
SIAM J. APPL. MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 66, No. 3, pp. 843–872

THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS∗

MAIA MARTCHEVA† AND SERGEI S. PILYUGIN‡

Abstract. We investigate an epidemic model of two diseases. The primary disease is assumed
to be a slowly progressing disease, and the density of individuals infected with it is structured by
age since infection. Hosts that are already infected with the primary disease can become coinfected
with a secondary disease. We show that in addition to the disease-free equilibrium, there exists
a unique dominance equilibrium corresponding to each disease. Without coinfection there are no
coexistence equilibria; however, with coinfection the number of coexistence equilibria may vary.
For some parameter values, there exist two coexistence equilibria. We also observe competitor-
mediated oscillatory coexistence. Furthermore, weakly subthreshold (which occur when exactly
one of the reproduction numbers is below one) and strongly subthreshold (which occur when both
reproduction numbers are below one) coexistence equilibria may exist. Some of those are a result of
a two-parameter backward bifurcation. Bistability occurs in several regions of the parameter space.
Despite the presence of coinfection, coexistence of the two diseases appears possible only for relatively
small values of the reproduction numbers—for large values of the reproduction numbers the typical
outcome of competition is the dominance of one of the diseases, including bistable dominance where
the competition outcome is initial condition dependent.
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1. Introduction. Coinfection is a simultaneous infection of one host with multi-
ple pathogens that may be the causative agents of different diseases or variants of the
same parasite. Coinfections are common for individuals infected with the human im-
munodeficiency virus (HIV). Since HIV compromises the immune system, the carrier
becomes vulnerable to other infections commonly called opportunistic infections [10].
For instance, the case of HIV-HSV (herpes simplex virus) coinfection has been well
documented. Such coinfection typically leads to reactivation of HSV, which accel-
erates the progression of HIV disease towards AIDS. HIV-HSV infected individuals
are also more likely to unwittingly transmit HSV via an increased shedding com-
mon in HIV-infected patients. The treatment of HIV-HSV coinfected patients may
present additional challenges since the HSV is likely to be more resistant to antiviral
therapy [22]. Coinfections may also occur when a patient is already infected with a
slowly progressing disease which lasts for decades. In tuberculosis (TB), for example,
coinfection even with a minor illness can trigger a reactivation of TB.

Many mathematical studies exist on single diseases, both general theoretic and
those treating a specific disease. At the same time, few studies exist that address
the interaction of two or more diseases. On an epidemiological level, Courchamp
et al. [7] studied a model of two feline retroviruses. Two recent articles—one by Allen,
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Langlais, and Phillips [1] and another by Gumel et al. [9]—also consider two infections
in a single host. On an immunological level, the interactions between Mycobacterium
tuberculosis and HIV-1 are investigated in [11]. Statistical aspects of mapping two
diseases are the focus of [8]. Coinfection has been studied from a general perspective
in [14]. In [16], a connection between superinfection and coinfection with different
strains, and the impact of both on the coexistence and the evolution of virulence, is
discussed.

In this paper, we study an epidemic model with two diseases that can coinfect
a single host. We include infection-age structure in the primary disease to account
for slowly progressing and/or persistent diseases that affect the immune status of
individuals over time. Infection-age structure has been previously shown to cause
qualitative changes, namely oscillatory behavior, in case of a single disease dynamics
[2, 19, 15, 12, 20]. Although the model discussed here is relatively simple, we find
complex dynamic behavior: oscillatory dominance and coexistence, two-parameter
backward bifurcation, multiple and subthreshold coexistence equilibria, and bistabil-
ity. These phenomena have important epidemiological consequences for disease man-
agement. Most of them have been illustrated in the single-disease case. In particular,
backward bifurcation which leads to multiple and subthreshold equilibria has been
attracting significant attention in the literature (see [13] and the references therein).
However, to the best of our knowledge, backward bifurcations have not been studied
in the context of multiple infectious agents.

