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Abstract. The model of an unstirred chemostat is generalized to that of a chemostat with
time-dependent input/washout rates. The novelty of the new model is that time periodicity appears
in the boundary conditions. The asymptotic dynamics of the competition between two microbial
populations is determined in terms of the corresponding period map, which is shown to preserve the
standard competitive ordering. It is shown that the dynamics of competition is similar to that of
a chemostat with constant boundary conditions. Simple criteria for coexistence versus competitive
exclusion are presented.
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1. Introduction. The chemostat represents a basic model of an open system in
microbial ecology. In its simplest form, it consists of three vessels. The first, called
the feed bottle, contains medium with all of the nutrients needed for growth in sur-
plus except one, which hereafter is simply called the nutrient. The contents of the
feed bottle are pumped at a constant rate into the second vessel, called the culture
vessel or bioreactor. The culture vessel is charged with one or more populations of
microorganisms. The contents of the culture vessel are pumped into the remaining
vessel, called the overflow vessel, at a constant rate, keeping the volume of the reactor
constant. The organisms compete for the nutrient in a purely exploitative manner.
Basic assumptions include that the vessel is well mixed and that all other parame-
ters (pH, temperature, etc.) are strictly controlled. The flow rate is assumed to be
sufficient to preclude wall growth or the accumulation of metabolic products.

Let S(t) denote the concentration of the nutrient in the culture vessel and xi(t),
i = 1, 2, denote the concentration of the competitors. Let S0 denote the concentration
of the input nutrient and let D denote the dilution rate (flow rate/volume). If growth
is assumed to be proportional to consumption then the basic equations take the form

S′ = (S0 − S)D − x1

γ1
f1(S)− x2

γ2
f2(S),

x′1 = x1(f1(S)−D),

x′2 = x2(f2(S)−D).

The parameters γi, i = 1, 2, are yield constants. A typical choice for the fi’s is
fi(S) = miS

ai+S
.

This model is the starting point for many models of open systems. The litera-
ture spans biology, mathematics, chemical engineering, and physiology. Several such
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models and a large number of references can be found in [21]. A general survey of
microbial competition can be found in [4].

The use of the unstirred chemostat removes the well-mixed hypothesis from the
model. This model lets the contents diffuse through the culture vessel. This model has
been developed in a sequence of papers [10, 12, 22, 24]. One space variable is sufficient
to capture the basic consequences of spatial dependence (although multidimensional
models were considered in [22]). The model corresponding to the basic chemostat on
[0, 1] takes the form

St = dSxx − f1(S)
u

γ1
− f2(S)

v

γ2
, 0 < x < 1 ,

ut = duxx + f1(S)u, 0 < x < 1 ,

vt = dvxx + f2(S)v, 0 < x < 1 .

It is convenient to rescale u to u
γ1

and v to v
γ2

in order to reduce the number of
parameters. This makes these variables nondimensional. One could also scale S to be
nondimensional (say, by dividing by the maximum of the input concentration), but
this doesn’t alter the number of parameters so we will not do it. The scaled system
takes the form

St = dSxx − f1(S)u− f2(S)v, 0 < x < 1 ,

ut = duxx + f1(S)u, 0 < x < 1 ,

vt = dvxx + f2(S)v, 0 < x < 1 .

The boundary conditions at the left endpoint x = 0 can be written as

Sx(t, 0) = −S0,

ux(t, 0) = 0 , vx(t, 0) = 0.

The boundary conditions at x = 1 take the form

Sx(t, 1) + rS(t, 1) = 0,

ux(t, 1) + ru(t, 1) = 0,

vx(t, 1) + rv(t, 1) = 0.

The initial conditions for this system of partial differential equations are formu-
lated as

S(0, x) = S0(x) , u(0, x) = u0(x) , v(0, x) = v0(x)

with 0 ≤ x ≤ 1, where all three functions S0, u0, and v0 are nonnegative. See [21,
Chapter 10] or any of the papers cited above for details.

One of the modifications of the basic well-mixed chemostat was to introduce
periodic time dependence in the nutrient concentration and/or the flow rate to account
for seasonal or daily changes. The theory was developed in a sequence of papers [2, 6, 9,
19, 25]. This paper makes the corresponding modification for the spatially dependent
chemostat described above by replacing the constant nutrient input concentration and
the flow rate by time-dependent functions.
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2. The model. The equations remain the same as those above, but changes
occur in the boundary conditions where the nutrient may be brought into the vessel
at a periodic rate and the pump may operate so as to provide a periodic removal rate.
The model takes the form

St = dSxx − f1(S)u− f2(S)v, 0 < x < 1,

ut = duxx + f1(S)u, 0 < x < 1,(2.1)

vt = dvxx + f2(S)v, 0 < x < 1,

Sx(t, 0) = −S0(t),

ux(t, 0) = 0, vx(t, 0) = 0,

Sx(t, 1) + r(t)S(t, 1) = 0,(2.2)

ux(t, 1) + r(t)u(t, 1) = 0,

vx(t, 1) + r(t)v(t, 1) = 0,

with, of course, corresponding nonnegative initial conditions

S(0, x) = S0(x), u(0, x) = u0(x), v(0, x) = v0(x).(2.3)

There is no need to restrict the analysis to the Monod model for the functions
fi(S). fi(S), i = 1,2, are assumed to be C1 with f ′i(S) > 0, fi(0) = 0, and with a
finite limit as S →∞. The functions S0(t) and r(t) are assumed to be C1, ω-periodic,
and positive on [0, ω]. Although the restriction that S0(t) and r(t) have a common
period is strong, it does allow either one to be constant. If r(t) is constant and S0(t)
is periodic, the problem can be handled in a much simpler fashion than the analysis
presented here. Thus the main emphasis is on r(t) being periodic.

The assumption of strict positivity for S0(t) and r(t) is rather technical, and we
will use it to construct a certain pair of strict sub- and supersolutions in Lemma 3.2
needed for further analysis.

The approach to the problem will be through the period map and the theory of
monotone dynamical systems. The novelty of the equations is that the periodicity
appears in the boundary conditions. The equations will be manipulated to achieve
a “limiting” system of two equations. The period mapping for the resulting system
will generate a semidynamical system on the product of two Banach spaces with a
competitive order. This is exactly the problem that has been considered in abstract
form in [8] and [11]. Once it has been established that the period mapping is well
defined (a problem is that the domain changes with time), then the machinery of the
general case applies.

3. Reduction to a simpler system. In this section, it will be shown that
the analysis requires the study of the dynamics of a related system with only two
equations. To begin the study, we investigate the dynamics of the following problem:

φt = dφxx,(3.1)

φx(t, 0) = −S0(t) and φx(t, 1) + r(t)φ(t, 1) = 0.(3.2)
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It will be shown that there exists an ω-periodic positive solution of (3.1)–(3.2) which
attracts every other positive solution at an exponential rate. To show the existence
of such a solution, a theorem of Hess [7] is used which requires the existence of sub-
and supersolutions.

