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Abstract. The divergence criterion has been shown to be helpful in distinguishing between sub-
and supercritical Hopf bifurcations, but its applicability is limited to systems whose divergence is
sign definite. A step-by-step computational procedure which allows one to extend the applicability
of the divergence criterion is derived by altering the system to an equivalent one with sign definite
divergence. The procedure is based on multiplying the original vector field by a positive quadratic
function in a neighborhood of the bifurcating rest point. This procedure is then applied to several ex-
amples of planar systems that exhibit the Hopf bifurcation. Specifically, it is demonstrated that only
supercritical bifurcations occur in a system modeling specific immune responses with handling time.
It is also shown that the FitzHugh–Nagumo equations and the chemostat equations with substrate
inhibition and linear yield coefficient may exhibit both sub- and supercritical Hopf bifurcations. In
both cases, simple analytic criteria for determining the criticality of the bifurcation are presented.
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1. Introduction. The bifurcation of a rest point for a system of ordinary differ-
ential equations to a periodic solution has been an intriguing area of research for the
past half-century. The early work of Hopf [10] is usually referenced as the beginning
point of research in this area, and this type of bifurcation bears his name.1 The the-
ory has been developed very extensively since. Several textbooks cover the subject,
including those of Marsden and McCracken [14], Hassard, Kazarinoff, and Wan [8],
Chow and Hale [4], and Kuznetsov [13]. The general subject of bifurcations has been
developed to a sophisticated level, and it is now a proper part of nonlinear functional
analysis.

Bifurcations are important in physical and biological systems because they repre-
sent the points at which the dynamics of the system undergoes a qualitative change.
In terms of the parameters of the model system, the bifurcation points can frequently
be expressed as thresholds. In many instances, experiments can be designed to detect
such thresholds to test a particular model and/or theory. We refer the reader to [11]
for an expository article on bifurcations in mathematical biology.

Many population models are described by planar dynamical systems, and simply
detecting the existence of a Hopf bifurcation is not difficult. However, determining
the direction of bifurcation, whether the bifurcation is subcritical or supercritical
(i.e., determining the criticality of the bifurcation), is a more delicate problem, as
the calculations in the above cited textbooks show. The subcritical bifurcations are
especially important in biological systems because they show the existence of (often
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unexpected) periodic solutions and multiple periodic solutions in dissipative systems
[19, 9, 16].

In previous work [16], a planar bifurcation theorem which determined the criti-
cality of bifurcation was established using the divergence criterion. In particular, it
was shown that a subcritical Hopf bifurcation produces at least two limit cycles in a
planar, dissipative system. The applicability of the theorem was restricted to systems
whose divergence was of one sign (except for a set of measure zero) in a neighborhood
of the bifurcation point. In this work, we develop a general approach for determining
the criticality of Hopf bifurcations in planar dynamical systems. We show that, for
a generic system, one can multiply the vector field by a positive quadratic function
and obtain a system whose divergence is sign definite near the bifurcating rest point.
Since the resulting system has the same set of trajectories as the original system, the
divergence criterion will determine the criticality of the bifurcation. This approach
makes Theorem 2.1 in [16] applicable to a wide class of problems.

The divergence criterion is a generalization of the Dulac criterion. This criterion
was used by Hofbauer and So [9] to determine the criticality of the Hopf bifurcation for
a class of predator-prey equations, and was later generalized by Pilyugin and Waltman
[16]. See also [17] for an earlier planar bifurcation theorem in this direction, and see
Wolkowicz [19] and Zhu, Campbell, and Wolkowicz [20] for bifurcation analysis of
predator-prey systems using the Lyapunov coefficient method. The change in the
vector field simplifies the calculations and often renders them amenable to direct
computation or to symbolic algebraic processors such as Mathematica [18] or Maple
[7]. Sometimes, the simplification can be truly significant. In [16], the use of the
divergence criterion resulted in the correction of mistakes found in a series of papers
[1, 5, 6] that used the Lyapunov coefficient criterion.

