

ðM þ djÞ

þ jCjj
XN

i¼1

ðM3 þ djÞ,

therefore

_xjðtÞp� ajhþ dj

XN

i¼1

ðjCjj þ jBjjÞo�
ajh

2
o0.

Similarly, if xjðtÞp� ðLj þ hÞ and tXTs;t then

_xjðtÞX
ajh

2
40.

Consequently, there exists Tx
j XTs;t such that

xjðtÞ 2 ½�ðLj þ hÞ;Lj þ h�

for all tXTx
j . Let T ¼ maxj Tx

j , then

ðxðtÞ;mðtÞ;DðtÞÞ 2 H ¼
Y

j

Ix
j �

Y
j

I s
j �
Y

j

I t
j
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for all tXT . Here, Ix
j ¼½�ðLj þ hÞ;Lj þ h�, Is

j ¼ ½�ðM þ hÞ;
M þ h�, and Ix

j ¼ ½�ðM
2 þ hÞ;M2 þ h�. We conclude that

(1)–(3) is dissipative in R3N . &

Corollary 1. The system (1)–(3) admits a compact global

attractor A � H.

Corollary 2. Since H is a direct product of intervals, it is a

contractible set. In addition to being contractible, H is

forward invariant under the flow ft of (1)–(3), that is,
ft:H ! H for any tX0. Using the Brower fixed point

theorem [6] and compactness of H, we conclude that there

exists an equilibrium e 2 H of (1)–(3).

In the following, we will assume that Cj ¼ Bj ¼ 1.

Theorem 2. Let e ¼ ðx0;m0;D0Þ be an equilibrium of (1)–(3).
Let k be Lipschitz constant for f and M ¼ maxi jf iðfiÞj;

�
jf ðfi þ x0Þjg. If 14k, 24Mð1þMkÞ and aj4N � ðM þ

1þ 3M2k þ kÞ=2 then e is an asymptotically globally

attracting equilibrium of (1)–(3).

Proof. Let fj¼xj � x0
j , cij ¼ mij �m0

ij , and xij ¼ Dij �D0
ij .

Substituting fj , cij and xij into (1)–(3), we obtain

_fj ¼ � ajfj þ
XN

i¼1

xijf ðfi þ x0
i Þ

�
XN

i¼1

f ðx0
i Þf ðx

0
j Þf iðfiÞ þ

XN

i¼1

cijyi, ð4Þ

_cij ¼ �cj þ f jðfjÞyi, (5)

_xij ¼ �xij � f ðfj þ x0
j Þf iðfiÞf ðx

0
j Þ, (6)

where f jðfjÞ ¼ f ðx0
j þ fjÞ � f ðx0

j Þ. Let

V ¼
1

2

XN

j¼1

f2
j þ

1

2

XN

i¼1

XN

j¼1

c2
ij þ

1

2

XN

i¼1

XN

j¼1

x2ij . (7)

Differentiating V with respect to the flow of (1)–(3) and
considering the inequality jabjp1

2
a2 þ b2
� �

; 8a; b 2 R, we
find that

_V ¼
XN

j¼1

_fjfj þ
XN

j¼1

XN

i¼1

_cijcij þ
XN

j¼1

XN

i¼1

_xijxij

p�
XN

j¼1

ajjfjj
2 �

XN

i¼1

XN

j¼1

jcijj
2 �

XN

i¼1

XN

j¼1

jxijj
2

þ
XN

i¼1

XN

j¼1

Mjfjjjxijj þ
XN

i¼1

XN

j¼1

jcijjjfjj

þ
XN

i¼1

XN

j¼1

M2kjfij
2 þ

XN

i¼1

XN

j¼1

kjcijjjfij
þ
XN

j¼1

XN

i¼1

M2kjfijjxijj

p�
XN

j¼1

ajjfjj
2 �

XN

i¼1

XN

j¼1

jcijj
2 �

XN

i¼1

XN

j¼1

jxijj
2

þ
XN

j¼1

XN

i¼1

M

2
ðjxijj

2 þ jfjj
2Þ þ

1

2

XN

i¼1

XN

j¼1

ðjcijj
2 þ jfjj

2Þ

þM2k
XN

j¼1

XN

i¼1

jfjj
2 þ

k

2

XN

j¼1

XN

i¼1

ðjcijj
2 þ jfjj

2Þ

þ
M2k

2

XN

j¼1

XN

i¼1

ðjxijj
2 þ jfjj

2Þ

p�
XN

j¼1

aj �N
M þ 1þ 3M2k þ k

2

� �
jfjj

2

�
XN

i¼1

XN

j¼1

1� k

2
jc2

ijj

�
XN

j¼1

XN

i¼1

2�M �M2k

2
jxijj

2p0. ð8Þ

We conclude that V is a strict Lyapunov function for
(1)–(3) and that the origin is an asymptotically globally
attracting equilibrium of (1)–(3). Therefore, e is an asymp-
totically globally attracting equilibrium of (1)–(3). &

3. Conclusions

In this paper we prove global asymptotic stability of self-
organizing neural networks with Hebbian and anti-Hebbian
learning rules. Based on the flow invariance technique we can
show the conditions that the LTM and STM trajectories are
bounded. We also presented a strict Lyapunov function and
based on it we have shown global asymptotic stability of the
equilibrium point. Besides proving the existence and unique-
ness of the equilibrium, we are presenting milder and more
general conditions than for a simpler neural system based on
a Hebbian adaptation rule for the feedforward synapses.
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