Remark 3.1. For all A, d > 0 there exists a function f : [0,+∞)→ R+ such that
for all t ∈ [0,+∞):

0 < f(t) ≤ A and 0 < f ′(t) ≤ 2df(t) .

Proof. Consider y(t) = At
t+1 ; then 0 < y(t) ≤ A and 0 < y′(t) for all t ∈ [0,+∞).

Moreover, if t ≥ 1, y(t) ≥ A
2 . In addition, when t ≥ 1/

√
d − 1, y′(t) ≤ dA. So, if

t0 = max(1, 1/
√
d − 1), then for t ≥ t0 : y′(t) ≤ 2dy(t). Define f(t) = y(t + t0) for

t ∈ [0,+∞).
Lemma 3.2. There exists a positive stable ω-periodic solution of (3.1)–(3.2), and

all positive solutions converge to it.
Proof. The existence of a positive stable periodic solution will follow from [7,

Theorem 22.3] if there exists a properly ordered pair of positive strict sub- and super-
solutions for (3.1)–(3.2). Let S = inf [0,ω] S

0(t), S = sup[0,ω] S
0(t), r = inf [0,ω] r(t),

and r = sup[0,ω] r(t). Also define S∗ = 1
2S, S∗ = 2S, and similarly r∗ = 1

2r, r
∗ = 2r.

By construction, all four constants are strictly positive, so that 0 < 4S∗ ≤ S∗, and
0 < 4r∗ ≤ r∗. Finally, let 0 < A = S∗

4+r∗ .
By Remark 3.1 there exists a strictly increasing positive function f(t), such that

0 < f(t) ≤ A and 0 < f ′(t) ≤ 2 d f(t) for t ≥ 0.
We begin by constructing a strict subsolution. Define φ as

φ(t, x) = f(t)

(
1

2
− x
)2

+ S∗

(
1 + r∗

r∗
− x
)
, x ∈ [0, 1], t ≥ 0.

By construction, φ satisfies the following inequalities:

(i) φ
t

= f ′(t)( 1
2 − x)2 ≤ 1

4f
′(t) ≤ 2df(t) = dφ

xx
, x ∈ (0, 1), t ≥ 0;

(ii) φ
x
(t, 0) = −f(t)− S∗ ≥ − 5

4S∗ ≥ −S ≥ −S0(t), t ≥ 0;

(iii) φ
x
(t, 1) + r(t)φ(t, 1) ≤ f(t)−S∗+ r( f(t)

4 + S∗
r∗ ) ≤ f(t)(1 + r∗

4 )− S∗
2 ≤ −S∗4 ≤

0, t ≥ 0.
It is also clear that since f(t) is a strictly increasing function of t, so is φ. Therefore,
φ is a strict subsolution of (3.1)–(3.2).

Similarly, we construct a strict supersolution. Define φ as

φ(t, x) = −f(t)

(
1

2
− x
)2

+ S∗
(

1 + r∗
r∗

− x
)
, x ∈ [0, 1], t ≥ 0.

Then by construction, φ satisfies the following inequalities:
(ia) φt = −f ′(t)( 1

2 − x)2 ≥ − 1
4f
′(t) ≥ −2df(t) = dφ

xx
, x ∈ (0, 1), t ≥ 0;

(iia) φx(t, 0) = f(t)− S∗ ≤ 1
4S∗ − S∗ ≤ −S ≤ −S0(t), t ≥ 0;

(iiia) φx(t, 1) + r(t)φ(t, 1) ≥ −f(t)− S∗ + r(− f(t)
4 + S∗

r∗
) ≥ −f(t)(1 + r∗

4 ) + S∗ ≥
3
4S
∗ ≥ 0.

Since φ is a strictly decreasing function of t, it is a strict supersolution of (3.1)–(3.2).
The pair of functions φ and φ is ordered because

φ− φ =− 2f(t)

(
1

2
− x
)2

+ S∗
(

1 + r∗
r∗

− x
)
− S∗

(
1 + r∗

r∗
− x
)
, x ∈ [0, 1], t ≥ 0,
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φ− φ =− 1

2
f(t) +

S∗

r∗
− S∗
r∗

+ (S∗ − S∗)(1− x)

≥− 1

2
f(t) +

S∗

r∗
− S∗
r∗
≥ S∗
r∗

> 0

for x ∈ [0, 1], t ≥ 0, and since φ ≥ S∗/r∗ > 0, the functions φ and φ form an ordered
pair of positive strict sub- and supersolutions of (3.1)–(3.2).

Thus, there exists a positive stable ω-periodic solution φ(t, x) of (3.1)–(3.2). The
convergence result will follow from Lemma 3.3 below.

Let w(t, x) = φ(t, x) − (S(t, x) + u(t, x) + v(t, x)), so that S(t, x) = φ(t, x) −
w(t, x) − u(t, x) − v(t, x). Adding the equations, initial conditions, and boundary
conditions in (2.1)–(2.3), we can rewrite the system in terms of w, u, and v:

wt = dwxx,

ut = duxx + uf1(φ− w − u− v),(3.3)

vt = dvxx + vf2(φ− w − u− v),

with the boundary conditions

wx(t, 0) = 0, wx(t, 1) + r(t)w(t, 1) = 0,

ux(t, 0) = 0, ux(t, 1) + r(t)u(t, 1) = 0,(3.4)

vx(t, 0) = 0, vx(t, 1) + r(t)v(t, 1) = 0,

and the initial conditions

w(0, x) = φ(0, x)− (S0(x) + u0(x) + v0(x)),

u(x, 0) = u0(x),(3.5)

v(x, 0) = v0(x).

The advantage of writing the system in this form is that the first equation is un-
coupled from the other two, and its asymptotic behavior can be studied independently.
The uncoupled problem is

wt = dwxx,(3.6)

wx(t, 0) = 0, wx(t, 1) + r(t)w(t, 1) = 0.

Moreover, the difference between the periodic solution whose existence was shown
in Lemma 3.2 and any other solution of (3.1)–(3.2) also satisfies (3.6).

The system (3.3)–(3.5) is equivalent to the original system (2.1)–(2.3) by means
of the inverse transformation S(t, x) = φ(t, x)− w(t, x)− u(t, x)− v(t, x). Therefore,
any conclusion about the asymptotic dynamics of (3.3)–(3.5) can be immediately
translated to the system written in the original coordinates, that is, the system (2.1)–
(2.3).