This paper is organized as follows. We describe the construction of the quadratic
function in section 2 and formulate the criterion for determining the criticality of
the Hopf bifurcation. In section 3, we illustrate the procedure using two important
biological problems. In section 4, we introduce a nonlinear rescaling of the vector field,
which further simplifies the divergence criterion for a specific set of planar systems
including the chemostat (also known as a bio-reactor or a CSTR), and study the
Hopf bifurcation in the chemostat with variable yield and substrate inhibition. We
conclude with a discussion section.

2. Divergence criterion for generic systems. Consider a planar dynamical
system

x′ = f(x, y), y′ = g(x, y),(1)

where f and g are sufficiently smooth, and assume that (0, 0) is a center, that is,
f0 = g0 = 0, f0

x + g0y = 0, and f0
xg

0
y − f0

y g
0
x > 0, where we adopt the notation F 0 =

F (0, 0). Necessarily, f0
y g

0
x < 0. We remark that all of the subsequent calculations and

conclusions will remain valid if (0, 0) is replaced by (x0, y0) and all derivatives are
computed at (x0, y0).

The divergence criterion states that if the divergence of the vector field of (1) is
negative (positive) almost everywhere in some neighborhood of (0, 0), then (0, 0) is a
stable (unstable) spiral point. In our earlier work [16], we showed that the Hopf bifur-
cation is supercritical (subcritical) if the bifurcating rest point is a stable (unstable)
spiral point. Therefore, we demonstrated that the criticality of the bifurcation can
be determined from the stability of the bifurcating rest point. In this paper, we use
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the divergence criterion to distinguish between stable and unstable spiral points or,
equivalently, between super- and subcritical Hopf bifurcations.

The divergence criterion may not apply directly to the original system (1), because
the divergence of its vector field may not be sign definite near the origin. In this
section, we show that for a generic vector field (1), one can choose a quadratic function
a(x, y) so that a(0, 0) = 1 and the divergence of (af, ag) given by

φ(x, y) = (af)x + (ag)y = a(fx + gy) + axf + ayg(2)

is sign definite in some neighborhood of (0, 0). Since a(x, y) is necessarily positive in
some neighborhood of (0, 0), the trajectories of (1) coincide with the trajectories of

x′ = a(x, y)f(x, y), y′ = a(x, y)g(x, y)(3)

near (0, 0). Consequently, systems (1) and (3) have the same orbital structure in a
neighborhood of (0, 0).

We begin by formally expanding φ, using the Taylor polynomial of second order

φ = φ0 + φ0
xx+ φ0

yy +
1

2

(
φ0
xxx

2 + 2φ0
xyxy + φ0

yyy
2
)

+H.O.T.,(4)

where H.O.T. denotes higher order terms. Evaluating (2) at (0, 0), we find that
φ0 = 0. Differentiating (2) yields

φx = a(fxx + gyx) + ax(fx + gy) + axxf + axfx + ayxg + aygx,(5)

φy = a(fxy + gyy) + ay(fx + gy) + axyf + axfy + ayyg + aygy.(6)

Setting a(0, 0) = 1, it follows that

φ0
x = (f0

xx + g0yx) + a0xf
0
x + a0yg

0
x, φ0

y = (f0
xy + g0yy) + a0xf

0
y + a0yg

0
y.(7)

Since f0
xg

0
y − f0

y g
0
x > 0, equations (7) uniquely define a0x and a0y. Our primary interest

is, of course, to eliminate the first order terms in (4). Thus we set φ0
x = φ0

y = 0 in (7)
and solve for a0x and a0y to obtain

a0x =
(f0

xx + g0yx)g0y − (f0
xy + g0yy)g0x

f0
y g

0
x − f0

xg
0
y

,(8)

a0y =
−(f0

xx + g0yx)f0
y + (f0

xy + g0yy)f0
x

f0
y g

0
x − f0

xg
0
y

.(9)

Subsequent differentiation of (5) and (6) yields

φxx = ax(fxx + gyx) + a(fxxx + gyxx) + axx(2fx + gy) + ax(2fxx + gyx)

+ ayxgx + aygxx + axxxf + axxfx + ayxxg + ayxgx,

φxy = ay(fxx + gyx) + a(fxxy + gyxy) + axy(2fx + gy) + ax(2fxy + gyy)