This paper is organized as follows. In the next section, we introduce the two-
disease coinfection model. In section 3, we introduce the reproduction numbers of
the primary and secondary diseases R1, R2 and discuss the equilibria of the model.
The values of the disease-free equilibrium and the two boundary equilibria are given
explicitly. We also present sufficient conditions for the existence of a coexistence
equilibrium. In section 4, we consider scenarios for extinction of either disease or
both. Section 5 focuses on the local stability of equilibria. We show that both the
primary disease equilibrium and coexistence equilibria can lose stability, leading to
sustained oscillations. Section 6 is devoted to the derivation of necessary and sufficient
conditions for the backward bifurcation in R1 and R2. In section 7, we present
several numerical simulations to illustrate the various complex dynamic phenomena.
In section 8, we discuss the epidemiological implications of our model. Section 9
contains a summary of our results and concludes the paper.

2. A model of coinfection of two diseases. Two diseases are spreading in
a population of total size N(t). They both compete for the same pool of susceptible
individuals, whose number at time t is denoted by S(t). We assume that the first
disease is a slowly progressing one, and we structure the class of infected individuals
with respect to the time since infection, a. The age-density is denoted by i(a, t).
The total number of individuals infected with the first disease is denoted by I1(t).
Population members who eventually contract both diseases are assumed to be infected
by the slowly progressing disease first. Consequently we call it the primary disease.
A susceptible becomes infected with the primary disease at a rate β1(a). The number
of individuals infected with the second disease is denoted by I2(t). The secondary
disease is transmitted by the class I2 to susceptibles at a rate β2. An individual
already infected with the primary disease can be coinfected with the secondary disease
at a rate δ(a) and thus become jointly infected with both diseases. We denote the
number of jointly infected (coinfected) individuals by J(t). The individuals infected
with both diseases can infect susceptibles with the primary disease at a rate γ1 and
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Fig. 2.1. The flow diagram of the model (2.1). The primary infection rate is shown as [β1]+[γ1],
where [β1] = S

N

∫∞
0 β1(a)i(a) da and [γ1] = γ1

SJ
N

. The secondary infection rate is shown as [β2] +

[γ2], where [β2] = β2
SI2
N

and [γ2] = γ2
SJ
N

. The coinfection rate is shown as [δ] = I2
N

∫∞
0 δ(a)i(a) da.

The primary and secondary recovery rates are shown as [α1] =
∫∞
0 α1(a)i(a) da and [α2] = α2I2.

The parameters Λ, μ, and ν represent the birth/recruitment rate, the background mortality rate, and
the disease-induced mortality associated with coinfection, respectively.

with the secondary disease at a rate γ2. Figure 2.1 presents a schematic flow diagram
of the mathematical model that takes the form

S′ = Λ − S

N

∫ ∞

0

β1(a)i(a, t) da− β2
SI2
N

− (γ1 + γ2)
SJ

N
− μS

+

∫ ∞

0

α1(a)i(a, t) da + α2I2,

(∂t + ∂a)i(a, t) = −α1(a)i(a, t) − δ(a)
I2
N

i(a, t) − μi(a, t),

i(0, t) =
S

N

∫ ∞

0

β1(a)i(a, t) da + γ1
SJ

N
,(2.1)

I ′2 = β2
SI2
N

+ γ2
SJ

N
− (μ + α2)I2,

J ′ =
I2
N

∫ ∞

0

δ(a)i(a, t) da− (μ + ν)J,

where μ is natural death rate. We assume that either disease by itself is not lethal
but that the two in combination can be. The biological motivation of this assumption
is the case of HIV/AIDS, where coinfections in late stages of the HIV (considered
the primary disease) can be terminal. Specifically, we assume that jointly infected
individuals do not recover and that coinfections cause disease-induced mortality at a
rate ν. Individuals infected with either primary or secondary disease alone may be
potentially treated and recover at rates α1(a), α2, respectively. The functions α1(a),
β1(a), and δ(a) are nonnegative and bounded. The parameters β2, γ1, γ2, ν, α2 are
nonnegative, whereas Λ > 0 and μ > 0. A standard argument can be used to show
that the model (2.1) is well posed.
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The total population size N(t) is the sum of all individuals in all classes:

N(t) = S(t) +

∫ ∞

0

i(a, t)da + I2(t) + J(t).(2.2)

The total population size satisfies the equation N ′(t) = Λ − μN − νJ . We introduce
the notation

π1(a) = e−
∫ a
0

α1(s)ds.