The following lemma represents an important step in reducing the original system
(2.1)–(2.3) to a monotone system and concludes the proof of Lemma 3.2.

Lemma 3.3. For any nonnegative solution w(t, x) of (3.6) there exists α > 0,
such that |w(t, x)| = O(e−αt) as t→∞.
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Proof. The proof will be by the standard comparison technique for parabolic
equations; see, for example, [23, Theorem 10.1]. The theorem applies to two non-
negative functions w1 and w2, such that w1(0, x) = w2(0, x),

(wi)t = d(wi)xx, i = 1, 2,

and

(w1)x(t, 0) ≤ (w2)x(t, 0),

w1(t, 1) + r(t)(w1)x(t, 1) ≥ w2(t, 1) + r(t)(w2)x(t, 1)

for t ≥ 0. It concludes that w1(t, x) ≥ w2(t, x) for t ≥ 0 and x ∈ [0, 1].

In this setting, let w1 = ŵ and w2 = w, where ŵ solves

ŵt = dŵxx,

ŵx(t, 0) = ŵx(t, 1) + rŵ(t, 1) = 0,

and where r = inf [0,ω] r(t). Then, since

ŵx(t, 1) + r(t)ŵ(t, 1) ≥ ŵx(t, 1) + rŵ(t, 1) = 0 = wx(t, 1) + r(t)w(t, 1),

it follows that ŵ(t, x) ≥ w(t, x) for t ≥ 0 and x ∈ [0, 1].

It has been shown in [12] that there exists α > 0, such that

|ŵ(t, x)| = O(e−αt) as t→ +∞,

and this holds for any solution of (3.6) with a nonnegative initial condition. Therefore,

|w(t, x)| ≤ |ŵ(t, x)| = O(e−αt) as t→ +∞.

Thus any solution w(t, x) tends to the zero function at an exponential rate.

This has a biologically important interpretation. The distribution of the total
biomass S + u + v approaches some periodic distribution φ independently of the
initial conditions. In terms of the system (3.3)–(3.5) this means that the set w = 0 is
an invariant set which attracts the solutions at an exponential rate. Therefore, it is
necessary to first study the behavior of solutions of (3.3)–(3.5) on this exponentially
attracting set.

Setting w(t, x) = 0, or equivalently, S(t, x)+u(t, x)+v(t, x) = φ(t, x) reduces the
full system to the following periodic-parabolic system:

ut = duxx + uf1(φ− u− v),

vt = dvxx + vf2(φ− u− v),

together with corresponding boundary conditions, and initial conditions inherited
from (3.3)–(3.5). This system is called the limiting system, and since S must be a
nonnegative quantity, the biologically relevant region for the limiting system is the
set {u ≥ 0, v ≥ 0, S = φ− u− v ≥ 0}.
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4. The limiting system. In this section we set up the period map for the
limiting system obtained at the end of the last section:

ut = duxx + uf1(φ− u− v),(4.1)

vt = dvxx + vf2(φ− u− v),

with the boundary conditions

ux(t, 0) = vx(t, 0) = 0,

ux(t, 1) + r(t)u(t, 1) = vx(t, 1) + r(t)v(t, 1) = 0,(4.2)

where φ(t, x) is a smooth, positive, and ω-periodic function.
In this and the following sections we need some standard notions of order. Let Xi

be ordered Banach spaces with positive conesX+
i for i = 1, 2. Assume that IntX+

i 6= ∅.
If xi, yi ∈ Xi, we say that xi ≤ yi (xi is less than or equal to yi) if yi − xi ∈ X+

i ,
xi < yi (xi is strictly less than yi) if xi ≤ yi and xi 6= yi, and xi << yi (xi is strongly
less than yi) if yi − xi ∈ IntX+

i .
Let X be an ordered Banach space with order ≤. Given two points a, b ∈ X, the

closed order interval [a, b] and the open order interval (a, b) are defined as follows:

[a, b] = {c ∈ X|a ≤ c ≤ b}, (a, b) = {c ∈ X|a << c << b}.

On the space X = X1 × X2, define the competitive ordering as the ordering
generated by the cone K = X+

1 ×(−X+
2 ). In particular, if x1, x2 ∈ X1 and y1, y2 ∈ X2,

we say that

(x1, y1) ≤K (x2, y2) if x1 ≤ x2, y1 ≥ y2,

(x1, y1) <K (x2, y2) if (x1, y1) ≤K (x2, y2), (x1, y1) 6= (x2, y2),

and

(x1, y1) <<K (x2, y2) if x1 << x2, y1 >> y2.

An example of such an ordering is the Banach space X = C0(I)×C0(I) of pairs
of continuous functions defined over the common interval I. The order cone C+ in
C0(I) is the cone of nonnegative functions on I, defining the natural order on the
space of continuous functions. The corresponding competitive order cone K in the
product space is defined as K = C+ × (−C+) = C+ × C−. It is evident that K has
a nonempty interior in X, so all three order relationships are well defined.

A mapping T : X → X is called K-monotone (K-order preserving) if

x1 ≤K x2 implies T (x1) ≤K T (x2) for all x1, x2 ∈ X.

T is called strictly K-monotone (strictly K-order preserving) if

x1 <K x2 implies T (x1) <K T (x2)

and strongly K-monotone (strongly K-order preserving) if

x1 <K x2 implies T (x1) <<K T (x2).
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It will always be clear from the context which ordering is used in each particular
situation, or for each particular space. We will omit the K-subscript when speaking
of either an ordering of real numbers or the natural ordering in C0.

Theorem 4.1. Consider the system (4.1)–(4.2). Let

Ω = {(u, v) ∈ C+ × C+ : u(x) ≥ 0, v(x) ≥ 0, u(x) + v(x) ≤ φ(x, 0)

for all x ∈ [0, 1]}.

For every pair (u0, v0) ∈ Ω, there exists a unique nonnegative solution (u, v) of (4.1)–
(4.2) which exists at least for 0 ≤ t ≤ ω. (u(t), v(t)) becomes a classical solution for
t > 0. Moreover, u(t, x) + v(t, x) ≤ φ(t, x) for any 0 ≤ t ≤ ω and x ∈ [0, 1]. In
particular, the period map

P (u0, v0) = (u(ω), v(ω))

maps Ω into Ω and is Fréchet differentiable, compact, strictly K-order preserving in
Ω, and strongly K-order preserving in Int Ω.

The first lemma is necessary in the proof of existence and to set up the dynamics.
It is a special case of results in [17] and [26], formulated for our purposes. (See also
[14] and [16].) We provide some of the details to guide the reader.