+ ayygx + aygxy + axxyf + axxfy + ayxyg + ayxgy,

φyy = ay(fxy + gyy) + a(fxyy + gyyy) + ayy(fx + 2gy) + ay(fxy + 2gyy)

+ axyfy + axfyy + axyyf + axyfy + ayyyg + ayygy.
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Assuming that the functions f and g are sufficiently smooth, the mixed derivatives are
independent of the order of differentiation. Therefore, evaluating the above expression
at the center (0, 0) yields

φ0
xx = Qxx + 2f0

xa
0
xx + 2g0xa

0
xy,(10)

φ0
xy = Qxy + f0

ya
0
xx + g0xa

0
yy,(11)

φ0
yy = Qyy + 2f0

ya
0
xy + 2g0ya

0
yy,(12)

where

Qxx = (f0
xxx + g0yxx) + a0x(3f0

xx + 2g0xy) + a0yg
0
xx,

Qxy = (f0
xxy + g0yxy) + a0x(2f0

xy + g0yy) + a0y(f0
xx + 2g0xy),

Qyy = (f0
xyy + g0yyy) + a0xf

0
yy + a0y(2f0

xy + 3g0yy).

Thus far, the linear terms in (4) have been eliminated by choosing appropriate values
for a0x and a0y. In what follows, we seek to choose the values a0xx, a0xy, and a0yy so as
to make the second order terms in (4) sign definite. The second order terms in (4)
are sign definite whenever the discriminant

D = φ0
xxφ

0
yy − (φ0

xy)2

is positive. We set

a0xx = −1

2

Qxy

f0
y

, a0yy = −1

2

Qxy

g0x
,(13)

because such a choice yields φ0
xy = 0. The discriminant then can be written as

D =

(
Qxx − Q

xyf0
x

f0
y

+ 2g0xa
0
xy

)(
Qyy − Q

xyg0y
g0x

+ 2f0
ya

0
xy

)
= (β1 + α1z)(β2 + α2z),

(14)

where z = a0xy, β1 = Qxx − (Qxyf0
x/f

0
y ), β2 = Qyy − (Qxyg0y/g

0
x), α1 = 2g0x, and

α2 = 2f0
y . Since the product α1α2 = 4g0xf

0
y < 0, the discriminant D is positive for

any z located strictly between the roots z1 = −β1/α1 and z2 = −β2/α2. For generic
functions f and g, z1 �= z2. Thus we choose

z∗ = −1

2

(
β1

α1
+
β2

α2

)
= −1

2

Qxxf0
y +Qyyg0x
2g0xf

0
y

(15)

and set a0xy = z∗.
At this point, we have determined all coefficients of the quadratic function

a(x, y) = 1 + a0xx+ a0yy +
1

2
(a0xxx

2 + 2a0xyxy + a0yyy
2).(16)
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Finally, we transform the original vector field (f, g) into a vector field (af, ag) with
sign definite divergence φ near the origin. The divergence φ is positive (negative) if
φ0
xx is positive (negative). Substituting (13) and (15) into (10), we find that

φ0
xx =

1

2

(
Qxx −Qyy g

0
x

f0
y

)
−Qxy f

0
x

f0
y

.(17)

For a given planar system that undergoes a Hopf bifurcation, we evaluate appro-
priate partial derivatives of its vector field at the bifurcation point and compute the
quantity (17). The Hopf bifurcation is supercritical (subcritical) if (17) is negative
(positive).

Unfortunately, for a generic system, expression (17) may become too complicated
for symbolic applications. In this case, our method will have no advantage over the
standard normal form computation. However, our approach can, sometimes, have
a clear advantage over the standard method. To illustrate this, we treat several
examples in subsequent sections. Expression (17) will be greatly simplified if the
divergence of the vector field essentially involves only one of the state space variables
x or y. It is therefore helpful to introduce a preliminary change of variables to achieve
this, whenever possible. A specific change of variables that applies to chemostats is
discussed in section 4.

3. Applications. In this section, we apply the change of vector fields to two
examples in biological literature and determine the criticality of bifurcation. Before
beginning, we note two changes from the usual presentation of bifurcation results.