To understand the biological meaning of the quantity π1(a) we note that π1(a)e
−μa

is the probability that an individual will remain infected with the primary disease a
time units after infection. In addition, we define the quantity

Δ =

∫ ∞

0

α1(a)π1(a)e
−μada,(2.3)

which gives the probability of leaving the primary disease infectious period via recov-
ery. Since individuals can leave the primary infected class only via recovery or death,
the sum of the probabilities of recovery and death equals one; that is,∫ ∞

0

α1(a)π1(a)e
−μa da + μ

∫ ∞

0

π1(a)e
−μa da =

∫ ∞

0

(μ + α1(a))e
−

∫ a
0

(μ+α1(s))ds da = 1.

It immediately follows that Δ < 1.

3. Equilibria of the model with coinfection. We introduce the reproduction
numbers of the two diseases. The reproduction number of the primary disease is

R1 =

∫ ∞

0

β1(a)π1(a)e
−μa da,(3.1)

and the reproduction number of the secondary disease is

R2 =
β2

μ + α2
.(3.2)

We note that the coinfection rate δ(a) does not affect the reproduction numbers
since coinfection does not lead to additional infections. We will adopt the notation
s = S/N∗, i2 = I2/N

∗, j = J/N∗ and will use i(a) to denote the normalized version
of the equilibrium value of i(a, t), i∗(a). The quantity N∗ is given by the sum (2.2)
at an equilibrium. Let us define

Γ(a; i2) = e−i2
∫ a
0

δ(σ)dσ.(3.3)

Notice that Γ(a; 0) = 1. Setting the derivatives with respect to time to zero, we obtain
a system of algebraic equations and one ODE for the equilibria of (2.1). The ODE in
the system can be solved to yield

i(a) = i(0)Γ(a; i2)π1(a)e
−μa.(3.4)

Substituting for i in the integrals, one obtains∫ ∞

0

β1(a)i(a) da = i(0)

∫ ∞

0

β1(a)Γ(a; i2)π1(a)e
−μa da = i(0)B(i2)



THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS 847

and ∫ ∞

0

α1(a)i(a) da = i(0)

∫ ∞

0

α1(a)Γ(a; i2)π1(a)e
−μa da = i(0)A(i2).

Finally, ∫ ∞

0

δ(a)i(a) da = i(0)

∫ ∞

0

δ(a)Γ(a; i2)π1(a)e
−μa da = i(0)D(i2).

We notice that A(i2) < 1 and i2D(i2) + A(i2) < 1 because

i2D(i2) + A(i2) =

∫ ∞

0

(α1(a) + i2δ(a))e
−

∫ a
0

(α1(σ)+i2δ(σ)) dσe−μa da

<

∫ ∞

0

(α1(a) + i2δ(a))e
−

∫ a
0

(α1(σ)+i2δ(σ)) dσ da = 1.

With this notation the system for the equilibria becomes

0 = μ− si(0)B(i2) − β2si2 − (γ1 + γ2)sj − μs + i(0)A(i2) + α2i2 + νj,
i(0) = i(0)sB(i2) + γ1sj,
0 = β2si2 + γ2sj − (μ + α2)i2,
0 = i(0)i2D(i2) − (μ + ν)j.

(3.5)

This system has three boundary equilibria, as follows:
1. The disease-free equilibrium

E0 = (1, 0, 0, 0) .