Lemma 4.2. Consider the time-dependent differential operator A(t):

A(t)u = duxx + a(t, x)ux + b(t, x)u, t > 0, x ∈ (0, 1),(4.3)

where the functions a(t, x) and b(t, x) are continuously differentiable in both t and x
and ω-periodic in t. If the domain of A(t) is time independent,

D = D(A(t)) = {u ∈ C2([0, 1],R) : ux(t, 0) = ux(t, 1) = 0},
then for each t ≥ 0, A(t) is closed in C and generates an analytic semigroup Ut(s) on
C. Moreover, there exists a unique evolution operator U(t, s) associated with (4.3),
such that

(1) ‖U(t, s)‖ ≤ K for 0 ≤ s ≤ t ≤ ω.
(2) For 0 ≤ s < t ≤ ω, U(t, s) : C → D, U(t, s) is Fréchet differentiable in C,

and

∂

∂t
U(t, s) = A(t)U(t, s), 0 ≤ s < t ≤ ω.

(3) For every u ∈ C, u(x) ≥ 0, and u(x) 6≡ 0 on [0, 1], U(t, s)u(x) > 0 for
x ∈ [0, 1] and 0 ≤ s < t ≤ ω.

Proof. The operator A(t) is uniformly strongly elliptic for t ∈ [0, ω], since its
principal part is a time-independent one-dimensional Laplace operator. In addition,
the domain [0, 1] has a two-point boundary which can be thought of as infinitely
regular of class C∞. Also, since the domain [0, 1] is compact (and thus bounded), the
completion of D in the C-norm is the space C[0, 1].

Theorem 2 of [26] states that for every t ∈ [0, ω], the operator A(t) generates an
analytic semigroup in the space C[0, 1] with the corresponding supremum norm. We
denote this semigroup by Ut(s), s ≥ 0, 0 ≤ t ≤ ω.

Let

r = sup
(t,x)∈[0,ω]×[0,1]

|b(t, x)|,



THE PERIODIC UNSTIRRED CHEMOSTAT 1165

and let

Bk(t)u = duxx + a(t, x)ux + (k + b(t, x))u, t > 0, x ∈ (0, 1),

or, Bk(t) = A(t) + kI. If k > r, then the coefficient (k+ b(t, x)) is strictly positive on
[0, ω]× [0, 1].

If Bk(t) generates an evolution system U(t, s) with properties (1)–(3), then A(t)
generates the corresponding evolution system U(t, s) = e−k(t−s)U(t, s) with the same
properties, and vice versa. Indeed, for 0 ≤ s ≤ t ≤ ω,

‖U(t, s)‖ ≤ ‖e−k(t−s)U(t, s)‖ ≤ ekω‖U(t, s)‖,
and if U(t, s) is Fréchet differentiable in C, then so is U(t, s), and

∂

∂t
U(t, s)−A(t)U(t, s) = e−k(t−s) ∂

∂t
U(t, s)− ke−k(t−s)U(t, s)

− (Bk(t)− kI)e−k(t−s)U(t, s) = e−k(t−s)
(
∂

∂t
U(t, s)−Bk(t)U(t, s)

)
= 0

because Bk(t) generates U(t, s). The third property is satisfied automatically because
U equals U multiplied by a strictly positive function. Therefore, it suffices to show
that Bk(t) generates U(t, s) with the required properties (1)–(3).

Observe that the domain of A(t) is time independent. Since A(t) is uniformly
strongly elliptic for t ∈ [0, ω], one can repeat the steps in the proof of Lemma 6.1 of
Pazy [17, p. 227] to show that there exists a sufficiently large constant k > r, such
that the family of operators {Bk(t) = A(t) + kI, t ∈ [0, ω]} satisfies the following two
conditions. First, the resolvent R(λ : Bk(t)) exists for all < λ ≤ 0, and there exists a
constant M > 0, such that

‖R(λ : Bk(t))‖ ≤ M

|λ|+ 1

for all < λ ≤ 0 and t ∈ [0, ω]. Second, there exists a constant L > 0, such that

‖(Bk(t)−Bk(s))Bk(τ)−1‖ ≤ L|t− s|
for s, t, τ ∈ [0, ω]. Consequently, Theorem 6.1 of Pazy [17, p. 150] states that there
exists a unique evolution system U(t, s) with the required properties (1)–(2) for the
family of operators {Bk(t)}.

The third property of U(t, s) follows from the standard maximum principle for
parabolic equations [7, Lemma 13.4]. Indeed, if u(x) ≥ 0 and u(x) 6≡ 0, then for
0 < t ≤ ω the function u(t, x) = U(t, 0)u0(x) is the classical solution of

ut = Bk(t)u = duxx + a(t, x)ux + (k + b(t, x))u, t > 0, x ∈ (0, 1),

with the nonnegative initial condition u0 which is not identically zero. Consequently,
u(t, x) is strictly positive because k + b(t, x) > 0 by our choice of k. Thus, U(t, s)
satisfies the property (3), and so does U(t, s).

The next lemma establishes the existence results necessary to define the period
map on C[0, 1]× C[0, 1].

Lemma 4.3. For each set of initial conditions (u0, v0) there exists a unique solution
(u, v) of (4.1)–(4.2). If the initial condition consists of smooth functions satisfying the



1166 SERGEI S. PILYUGIN AND PAUL WALTMAN

boundary conditions, then (u, v) is a classical solution of (4.1)–(4.2) for t ≥ 0. If
the initial condition consists of only continuous functions, (u, v) becomes classical for
t > 0. All solutions exist at least for t ∈ [0, ω].

Proof. Consider the following change of variables:

u(t, x) = eg(t,x)û(t, x),

v(t, x) = eg(t,x)v̂(t, x),

where g(t, x) = −x2

2 r(t). It will be used to move between the problem with periodic
boundary conditions and the form with Neumann conditions at the expense of a
time-dependent operator.

After some computation the system takes the form

ût = A(t)û+ egûf1(φ− egû− eg v̂),(4.4)

v̂t = A(t)v̂ + eg v̂f2(φ− egû− eg v̂),

where

A(t)w = dwxx − 2dxr(t)wx +

(
x2r2(t)− dr(t)− x2

2
r′(t)

)
w,

and the boundary conditions are zero Neumann conditions.
The operator A(t) is of the type considered in Lemma 4.2 and generates a smooth

evolution system UA(t, s) on C[0, 1]. Let U(t, s) = (UA(t, s), UA(t, s)), ŵ = (û, v̂), and

F (t, ŵ) =
(
egûf1(φ− egû− eg v̂), eg v̂f2(φ− egû− eg v̂)

)
.