• It is possible, and the theory is usually presented this way, to change variables
so that the bifurcating rest point is always at the origin. Such a change, how-
ever, complicates the calculations for a specific problem, and we do not make
it. The reader should be cautioned that, as parameters vary, the coordinates
of the rest point vary.

• The traditional approach is to fix all of the parameters except one (usually
designated as the bifurcation parameter) and let that parameter determine
the bifurcation. We choose instead to present a bifurcation locus, which is
defined as a hypersurface in the parameter space on which the bifurcation
occurs. We have two reasons for doing this. First of all, biological problems
frequently have many parameters, and it would be artificial to select a single
one unless there is a specific experiment which can vary it. Secondly, our
technique for determining the criticality of bifurcation depends only on the
stability of the rest point at the critical parameter value(s). This implies that
any parametric path crossing the bifurcation locus will produce a bifurcation
whose criticality is determined exclusively by its crossing point on the bifur-
cation locus. In particular, any two parametric paths crossing the bifurcation
locus via the same point will produce Hopf bifurcations of the same critical-
ity. Of course, one has to ascertain that a bifurcation does indeed occur, that
is, that the rest point does change its stability along the parametric path.
On the other hand, our result does not require that the parametric path be
strictly transverse to the bifurcation locus or, equivalently, that the pair of
complex eigenvalues cross the imaginary axis with nonzero velocity. For more
details, we refer the reader to the proof of the original Theorem 2.1 in [16].

For any crossing point on the bifurcation locus, the linearization of a planar
system has purely imaginary eigenvalues. Such a rest point for the nonlinear system
can be a stable or an unstable spiral, or a center, the choice being determined by the
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nonlinear terms. Our quadratic factor determines whether the rest point is a stable
spiral or an unstable spiral, depending on the sign of the (sign specific) divergence.
It is also possible that the quadratic terms in (4) vanish, in which case our technique
does not apply. If this is the case, then the rest point could still be a center or a
spiral determined by nonlinear terms of higher order (and hence such a case would be
nongeneric).

In the next two subsections, we study the criticality of Hopf bifurcations in two
biological problems, where we can add to results already in the literature. These
examples also illustrate the ease with which the technique can be applied to biological
problems.

3.1. Specific immune responses with handling time. In this section, we
apply the general divergence criterion to the model of specific immunity studied by
Pilyugin and Antia in [15]. The authors reported the existence of Hopf bifurcation in
the system

x′ = rx− hx

k + x
y,(18)

y′ = a+

(
ρx

k + x
− d
)
y,(19)

where r, h, k, a, ρ, d are positive parameters. Here x and y are dimensionless
variables that represent the abundance of parasite (i.e., the number of infected cells)
and the magnitude of the specific (cytotoxic) immune response, respectively. In this
model, both the proliferation rate of immune cells ρx

k+x and the killing rate of infected

cells hx
k+x saturate as the number of infected cells x becomes large. The quantities r, a,

and d represent the (per capita) rate of parasite replication, the input of immune cells
from an external source, and the (per capita) death rate of immune cells, respectively.
We restrict the bifurcation analysis to the biologically relevant case x, y > 0.

To simplify computations, we multiply the vector field of (18)–(19) by a positive
function k + x and consider the new system of the form

x′ = rx(k + x) − hxy = f(x, y), x(0) > 0,(20)

y′ = a(k + x) + (ρx− d(k + x))y = g(x, y), y(0) > 0.(21)

Since k + x > 0, the phase portraits of (18)–(19) and (20)–(21) are identical.
The bifurcating rest point of (20)–(21) has coordinates

x0 =
rdk − ah
r(ρ− d) > 0, y0 =

krρ− ah
h(ρ− d) > 0.(22)

We compute the partial derivatives of f and g to find

fx = rk + 2rx− hy, fy = −hx, fxx = 2r, fxy = −h, fyy = 0,

gx = a+ (ρ− d)y, gy = (ρ− d)x− dk, gxy = ρ− d, gxx = gyy = 0.