The disease-free equilibrium always exists.
2. The primary disease equilibrium exists if and only if R1 > 1. The steady

distribution of infectives in the primary disease equilibrium is given by

i(a) = i(0)π1(a)e
−μa, where i(0) =

μ
(
1 − 1

R1

)
1 − Δ

.

Thus, the equilibrium is

E1 =

(
1

R1
, i(a), 0, 0

)
.

3. The secondary disease equilibrium exists if and only if R2 > 1 and is given
by

E2 =

(
1

R2
, 0,

(
1 − 1

R2

)
, 0

)
.

Notice that the values of the two dominance equilibria do not depend on the coinfec-
tion. These exact same equilibria are present even if δ(a) = 0.

We introduce the invasion reproduction numbers for each of the diseases. The
invasion reproduction number of the first disease measures the ability of the primary
disease to invade an equilibrium of the secondary disease. We define the invasion
reproduction number of the primary disease as

R̂1 =
1

R2
B(̂i2) +

γ1

μ + ν

1

R2

(
1 − 1

R2

)
D(̂i2), where î2 =

(
1 − 1

R2

)
.(3.6)
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The invasion reproduction number of the secondary disease measures its ability to
invade an equilibrium of the primary disease, and it is defined as

R̂2 =
(R1 − 1)μγ2D(0)

R1(μ + α2)(μ + ν)(R1 −R2)(1 − Δ)
if R1 > R2.(3.7)

It is important to point out that, due to the asymmetry of the model, R̂1 is defined
if R2 > 1, and R̂2 is defined if R1 > max(1,R2). In addition, it is possible that
R̂1 > 1 even if R1 < 1; that is, the dominance equilibrium E1 of the primary disease
does not exist, and yet the primary disease can invade the dominance equilibrium of
the secondary disease. It is also possible that R̂2 > 1 even if R2 < 1; that is, the
dominance equilibrium E2 of the secondary disease does not exist, but the secondary
disease can invade the dominance equilibrium of the primary disease.

Lemma 3.1. The curves C1 = {(R1,R2)|R̂1 = 1} and C2 = {(R1,R2)|R̂2 = 1}
enclose a nontrivial region in the positive (R1,R2) quadrant. The interior of this
region always contains an unbounded component given by inequalities R̂1, R̂2 < 1.

Proof. Using the fact that B(0) = R1, the curve C1 = {(R1,R2)|R̂1 = 1} is given
by the graph

R1 =
B(0)

B(̂i2)

(
R2 −

γ1î2D(̂i2)

μ + ν

)
=: F1(R2),

where R2 ≥ 1 and î2 = 1 − 1/R2 ≥ 0. The definition of F1 implies that F1(1) = 1,
and for large values of R2 the function

F1(R2) ≈
B(0)

B(1)
R2 +

B(0)B′(1)

B2(1)
− γ1B(0)D(1)

(μ + ν)B(1)
for R2 � 1

is approximately linear in R2 with a slope B(0)/B(1) > 1. On the other hand, the
curve C2 = {(R1,R2)|R̂2 = 1} is given by the graph

R2 = R1 −
(
1 − 1

R1

) μγ2D(0)

(μ + α2)(μ + ν)(1 − Δ)
=: F2(R1),

where R1 ≥ 1. It is easy to see that F2(1) = 1, and for large values of R1 the function

F2(R1) ≈ R1 −
μγ2D(0)

(μ + α2)(μ + ν)(1 − Δ)
for R1 � 1

is approximately linear in R1 with a unit slope. Consequently, when both R1 and R2

are large, the curve C1 lies below and to the right of the curve C2. The unbounded
region enclosed by these curves is therefore given by the inequalities R2 < F2(R1)
and R1 < F1(R2), which are equivalent to the inequalities R̂1, R̂2 < 1.