It is clear that F (t, ŵ) is a smooth map F : R × (C[0, 1])2 → (C[0, 1])2, which
is ω-periodic in time. Given an initial condition ŵ0 ∈ (C[0, 1])2, the mild solution of
(4.4) is defined to be a continuous vector function ŵ(t), such that

ŵ(t) = U(t, 0)ŵ0 +

∫ t

0

U(t, s)F (s, ŵ(s)) ds, s ∈ [0, ω + σ),(4.5)

for some σ > 0. It is known (see, for instance, [17, Theorem 1.2, p. 184]) that this
integral equation has a unique solution. Moreover, for t > 0, ŵ(t) is a smooth vector
function, and thus a classical solution of (4.4). In addition, if ŵ0 is smooth, then
ŵ(t) is a classical solution for t ≥ 0. The existence of solutions is guaranteed for
all t up to t = ω. Finally, by making the inverse change of variables, the vector
function w = (u, v) = (egû, eg v̂) becomes the solution of (4.1)–(4.2) with the required
properties.

Proof of Theorem 4.1. For any pair of nonnegative functions w0 = (u0, v0), let
ŵ0 = (û0(x), v̂0(x)) = (e−g(0,x)u0(x), e−g(0,x)v0(x)), and let ŵ(t, x) be the solution of
(4.4) satisfying the initial condition ŵ(0, x) = (û0(x), v̂0(x)), x ∈ [0, 1]. Then w(t, x) =
(egû, eg v̂) solves (4.1)–(4.2) with the corresponding initial condition w0(x).

It follows from Lemma 4.2, property (3), that if u0(x), v0(x) ≥ 0, then both
coordinates of U(t, s)w0 are nonnegative for 0 ≤ s ≤ t ≤ ω. If, in addition, u0 6≡ 0
and v0 6≡ 0, then the coordinates of U(t, s)w0 are strictly positive for 0 ≤ s < t ≤ ω.
If, moreover, u(t, x) + v(t, x) ≤ φ(t, x) for all 0 ≤ t ≤ ω, then both nonlinearities f1

and f2 are nonnegative, and so are the solutions of the nonlinear system.
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To complete the proof, it remains only to show that an arbitrary nonnegative
solution of (4.1)–(4.2) such that u(0, x) + v(0, x) ≤ φ(0, x) satisfies u(t, x) + v(t, x) ≤
φ(t, x) for all 0 ≤ t ≤ ω and x ∈ [0, 1].

Let f(p) = max(f1(p), f2(p)) for 0 ≤ p ≤ ∞ be the upper envelope of f1 and f2.
It is clear that f is strictly monotone because both f1 and f2 are strictly monotone.
Given a solution (u(t, x), v(t, x)) of (4.1)–(4.2) with u(0, x) + v(0, x) ≤ φ(0, x), let
z(t, x) = u(t, x) + v(t, x). In the region 0 ≤ z ≤ φ, z satisfies the following inequality:

zt = dzxx + uf1(φ− z) + vf2(φ− z) ≤ dzxx + zf(φ− z),
and the corresponding boundary conditions zx(t, 0) = zx(t, 1) + r(t)z(t, 1) = 0.

Let F (p) = Mf(φ − p) for 0 ≤ p ≤ φ, where M = maxx,t φ(t, x), x ∈ [0, 1], t ∈
[0, ω]. Then obviously pfi(φ− p) ≤ F (p) for p ≤ φ and i = 1, 2. Therefore,

zt ≤ dzxx + F (z) = dzxx +Mf(φ− z).
Let z̃ be the solution of

z̃t = dz̃xx + F (z̃),(4.6)

with the boundary conditions

z̃x(t, 0) = −S0(t), z̃x(t, 1) + r(t)z̃(t, 1) = 0(4.7)

and the initial condition z̃(0, x) = z(0, x), x ∈ [0, 1]. Equation (4.6) is monotone in
z̃ because F (z̃) is a strictly decreasing function of z̃. In addition, the function φ(t, x)
is itself a solution of (4.6). Since z̃ and φ are ordered at t = 0, that is, z̃(0, x) =
u(0, x) + v(0, x) ≤ φ(0, x), then z̃(t, x) ≤ φ(t, x) for 0 ≤ t ≤ ω.

Finally, since for 0 ≤ t ≤ ω,

zt − dzxx − zf(φ− z) ≤ 0 = z̃t − dz̃xx − z̃f(φ− z̃),
zx(t, 0) = 0 ≥ −S0(t) = z̃x(t, 0),

zx(t, 1) + r(t)z(t, 1) = z̃x(t, 1) + r(t)z̃x(t, 1) = 0,

and

z(0, x) = u(0, x) + v(0, x) = z̃(0, x),

we can use the comparison principle to conclude that z(t, x) ≤ z̃(t, x) for 0 ≤ t ≤ ω
and, consequently, that u(t, x) + v(t, x) = z(t, x) ≤ φ(t, x) for 0 ≤ t ≤ ω.

In particular, we apply this inequality at t = ω to show that Ω is positively in-
variant with respect to the period map P associated with (4.1)–(4.2). P is Fréchet
differentiable and compact on Ω because the nonlinearity F is smooth, and the evo-
lution system U is compact and smooth.

It is easy to see that if u(t, x) + v(t, x) ≤ φ(t, x), then the partial derivatives
(uf1(φ−u− v)v and (vf2(φ−u− v))u are nonpositive. Since the evolution system U
is strictly positive (the property (3) in Lemma 4.2), the period map P is strictly K-
order preserving in Ω. Moreover, since in Int Ω the corresponding partial derivatives
are strictly negative, P is strongly K-order preserving in Int Ω.

We intend to describe the dynamics of the limiting system (4.1)–(4.2) in terms of
its period map. Theorem 4.1 guarantees that the period map

P : Ω→ Ω, Ω = {(u, v) ∈ C+[0, 1]× C+[0, 1], u(x) + v(x) ≤ φ(0, x), x ∈ [0, 1]},
is well defined and enjoys the following properties:
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(P1) P is Fréchet differentiable and compact in C0 topology.
(P2) P is strictly K-order preserving on Ω, and strongly K-order preserving in

the interior Int Ω of Ω. K is the cone C+ ×C− in the product Banach space
C × C.

(P3) The following sets are positively invariant under P : Ω
⋂

(0 × C+[0, 1]) and
Ω
⋂

(C+[0, 1] × 0). Indeed, since the solutions are unique, then u0(x) ≡ 0
implies u(t, x) = 0 for all t ≥ 0. The case v0(x) ≡ 0 is similar.

(P4) Let Pu be the restriction of P on Ω
⋂

(C+[0, 1]×0), and let Pv be the restriction
of P on Ω

⋂
(0×C+[0, 1]). Both Pu and Pv are strictly monotone in the usual

sense of continuous functions; that is, if 0 ≤ u1 < u2 then 0 ≤ Pu(u1) <
Pu(u2), and similarly if 0 ≤ v1 < v2, then 0 ≤ Pv(v1) < Pv(v2).