Consequently,

f0
x = rx0, f0

y = −hx0, f0
xx = 2r, f0

xy = −h, f0
yy = 0,

g0x =
krρ

h
, g0y = −ah

r
, g0xy = ρ− d, g0xx = g0yy = 0.



DIVERGENCE CRITERION 87

The bifurcating rest point must necessarily satisfy 0 = f0
x + g0y = rx0 − ah

r , and thus

x0 =
ah

r2
.

Equating this value with that of (22), we find that the bifurcation locus is a subset of
the hypersurface

d(r2k + ah) = ah(ρ+ r).(23)

The determinant of the variational matrix is given by

det(J) = −rx0 ah

r
+ hx0 krρ

h
= x0(krρ− ah).

A necessary condition for the Hopf bifurcation is that det(J) > 0. Since x0 > 0, it
follows that krρ − ah > 0, and inequalities (22) further imply that ρ − d > 0 and
rdk − ah > 0. Since ρ − d > 0 and rdk − ah > 0 together imply krρ − ah > 0, the
bifurcation locus can be described as the subset of (23) restricted by two inequalities

rdk − ah > 0, ρ− d > 0.(24)

Using (8)–(9), we compute

a0x =
krρ− ah

r (2r + (ρ− d))
ah
r2 (ah− krρ) , a0y =

(r + (ρ− d))h
ah− krρ .(25)

The quantities Q∗∗ are

Qxx = a0x(6r + 2(ρ− d)), Qxy = −2ha0x + a0y(2r + 2(ρ− d)), Qyy = −2ha0y.

Therefore,

φ0
xx = a0x(r + (ρ− d)) + a0y

(
h+

2r

h
(r + (ρ− d))

)
,

which can be simplified to

φ0
xx = − (r + (ρ− d))2

k(r + ρ)
.(26)

Clearly, φ0
xx < 0. Since the divergence of the rescaled vector field is negative definite

at any point on the bifurcation locus, the bifurcation is always supercritical.

3.2. Diffusionless FitzHugh–Nagumo equations. Several numerical exam-
ples of supercritical and subcritical Hopf bifurcations were presented by Kostova,
Ravindran, and Schonbek [12] in the context of the classical FitzHugh–Nagumo equa-
tions. They derived a complicated expression to determine the criticality of the Hopf
bifurcation using the normal form calculation. In this section, we use the divergence
criterion to derive a simple analytic criterion to determine the criticality of the Hopf
bifurcation.

The FitzHugh–Nagumo equations for a single neuron are

x′ =F (x) − y + I = f(x, y),(27)

y′ = x− wy = g(x, y),(28)
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where F (x) = εx(1 − x)(x− λ) and ε > 0, 0 < λ < 1, w > 0, and I are parameters.
The variable x represents the membrane potential, y is the recovery variable that
represents a negative feedback, and I is the membrane current.

Computing the partial derivatives of f and g, we find that

fx = F ′(x), fy = −1, fxx = F ′′(x), fxy = fyy = 0,

gx = 1, gy = −w, gxy = gxx = gyy = 0.

Consequently, at any rest point (x0, y0), we have

f0
x = F ′(x0), f0

y = −1, f0
xx = F ′′(x0), f0

xy = f0
yy = 0,

g0x = 1, g0y = −w, g0xy = g0xx = g0yy = 0.

The bifurcation locus consists of rest points (x0, y0) such that f0
x + g0y = 0 and

f0
xg

0
y −f0

y g
0
x > 0. The former condition implies that F ′(x0) = w. The latter condition

then implies that 1 − w2 > 0. Hence the bifurcation locus is the set of rest points
(x0, y0) such that

f0 = g0 = 0, F ′(x0) = w, w2 < 1.(29)

Since F ′(x) = ε(−3x2 + 2(1 + λ)x− λ), the second condition in (29) implies that x0

must satisfy the quadratic equation

3(x0)2 − 2(1 + λ)x0 + λ+
w

ε
= 0

or, equivalently,

x0
1,2 =

(1 + λ) ±√(1 + λ)2 − 3(λ+ w
ε )

3
.(30)

Using (8)–(9), we compute

a0x =
wF ′′(x0)

1 − w2
, a0y = −F

′′(x0)

1 − w2
.(31)

The quantities Q∗∗ are

Qxx = F ′′′(x0) +
3w(F ′′(x0))2

1 − w2
= −6ε+

3w(F ′′(x0))2

1 − w2
,

Qxy = − (F ′′(x0))2

1 − w2
, Qyy = 0.