In Figure 3.1, we present a simple diagram depicting the curves C1 and C2 and
identify various parts of the region enclosed by these curves. The following theorem
establishes the existence of at least one coexistence equilibrium for any point in the
(R1,R2) plane that lies between the curves C1 and C2. In what follows, we will refer
to the region between the curves C1 and C2 as the coexistence region.

Theorem 3.2. Let

D− = {R1,R2 > 0|1 < R1 ≤ R2, R̂1 > 1},
D+ = {R1,R2 > 0|1 < R2 < R1, R̂1 > 1, R̂2 > 1},
D1 = {R1,R2 > 0|R2 < 1 < R1, R̂2 > 1},
D2 = {R1,R2 > 0|R1 < 1 < R2, R̂1 > 1},
D3 = {R1,R2 > 0|1 < R2 < R1, R̂1 < 1, R̂2 < 1};
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Fig. 3.1. A schematic diagram representing the coexistence region in the (R1,R2) plane. The

boundary of the coexistence region is formed by the curves C1 : R̂1 = 1 and C2 : R̂2 = 1. The
coexistence region (as shown) consists of the following five components: D−, where 1 < R1 < R2

and R̂1 > 1; D+, where 1 < R2 < R1 and R̂1; R̂2 > 1; D1, where R2 < 1 < R1 and R̂2 > 1;
D2, where R1 < 1 < R2 and R̂1 > 1; and finally, D3, where 1 < R2 < R1 and R̂1, R̂2 < 1. D3 is
the only component of the coexistence region that is always nonempty; the other components may
or may not exist, depending on the parameter values.

then for any (R1,R2) in the coexistence region Dc = D− ∪ D+ ∪ D1 ∪ D2 ∪ D3 there
exists at least one coexistence equilibrium for the two diseases.

Proof. The fourth equation in (3.5) implies that at a coexistence equilibrium,

j =
i(0)i2D(i2)

μ + ν
.

Substituting this expression into the second equation in (3.5), we find that

s =

(
B(i2) +

γ1i2D(i2)

μ + ν

)−1

=: S(i2).(3.8)

Now we substitute (3.8) into the third equation in (3.5) and solve for j to obtain the
expressions

j =
(μ + α2)(1 −R2S(i2))i2

γ2S(i2)
, R2 =

β2

μ + α2
,

and

i(0) =
(μ + ν)j

i2D(i2)
=

(μ + ν)(μ + α2)(1 −R2S(i2))

γ2S(i2)D(i2)
.

Finally, we express j and i1 as follows:

j =
i2(μ + α2)(1 −R2S(i2))

γ2S(i2)
=: J (i2)(3.9)



850 MAIA MARTCHEVA AND SERGEI S. PILYUGIN

and

i1 =

∫ ∞

0

i(a) da = i(0)G(i2) =
(μ + ν)(μ + α2)G(i2)(1 −R2S(i2))

γ2S(i2)D(i2)
=: I(i2),

(3.10)

where

G(i2) =

∫ ∞

0

Γ(a; i2)π1(a)e
−μada > 0, G(0) =

1 − Δ

μ
.

Since we are working with rescaled variables, the relation s + i1 + i2 + j = 1 implies
that

M(i2) := i2 + S(i2) + I(i2) + J (i2) = 1.

We note that the function S(i2) is positive for all i2 ≥ 0, and both functions I(i2),
J (i2) are positive if i2 > 0 and R2S(i2) < 1. To prove the existence of a coexistence
equilibrium it suffices to show the existence of a positive root of the equation M(i2) =
1 that satisfies R2S(i2) < 1. We also note that the function M(i2) can be equivalently
expressed as

M(i2) := i2 + S(i2) +
(μ + α2)(1 −R2S(i2))

γ2S(i2)

(
i2 +

G(i2)(μ + ν)

D(i2)

)
.

We observe that S(0) = 1/R1, and therefore

M(0) =
1

R1
+

(μ + ν)(μ + α2)G(0)(1 −R2S(0))

γ2S(0)D(0)

=
1

R1
+

(1 − Δ)(μ + ν)(μ + α2)(R1 −R2)

μγ2D(0)
.