5. Periodic solutions of the limiting system. The next step is to put the
limiting system of the previous section into the form of the general competition theory
[11, 8] in order to make use of the general machinery. The sets u ≡ 0 or v ≡ 0 are
clearly invariant sets for the system (4.1)–(4.2) and correspond to single population
growth. We need some elementary facts about the solution in these sets. If we set
u ≡ 0, then the system (4.1)–(4.2) reduces to

vt = dvxx + f2(φ− v)v,(5.1)

vx(t, 0) = vx(t, 1) + r(t)v(t, 1) = 0,

v(0, x) = v0(x) ≥ 0.

The linearized equation about the zero solution of (5.1) becomes

wt = dwxx + f2(φ(t, x))w , w(0, x) = w0(x).(5.2)

Let Tv = Wv(ω, 0), where Wv(t, τ) is the evolution operator associated with (5.2).
Since the boundary of C+ × C+ is positively invariant under P , we can, without loss
of generality, consider the restriction Pv of P to study the evolution of the population
v alone. It is evident that Pv is differentiable at v = 0, and P ′v(0) = Tv.

Note that setting v ≡ 0 and considering the corresponding single population
equation for u yields a similar linearized equation where f1 is replaced with f2, so
that P ′u(0) = Tu.

Lemma 5.1.

(a) If the principal eigenvalue λ of Tv satisfies λ > 1, then the zero solution of
(5.1) is linearly unstable, and there exists a unique positive periodic solution
V = V (t, x) of (5.1) which attracts all positive solutions of (5.1).

(b) If λ < 1, then the solution v(t) ≡ 0 is linearly stable (moreover, order stable)
and attracts all positive solutions of (5.1).

Proof. Obviously, if λ > 1, v(t) ≡ 0 is linearly unstable. Since the period map
Pv is strictly monotone, the principal eigenfunction must be positive by the Krein–
Rutman theorem [13]. Let ψ be this principal eigenfunction; then

Pv(αψ) = λαψ + o(α) >> αψ

for sufficiently small α, that is, α ∈ (0, ε). Define {vk} as vk = P kv (αψ), k = 0, 1, 2, . . . ,
for some α ∈ (0, ε). In view of the preceding inequality this is a monotone increasing
sequence {vk, k ∈ 0, 1, 2, . . .} such that v0 >> 0 and Pv(vk−1) = vk >> vk−1. This
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sequence converges to a positive function v∞ since the sequence vk is bounded from
above by the positive function

φ(x) = sup
t∈[0,ω]

φ(t, x).

The continuity of Pv implies that v∞ is a fixed point of Pv: Pv(v∞) = v∞. Therefore,
the corresponding solution V (t, x) with the initial condition V (0, x) = v∞(x) is a
periodic solution of (5.1), and the vector function (0, V (t, x)) is a periodic solution of
(4.1)–(4.2).

The uniqueness of V (t, x) > 0 is equivalent to the uniqueness of a positive fixed
point of Pv. Therefore, it suffices to show that v∞ > 0 is the only fixed point of Pv.

We know that Pv(0) = 0, and Pv is strictly monotone away from zero. Moreover,
Pv is strongly sublinear in the following sense: if v > 0 and η ∈ (0, 1), then Pv(ηv) >>
ηPv(v) (see Smith [18] or Hess [7] for further references).

To see this, let v > 0 and η ∈ (0, 1). We use the equivalent integral equation

Pv(v) = U(ω, 0)v(0) +

∫ ω

0

U(ω, s)v(s)f2(φ− v(s)) ds,

where U(t, s) is the evolution system associated with the linear part of (5.1). The
existence of U(t, s) is guaranteed by Lemma 4.2. Now, since f2(φ − v) is strictly
decreasing in v for any strictly increasing function f2, then, since ηv < v for 0 < v ≤ φ,

f2(φ− ηv) > f2(φ− v) for all η ∈ (0, 1).

Using the linearity of U , one has

Pv(ηv) = U(ω, 0)ηv +

∫ ω

0

U(ω, s)ηv(s)f2(φ− ηv(s)) ds

> U(ω, 0)ηv +

∫ ω

0

U(ω, s)ηv(s)f2(φ− v(s)) ds

= η
(
U(ω, 0)v +

∫ ω

0

U(ω, s)v(s)f2(φ− v(s)) ds
)

= ηPv(v).

Thus, Pv is strongly sublinear: Pv(ηv) >> ηPv(v).
It is well known from Amann [1, Theorem 22.4] that Pv can have at most one

positive fixed point v∞. We apply Theorem 5.1, part (b) of Hess [7, p. 17], which
states that if there exists a unique positive fixed point of a strongly sublinear map
Pv, v∞ > 0, in our case, then it attracts all positive points of C+.

It remains to show that V (t, x) attracts all positive solutions of (5.1). Let W (t, x)
be a positive solution of (5.1) with the initial condition w0(x) > 0, and let wk(x) =
W (kω, x) for k = 0, 1, 2, . . . . Then by the definition of Pv, wk = P kv (w0) for k =
0, 1, 2, . . . . Now, since v∞ attracts all positive points, wk → v∞ as k →∞.

We use the integral equation once again. Since both W and V are solutions of
(5.1), then

W (t, x) = U(t, kω)W (kω, x) +

∫ t

kω

U(t, s)W (s, x)f2(φ−W (s, x)) ds,

V (t, x) = U(t, kω)V (kω, x) +

∫ t

kω

U(t, s)V (s, x)f2(φ− V (s, x)) ds
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for t ∈ [kω, (k + 1)ω], and x ∈ [0, 1].
Let G(y) = yf2(φ− y) for y ∈ [0, φ]. Since f2 is at least C1 smooth, there exists

L > 0 such that

|G(y1)−G(y2)| ≤ L|y1 − y2|, y1, y2 ∈ [0, φ].

Let K = sup ‖U(t, s‖, 0 ≤ s ≤ t ≤ ω. Since U(t, s) is ω-periodic, ‖U(t, s)‖ ≤ K for
t ∈ [kω, (k+ 1)ω]. We subtract one equation from the other and pass to the norms to
obtain

|W (t, x)− V (t, x)|

≤ ‖U(t, s)‖|W (kω, x)− V (kω, x)|+
∫ t

kω

‖U(t, s)‖|G(W (s, x))−G(V (s, x))| ds

≤ ‖U(t, s)‖|W (kω, x)− V (kω, x)|+
∫ t

kω

‖U(t, s)‖L|W (s, x)− V (s, x)| ds

≤ K‖wk − v∞‖C +

∫ t

kω

KL|W (s, x)− V (s, x)| ds

for t ∈ [kω, (k + 1)ω], and x ∈ [0, 1]. Using the Gronwall inequality we finally obtain

|W (t, x)− V (t, x)| ≤ KeKL(t−kω)‖wk − v∞‖C ≤ KeKLω‖wk − v∞‖C
for t ∈ [kω, (k + 1)ω], and x ∈ [0, 1]. As k → ∞, ‖wk − v∞‖C → 0, and thus
‖W (t, ·) − V (t, ·)‖C → 0. This shows that V attracts all positive solutions of (5.1)
and completes the proof of part (a).