Therefore,

φ0
xx =

1

2

(
−6ε+

3w(F ′′(x0))2

1 − w2

)
+

(F ′′(x0))2

1 − w2

F ′(x0)

−1
,

which can be further simplified to

φ0
xx =

1

2

(
−6ε+

w(F ′′(x0))2

1 − w2

)
.(32)
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Substituting F ′′(x0) = 2ε(1 + λ− 3x0) into (32), we rewrite the quantity φ0
xx as

φ0
xx = ε

(
−3 +

2εw(1 + λ− 3x0)2

1 − w2

)
.(33)

Using (30), we can rewrite the quantity (1 + λ− 3x0)2 as

(1 + λ− 3x0)2 = (1 + λ)2 − 3
(
λ+

w

ε

)
.

Substituting this expression into (33), we finally obtain

φ0
xx =

ε

1 − w2

(
2εw(1 − λ+ λ2) − 3(1 + w2)

)
.(34)

The multiplier ε
1−w2 is positive due to (29). Consequently, φ0

xx has the same sign as

the quantity 2εw(1 − λ + λ2) − 3(1 + w2). The Hopf bifurcation in the FitzHugh–
Nagumo equations is subcritical if φ0

xx > 0, that is, if it occurs on the part of the
bifurcation locus where

ε >
3(1 + w2)

2w(1 − λ+ λ2)
,

and supercritical if it occurs on the part of the bifurcation locus where the reversed
strict inequality holds.

In [12], two numerical examples were presented: a Figure 2 with ε = 14.0, w =
0.38, λ = 0.1 and a Figure 3 with ε = 14.0, w = 0.06, λ = 0.5. In the former case,

ε = 14.0 >
3(1 + 0.382)

2 · 0.38(1 − 0.1 + 0.12)
= 4.964,

and the bifurcation is subcritical. In the latter case,

ε = 14.0 <
3(1 + 0.062)

2 · 0.06(1 − 0.5 + 0.52)
= 33.453,

and the bifurcation(s) are supercritical.

4. Rescaling for chemostat equations. The method presented in this section
for rescaling the vector field is a generalization of the technique used by Hofbauer and
So [9]. Specifically, we consider the system

x′ = f(x) − q1(y)g(x), y′ = q2(y)h(x),(35)

where f, g, h, qi are sufficiently smooth and such that positive solutions of (35) remain
positive. Also, suppose that g(x) > 0 and q2(y) > 0 for x, y > 0. We multiply the
vector field (35) by a positive function Q(y)/g(x) to obtain a new system

x′ = Q(y)f(x)/g(x) − q1(y)Q(y) = Q(y)G(x) − q1(y)Q(y),(36)

y′ = Q(y)q2(y)h(x)/g(x) = Q(y)q2(y)H(x),(37)

where (Qq2)′ = βQ and β is a real number to be determined later. The explicit
expression for Q(y) is

Q(y) =
exp
(
β
∫

dy
q2(y)

)
q2(y)

> 0.
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Any positive rest point (x0, y0) of (36)–(37) must satisfy H(x0) = 0. The divergence
of the new vector field (36)–(37) is given by

D(x, y) = Q(y)G′(x) + (Q(y)q2(y))′H(x) = Q(y)
(
G′(x) + βH(x)

)
.(38)

Now suppose that (x0, y0) is the bifurcating rest point, that is, that D(x0, y0) = 0.
Since Q(y0) > 0 and H(x0) = 0, we necessarily have that

G′(x0) + βH(x0) = G′(x0) = 0.