Suppose that (R1,R2) ∈ D−, that is, 1 < R1 ≤ R2 and R̂1 > 1. It follows that
M(0) ≤ 1/R1 < 1 because R1 ≤ R2. Using the definition of R̂1, we find that R̂1 > 1
implies that R2S (̂i2) < 1. Therefore, there exist the following three possibilities:

1. If M(̂i2) = 1, then we are done because both I (̂i2) and J (̂i2) are positive.
2. If M(̂i2) > 1, then one of the following holds:

• There exists i∗2 ∈ [0, î2) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ (i∗2, î2]. In this case, we have that

M(i∗2) = i∗2 +
1

R2
= 1 + i∗2 − î2 < 1,

and since M(̂i2) > 1, there exists a number i2 ∈ (i∗2, î2) such that
M(i2) = 1, where both I(i2) and J (i2) are positive.

• R2S(i2) < 1 for all i2 ∈ (0, î2]. Then since M(0) < 1 and M(̂i2) > 1,
there exists a number i2 ∈ (0, î2) such that M(i2) = 1, where both I(i2)
and J (i2) are positive.

3. If M(̂i2) < 1, then one of the following holds:
• There exists i∗2 ∈ (̂i2, 1] such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ (̂i2, i

∗
2). In this case, we have that

M(i∗2) = i∗2 +
1

R2
= 1 + i∗2 − î2 > 1,

and since M(̂i2) < 1, there exists a number i2 ∈ (̂i2, i
∗
2) such that

M(i2) = 1, where both I(i2) and J (i2) are positive.
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• R2S(i2) < 1 for all i2 ∈ [̂i2, 1). Then we have that M(1) ≥ 1 + S(1) >
1, and since M(̂i2) < 1, there exists a number i2 ∈ (̂i2, 1) such that
M(i2) = 1, where both I(i2) and J (i2) are positive.

Therefore, there exists a coexistence equilibrium for all (R1,R2) ∈ D−.
Now suppose that (R1,R2) ∈ D+, that is, 1 < R2 < R1 and R̂1, R̂2 > 1. The

inequality R̂2 > 1 implies that M(0) < 1, and the inequality R̂1 > 1 implies that
R2S (̂i2) < 1. From this point forward, the proof of this case is analogous to the proof
of the case (R1,R2) ∈ D−.

Suppose that (R1,R2) ∈ D2, that is, R1 < 1 < R2 and R̂1 > 1. As before,
the inequality R̂1 > 1 implies that R2S (̂i2) < 1. On the other hand, we have
that R2S(0) = R2/R1 > 1. Now, if M(̂i2) ≤ 1, the proof is analogous to the
proof of the case (R1,R2) ∈ D−. If M(̂i2) > 1, then there exists i∗2 ∈ (0, î2) such
that R2S(i∗2) = 1 and R2S(i2) < 1 for all i2 ∈ (i∗2, î2]. In addition, we have that
M(i∗2) = i∗2 +1/R2 = 1+ i∗2− î2 < 1. Consequently, there exists a number i2 ∈ (i∗2, î2)
such that M(i2) = 1. This concludes the proof of the case (R1,R2) ∈ D2.

Suppose that (R1,R2) ∈ D1, that is, R2 < 1 < R1 and R̂2 > 1. As before, the
inequality R̂2 > 1 implies that M(0) < 1, but the value of î2 = 1 − 1/R2 < 0 since
R2 < 1. Instead, we have that R2S(0) = R2/R1 < 1. Suppose that there exists
i∗2 ∈ (0, 1) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all i2 ∈ (0, i∗2). Then we have
that M(i∗2) = i∗2 + 1/R2 > 1/R2 > 1 and there exists a number i2 ∈ (0, i∗2) such that
M(i2) = 1. If no such i∗2 exists, we have that R2S(i2) < 1 for all i2 ∈ (0, 1). Since
M(1) ≥ 1 + S(1) > 1, there exists a number i2 ∈ (0, 1) such that M(i2) = 1. This
concludes the proof of the case (R1,R2) ∈ D1.