In what follows E1 denotes v∞, the positive stable fixed point of Pv, but we will
also refer to it as the periodic solution V (t, x) itself. E0 denotes the zero solution
u = v = 0 of both the limiting system (4.1)–(4.2) and single population equation
(5.1), and the zero function as a trivial fixed point of the period map P (Pv or Pu,
accordingly). The usage will be clear from the context.

Part (b). Since the period map Pv is monotone, the principal eigenfunction ψ
must be positive by the Krein–Rutman theorem [13], so then

Pv(αψ) = ψ(λα+ o(α)) << αψ

for sufficiently small α ∈ (0, ε). Consequently, there is a strictly decreasing sequence
{wk, k ∈ 0, 1, 2, . . .} such that w0 >> 0 and Pv(wk−1) = wk << wk−1. The fact that
λ < 1 implies that the zero solution of (5.1) is locally order stable (further, linearly
stable) and attracts all positive solutions locally (see part (a)). In fact, it attracts any
positive solution of (5.1). Indeed, given x >> 0, x ∈ domP , there exists an α ∈ (0, 1)
such that αx < w0; then strong monotonicity and sublinearity of P imply that

αPv(x) << Pv(αx) << Pv(w) << w,

so by induction we show that for all k,

xk := P kv (x) << αwk = αP kv (w).

Any C-space with C0-norm and the order cone C+ is a lattice, namely,

for all x, y ∈ C : ∃m = inf(x, y), M = sup(x, y),
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Fig. 5.1. Location of E0, E1, and E2 in C+ × C+.

so one can speak of the lim inf and lim sup of such sequences.

We then have 0 ≤ lim supP kv (x) ≤ 1
α lim supwk = 0; thus P kv (x)→ 0 as k →∞.

Hence, 0 attracts all positive points under Pv. Finally, we employ the same continuity
argument as in part (a) to conclude that the solution v ≡ 0 of (5.1) attracts all positive
solutions. This completes the proof of part (b).

Remark 5.2. We proceed similarly with the case when v is set equal to zero. We
investigate the stability of E0 under Pu, and find a possible unique positive periodic
solution U(t, x) which attracts all positive solutions. If U(t, x) does not exist, E0 is
the only fixed point of Pu in C+, and E0 attracts all points of C+ under Pu. If U(t, x)
does exist, we denote this solution and the corresponding fixed point of Pu by E2.

There are biological interpretations of the existence of these rest points. If E1

exists, then the v-population is capable of surviving in the chemostat without the
competitive pressure. If E1 does not exist, the v-population will go extinct indepen-
dently of the presence of its competitor. A similar relationship holds for E2 and the
u-population.

In the next section we assume that both E1 and E2 exist to investigate whether
it is possible for u and v to coexist. Figure 5.1 illustrates all three periodic solutions
E0, E1, and E2 and their locations in the product space C+ × C+.

The period map developed in section 4 gives rise to a semidynamical system
defined on C+ × C+ [5], and Lemma 5.1 (and Remark 5.2) give precise information
on the limit sets when one component of an initial condition is identically zero. The
properties established exactly fit the theory developed in [11] (directly) or [8] (with
some additional effort), and the theorems there describe the asymptotic behavior of
the limiting system (4.1)–(4.2).

Let J denote the order interval [E1, E2]K . By property (P2) of the period map
and Lemma 5.1 (and its counterpart for Pu), the omega limit set of any orbit lies in
this order interval. To see this, one just compares a solution with an initial condition
in the cone with the corresponding solution with initial conditions with a coordinate
identically zero. Theorem A of [11] yields directly (see also [3]) the following theorem.

Theorem 5.3. One of the following holds:

(1) P has a positive fixed point in J,

(2) Pn(x)→ E1 as n→∞ for every x = (u, v) ∈ J with u 6= 0, v 6= 0,

(3) Pn(x)→ E2 as n→∞ for every x ∈ J with u 6= 0, v 6= 0.
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Fig. 5.2. Dynamics of P with E∗ and E∗∗ present.

If (2) or (3) holds, and x ∈ C+×C+\J satisfies u 6= 0, v 6= 0, then either Pn(x)→ E1

as n→∞ or Pn(x)→ E2 as n→∞.
The situations (1), (2), and (3) in Theorem 5.3 can be distinguished by individual

stability properties of E1 and E2. For instance, if E1 is unstable, the outcome (2)
obviously never occurs. Similarly, if E2 is unstable, the outcome (3) also never occurs.
Now, if both E1 and E2 are unstable or both E1 and E2 are stable, neither (2) nor
(3) occurs, so there exists an additional fixed point of P in the interior of J (and the
interior of Ω). Stability can be determined from the Krein–Rutman theorem. We
state a version that is convenient in this application.

Theorem 5.4 (Krein–Rutman). Assume that P ′(Ei), i=1, 2, have positive spec-
tral radii, r1 > 0 and r2 > 0, respectively; then

(1) r1 = λv is the principal eigenvalue of P ′(E1) with some K-positive eigenfunc-
tion (u1, v1), and if λv > 1, then u1 > 0.

(2) r2 = λu is the principal eigenvalue of P ′(E2) with some (−K)-positive eigen-
function (u2, v2), and if λu > 1, then v2 > 0.

If there is no further fixed point of P in Int(J), an immediate consequence is that
competitive exclusion results—one or both of the populations become extinct. If only
one survives, the winner of the competition (the survivor) can be determined by local
stability considerations.

Theorem 5.5 (extinction). If λv > 1 and there are no further fixed points of P
in Int J, then E2 attracts all points of the interior of J. If λu > 1 and there are no
further fixed points of P in Int J, then E1 attracts all points of the interior of J.

Theorem 5.6. If there exists a fixed point in the interior of J and if λv > 1,
then there exists a fixed point E∗ which attracts the order interval (E1, E∗). If there
exists a fixed point in the interior of J and if λu > 1, then there exists a fixed point
E∗∗ which attracts the order interval (E∗∗, E2).

Proof. Using the eigenfunction (u1, v1) from Theorem 5.4 it is easy to argue that
there exists a point w = E1 + h(u1, v1), for h arbitrarily small, such that E1 > w >
T (w) (see, for example, the proof of Theorem 5.1 of [11], or [8]). The rest follows
from monotonicity.