We choose β = −G′′(x0)/H ′(x0), so that in a small neighborhood of (x0, y0),

G′(x) + βH(x) =
δ

2
(x− x0)2 +H.O.T.,

where

δ = G′′′(x0) − G
′′(x0)

H ′(x0)
H ′′(x0) = H ′(x0)

(
G′′

H ′

)′
(x0).(39)

Since Q(y) > 0, the sign of D(x, y) near (x0, y0) is the same as the sign of δ. Con-
sequently, the application of the divergence criterion to systems of type (35) can be
greatly simplified. For example, the predator-prey models analyzed in [2, 9, 19, 20]
fall into this category. The criteria for the criticality of Hopf bifurcations obtained in
these works can be directly compared to the expression (39). Various models of the
chemostat are also of type (35). In the following subsection, we illustrate this sim-
plified approach by treating a special case of the chemostat with substrate inhibition
and a linear yield coefficient.

4.1. Chemostats with substrate inhibition and linear yields. In this sec-
tion, we study the Hopf bifurcation in the model of a chemostat with linear yield
coefficient which also features substrate inhibition of growth at higher substrate lev-
els. For a general study of the chemostat with inhibition, constant yield, and several
competitors, see Butler and Wolkowicz [3]. The original model presented in Agrawal
et al. [1], takes the following form:

x′ =1 − x− y µ(x)

1 + cx
,(40)

y′ = y(µ(x) − 1),(41)

where x and y denote the dimensionless substrate and biomass concentrations, and
µ(x) = mx exp(−x/K) is the microbial growth rate. The function 1 + cx represents
the yield coefficient,2 which is assumed to increase linearly with substrate concentra-
tion; thus c > 0.

Equations (40)–(41) are of the form (35) with

f(x) = 1 − x, g(x) =
mx exp(−x/K)

1 + cx
,

h(x) = mx exp(−x/K) − 1, q1(y) = q2(y) = y.

2The yield coefficient is defined as the ratio of the amount of substrate consumed to the amount
of biomass produced at a steady state. There is strong biological evidence that the yield may increase
with substrate concentration. For details, see [16] and the references therein.
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Equations (40)–(41) admit up to two positive rest points. The x-coordinate of a
positive rest point must satisfy µ(x) = 1 with 0 < x < 1. The function µ(x) has a
maximum at x = K, and its maximal value is given by µmax = mKe−1. Consequently,
if mK > e, then there exist two positive solutions of µ(x) = 1, x0

1 < K < x0
2. It is

easy to verify that the rest point with x = x0
2 (if it is feasible, that is, if x0

2 < 1) is
always a saddle. Consequently, the Hopf bifurcation can occur only at the rest point
(x0

1, y
0
1) with 0 < x0

1 < min(1,K) and y01 = (1 − x0
1)(1 + cx0

1). The bifurcation occurs
when the trace of the variational matrix of (40)–(41) at (x0

1, y
0
1) equals zero:

−1 − y01
d

dx

( µ(x)

1 + cx

)
(x0

1) = 0.

Consequently, on the bifurcation locus, the value of c is given by

c =
K − x0

1 + (x0
1)2

(x0
1)2(1 −K − x0

1)
.(42)

The bifurcation occurs in the feasible region if the value of c given by (42) is positive,
that is, if x0

1 < 1 −K and 0 < K < 1.
To determine the criticality of the Hopf bifurcation, we computed the functions

G(x) and H(x) as defined in (36)–(37) and found that

G(x) =
(1 − x)(1 + cx) exp(x/K)

mx
,(43)

H(x) =
(1 + cx)(mx− exp(x/K))

mx
.(44)

Then we created a Mathematica [18] notebook to compute the quantity δ defined in
(39), and found that

δ(x(m,K),K) =
P0(x) +KP1(x) +K2P2(x) +K3P3(x) +K4P4(x)

K2(K − x)(1 − x)(1 −K − x)x3
,(45)

where P0(x) = 3(1 − x)3x3, P1(x) = 2x2(1 − x)2(x − 6), P2(x) = 2x(x − 1)(x2 +
x − 8), P3(x) = 2(5x2 − 4x − 3), P4(x) = 2(3 − x), and x0

1 = x(m,K). The Hopf
bifurcation in (40)–(41) is subcritical if δ > 0 and supercritical if δ < 0.