Finally, suppose that (R1,R2) ∈ D3, that is, 1 < R2 < R1 and R̂1, R̂2 < 1.
The inequality R̂2 < 1 implies that M(0) > 1, and the inequality R̂1 < 1 implies
that R2S (̂i2) > 1. In addition, since R1 > R2, we have that R2S(0) < R1S(0) = 1.
Therefore, there exists i∗2 ∈ (0, î2) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ [0, i∗2). Since M(i∗2) = 1+ i∗2 − î2 < 1, there exists a number i2 ∈ (0, i∗2) such that
M(i2) = 1. This concludes the proof of the theorem.

Remark. Each of the subregions comprising the coexistence region Dc has a clear
epidemiological interpretation. These regions are presented in Figure 3.1.

If (R1,R2) ∈ D−∪D+, then both dominance equilibria E1 and E2 exist, and each
disease can invade the equilibrium of the other disease. The difference between D−
and D+ is that R̂2 is defined only for (R1,R2) ∈ D+.

If (R1,R2) ∈ D1, then only the dominance equilibrium of the primary disease E1

exists, and the secondary disease can invade the equilibrium of the primary disease.
Although the secondary disease cannot persist in the absence of the primary disease,
the presence of the primary disease mediates the coexistence.

If (R1,R2) ∈ D2, then only the dominance equilibrium of the secondary disease
E2 exists, and the primary disease can invade the equilibrium of the secondary disease.
Although the primary disease cannot persist in the absence of the secondary disease,
the presence of the secondary disease mediates the coexistence.

If (R1,R2) ∈ D3, then both dominance equilibria E1 and E2 exist, but neither
disease can invade the equilibrium of the other disease.

4. Extinction of one or both diseases. In this section we provide the condi-
tions that guarantee that one of the diseases or both of them will be eliminated from
the population. These are global conditions in the sense that if they are satisfied,
extinction occurs for all other values of the parameters and all initial conditions. As
we show in section 6, there could be a backward bifurcation with respect to both R1
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and R2, and therefore there could exist multiple coexistence equilibria even if R1 < 1
and R2 < 1. Thus, R1 < 1 and R2 < 1 by themselves do not necessarily imply
extinction of one or both diseases. In what follows, we show that the diseases vanish
if, in addition, γ1 = 0 or γ2 = 0.

We denote the initial conditions by S(0) = S0, i(a, 0) = i0(a), I2(0) = I0
2 , and

J(0) = J0.
Theorem 4.1. Assume that i0(a) is integrable. If γ1 = 0 or γ2 = 0 and R1 <

1, R2 < 1, then both diseases become extinct in the sense that limt→∞ i(a, t) = 0
pointwise for every a, I2 → 0 as t → ∞, and J → 0 as t → ∞.

Proof. Assume γ1 = 0. Let B(t) = i(0, t). Neglecting the term dependent on I2,
we obtain a differential inequality for the primary disease. Integrating this inequality
along the characteristic lines, we have

i(a, t) ≤

⎧⎪⎨
⎪⎩
i0(a− t)

π(a)

π(a− t)
e−μt, a ≥ t,

B(t− a)π(a)e−μa, a < t.

(4.1)

Since γ1 = 0 we have

B(t) ≤
∫ t

0

β1(a)B(t− a)π1(a)e
−μada + e−μt

∫ ∞

t

β1(a)i0(a− t)da.