Of course, both stability conditions can occur. In this case all orbits have their
omega limit sets in the order interval [E∗, E∗∗]. This is illustrated in Figure 5.2. All
of our numerical simulations produced E∗ = E∗∗. The question of uniqueness of the
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interior fixed point remains open. The general theory would also allow both boundary
rest points to be stable and thus guarantee an unstable interior rest point. We did
not observe this in our simulations.

Since the system is monotone, it is a general theorem that almost all orbits con-
verge to a fixed point. We remind the reader that a fixed point of the mapping P is
a periodic solution of the limiting system of partial differential equations, (4.1)–(4.2).

6. Asymptotic behavior of the full system. It is now appropriate to in-
terpret the results for the limiting system in terms of the original problem, (2.1)–
(2.3). For instance, the trivial periodic solution of (4.1)–(4.2) with initial condi-
tion at E0 corresponds to the limiting periodic distribution of (2.1)–(2.3), namely,
(S, u, v) = (φ, 0, 0). The nontrivial “boundary” periodic solutions (0, V (t, x)) and
(U(t, x), 0) of (4.1)–(4.2) give rise to the corresponding periodic solutions of (2.1)–
(2.3), namely, (S, u, v) = (φ − V, 0, V ) and (S, u, v) = (φ − U,U, 0). More generally,
all positive periodic solutions of the limiting system can be interpreted as solutions
of (2.1)–(2.3) in the same fashion, (φ− U − V,U, V ).

The convergence question is more interesting. In the case of competitive exclusion,
all solutions of the limiting equations converge to a periodic solution. When there is an
interior fixed point for the period map, then there are always two order intervals such
that solutions for all initial conditions in these intervals converge. Outside of these
order intervals, one knows only that all solutions come into an order interval (defined
by the largest and smallest fixed point of the period map) and, from the general theory
of monotone dynamical systems, that almost all initial conditions converge to a fixed
point inside this order interval [20]. As noted above, our numerical experience was
that the interior fixed point was stable and unique, so all solutions converged.

Let (S0, u0, v0) be initial conditions and let S(t, x), u(t, x), v(t, x) denote the corre-
sponding solution of (2.1)–(2.3). Suppose that the period map starting at (u0, v0) con-
verges to a fixed point. Denote the corresponding periodic solution by (U(t, x), V (t, x)).
Then it follows that

|S(t, x)− (φ− U(t, x)− V (t, x))|+ |u(t, x)− U(t, x)|+ |v(t, x)− V (t, x)| → 0.

Thus when the period map converges to a fixed point, the corresponding solution
of (2.1)–(2.3) is asymptotic to a periodic solution.

7. Discussion. We have taken the basic unstirred chemostat model and let the
input and “washout” rates be periodic functions. As a practical matter this would
usually amount to varying the flow rate, but the results are general enough to al-
low for both. Conceptually, this might correspond to seasonal variations or diurnal
variations in nature or to some periodic disturbance in the pump in a bioreactor.
The papers cited in section 1 have developed the asymptotic behavior model for a
well-mixed chemostat with periodic inputs or dilution rates. We have developed the
corresponding theory here for the reaction diffusion model. In the case of the model
for the well-mixed chemostat both the input nutrient concentration and the dilution
rate appeared in the equation so the difficulties were those of moving from a dynamical
system to a periodically forced system. In the reaction diffusion model the nutrient
input and the removal appear in the boundary conditions causing technical difficul-
ties. With the help of a transformation suggested by Professor Norman Dancer (see
Acknowledgment) we are able to remove the periodicity from the boundary condi-
tions to the operator with considerable increase in complexity. (This transformation
probably has potential beyond our use in this problem.) Eventually, however, we were
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Parameters: m2 = 1, C2 = 1.
Common parameters: d = 1.0, m1 = 3.0, a1 = 1.0,
a2 = 1.0, A1 = 0.1, C1 = 1.0, A2 = 0.3, B = 2.0.

Initial conditions: S(0, x) ≡ u(0, x) ≡ v(0, x) ≡ 1.0.

Fig. 7.1. Competitive exclusion.

able to reduce the problem to one of a fixed point of the period map although now
in an infinite-dimensional setting. The monotonicity of the map allowed one to make
use of the theory of monotone dynamical systems, just as in the ordinary differential
equations model. The choices between possible outcomes are dictated by the stability
of the boundary rest points.

To illustrate the results we show two numerical examples. The simulations run
from t0 = 0 to tmax = 40.0 relative time units. Since we are providing illustrations,
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Parameters: m2 = 2.9, C2 = 0.8.
Common parameters: d = 1.0, m1 = 3.0, a1 = 1.0,
a2 = 1.0, A1 = 0.1, C1 = 1.0, A2 = 0.3, B = 2.0.

Initial conditions: S(0, x) ≡ u(0, x) ≡ v(0, x) ≡ 1.0.

Fig. 7.2. Coexistence.

the solutions and the graphs were obtained using Mathematica 3.0. More accuracy
could likely be achieved with more sophisticated tools, but our goal is only to illustrate
the solutions. We assume the Monod model with fi(S) = miS

ai+S
, and choose S0(t) =

C1 +A1 sin(Bt) and r(t) = C2 +A2 sin(Bt).

Several parameters are common for all the simulations: the diffusion rate d = 1.0,
and parameters a1 = 1.0, a2 = 1.0, m1 = 3.0, A1 = 0.1, C1 = 1.0, A2 = 0.3, and
B = 2.0. The remaining parameters are varied in order to illustrate different outcomes
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of the competition.

The simulations presented below illustrate the following two major outcomes of
the competition in the unstirred chemostat:

(1) competitive exclusion, the outcome when one competitor asymptotically reaches
a positive periodic density distribution and the other competitor goes extinct, the nu-
trient density also reaching a positive periodic distribution (Figure 7.1);

(2) coexistence of the competing species, the outcome when both competitors
reach positive periodic distributions (Figure 7.2).

In the situation presented in Figure 7.1, each competitor (U or V ) is able to survive
on its own without the other competitor present. Nevertheless, when both competitors
are introduced to the chemostat simultaneously, the U species outcompetes the V
species and drives it to extinction. If the environmental conditions become milder for
the V species, that is, if m2 is increased and the average washout rate C2 is decreased,
then V becomes able to survive the competition as shown in Figure 7.2.

Acknowledgment. The authors wish to acknowledge, with thanks, that Pro-
fessor Norman Dancer suggested the change of variables used at the beginning of the
proof of Lemma 4.3.

Note added in proof. The transformation used in the proof of Lemma 4.3
appears in greater generality in [27].
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