The existence of both sub- and supercritical Hopf bifurcations in (40)–(41) is
illustrated in Figure 1. For (K,m) ∈ A, no rest point with 0 < x < 1 exists. The curve
between A and B is given by m = e/K. Region B (δ > 0) corresponds to subcritical
bifurcations. The curve between B and C is the implicit plot of δ(x(m,K),K) = 0.
Region C (δ < 0) corresponds to supercritical bifurcations. The curve between C and
D is the implicit plot of x(m,K) = 1 − K. For (K,m) ∈ D, no bifurcations with
c > 0 occur. The region B terminates at K = 0.413, and the region C terminates at
K = 0.5.

5. Discussion. We have developed a unifying approach for studying the Hopf
bifurcation for generic planar systems, which stems from the divergence criterion.
Specifically, we presented a step-by-step computational procedure which can be used
to distinguish between sub- and supercritical bifurcations. This procedure can be
easily programmed in any standard computer algebra system such as Maple [7] or
Mathematica [18] so that all of the necessary computations can be automated. This
work may serve as a good example of the analytic approach that involves computerized
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Fig. 1. Existence and criticality of Hopf bifurcations in the (K,m) plane.

symbolic calculations. The technique is generic in the sense that it can be applied to
a generic planar vector field.

We applied our procedure to several important biological systems and obtained
new results on the criticality of Hopf bifurcation. Interestingly, we found that in
several instances—for example, with diffusionless FitzHugh–Nagumo equations—we
were able to perform all calculations by hand in a reasonable amount of time, which
illustrated that our method may have an advantage over the calculation of the third
Lyapunov coefficient and/or normal form calculation for the Hopf bifurcation. In
particular, our method does not require such computational steps as

• changing coordinates to place the bifurcating rest point at the origin,
• finding eigenvalues and eigenvectors of the variational matrix,
• transforming the linear part of the vector field to the canonical form.

In certain examples, our method produces analytic expressions that are easier to
simplify.

We have also presented a specific change of variables that works well with a
whole class of planar systems including the equations of the chemostat. Performing
this change of variables essentially eliminates one of the phase variables from the
expression for divergence and thus greatly simplifies the analysis of Hopf bifurcation.

Acknowledgments. The authors are grateful to the anonymous referees and
the handling editor for their valuable comments and suggestions.

REFERENCES

[1] R. Agrawal, C. Lee, H. C. Lim, and D. Ramkrishna, Theoretical investigations of dynamic
behavior of isothermal continuous stirred tank biological reactors, Chem. Engrg. Sci., 37
(1982), pp. 453–462.

[2] G. Butler and P. Waltman, Bifurcation from a limit cycle in a two predator-one prey ecosys-
tem modeled on a chemostat, J. Math. Biol., 12 (1981), pp. 295–310.



DIVERGENCE CRITERION 93

[3] G. J. Butler and G. S. K. Wolkowicz, A mathematical model of the chemostat with a
general class of functions describing nutrient uptake, SIAM J. Appl. Math., 45 (1985),
pp. 138–151.

[4] S. N. Chow and J. K. Hale, Methods of Bifurcation Theory, Springer-Verlag, New York, 1982.
[5] P. S. Crooke, C.-J. Wei, and R. D. Tanner, The effect of the specific growth rate and yield

expressions on the existence of oscillatory behavior of a continuous fermentation model,
Chem. Engrg. Commun., 6 (1980), pp. 333–347.

[6] P. S. Crooke and R. D. Tanner, Hopf bifurcations for a variable yield continuous fermenta-
tion model, Internat. J. Engrg. Sci., 20 (1982), pp. 439–443.

[7] F. Garvan, The Maple Book, Chapman & Hall/ CRC, Boca Raton, FL, 2002.
[8] B. D. Hassard, N. D. Kazarinoff, and Y.-H. Wan, Theory and Applications of Hopf Bifur-

cation, Cambridge University Press, Cambridge, UK, 1980.
[9] J. Hofbauer and J. W.-H. So, Multiple limit cycles for predator-prey models, Math. Biosci.,

99 (1990), pp. 71–75.
[10] E. Hopf, Abzweigung einer periodischen Lösung von einer stationären Lösung eines Differen-
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