Consequently, taking a limsup of both sides as t → ∞, we obtain lim supt→∞ B ≤
R1 lim supt→∞ B(t). Since R1 < 1 and lim supt→∞ B < ∞, this inequality can be sat-
isfied only if lim supt→∞ B(t) = 0. This, in particular, implies that i(a, t) approaches
zero as t → ∞ for every fixed a. From the equation for J we then have the following
inequality:

J(t) ≤ e−(μ+ν)tJ0 +

∫ t

0

e−(μ+ν)s

∫ ∞

0

δ(a)i(a, t− s)dads.

Since δ(a) is bounded and the integral of i(a, t) goes to zero, I1(t) → 0 as t → ∞,
we get that lim supt→∞ J(t) = 0. Consequently, the equality for I2 in (2.1) leads to
the following differential inequality: I ′2 ≤ β2I2 + γ2J(t)− (μ+α2)I2. Integrating this
inequality, we obtain

I2(t) ≤ e−(μ+α2)tI2(0) + β2

∫ t

0

e−(μ+α2)τI2(t− τ)dτ + γ2

∫ t

0

e−(μ+α2)τJ(t− τ)dτ.

Taking a limsup as t → ∞ on both sides of this inequality, we obtain lim supt→∞ I2(t)
≤ R2 lim supt→∞ I2(t). Since R2 < 1, this inequality implies lim supt→∞ I2(t) = 0.

If γ2 = 0, then the proof is symmetrical and somewhat analogous. Thus, it will
be omitted. That concludes the proof of this theorem.

As a special case of the theorem above, we have the following results on extinction
of one of the diseases.

Corollary 4.2. Assume that i0(a) is integrable. If γ1 = 0 and R1 < 1, then
the primary disease becomes extinct in the sense that limt→∞ i(a, t) = 0 pointwise for
every a. As a consequence, J(t) → 0 as t → ∞.

A similar result for the secondary disease is also valid.
Corollary 4.3. If γ2 = 0 and R2 < 1, then the secondary disease becomes

extinct; that is, I2(t) → 0 as t → ∞. As a consequence, J(t) → 0 as t → ∞.



THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS 853

A special instance which deserves consideration is the one with δ(a) = 0. In
this case there is no coinfection, and the jointly infected class J vanishes. Only
three equilibria are possible—the coexistence equilibrium does not exist. The main
question is: does the competitive exclusion principle hold for the two diseases with no
coinfection? This question can be answered positively in the case when all coefficients
are constant and the model (2.1) consists of ODEs only. Then, with δ = 0, it becomes a
particular case of a more general model considered in [4]. The results there imply that
the competitive exclusion holds and that only the disease with higher reproduction
number persists in the population; the other one becomes extinct.

We have not been able to establish whether competitive exclusion for the model
(2.1) with δ(a) = 0 is the only possible outcome in the strictly age-structured case.
Although there is no coexistence equilibrium, coexistence might still be possible in
the form of, say, a stable oscillatory solution. Such a situation has been found to
occur in model ecosystems such as the chemostat [3, 5, 18]. This option is even more
plausible here, given that the dominance equilibrium of the primary disease can lose
stability due to the age-structure, and oscillatory solutions are present (see section 5.2
for more detailed discussion). Despite the oscillatory solutions, simulations lead to
extinction of the disease with lower reproduction number. Thus, we conjecture that
competitive exclusion is still the norm. A rigorous justification, however, remains an
open problem.

5. Local stability of equilibria. In this section we investigate the local sta-
bility of the equilibria. In particular, we derive conditions for the stability of the
disease-free equilibrium and of the secondary disease dominance equilibrium. We also
show that Hopf bifurcation occurs in the coexistence equilibrium. The stability of
equilibria determines conditions under which the ultimate outcome will be elimina-
tion of both diseases, dominance of the primary disease, dominance of the secondary
disease, or endemic presence of both of them.

To investigate the stability of the equilibria, we linearize the model (2.1). In
particular, let x(t), y(a, t), z(t), and w(t) be the perturbations of, respectively, S∗,
i∗(a), I∗2 , and J∗. That is, S = S∗ + x, i = i∗ + y, I2 = I∗2 + z, J = J∗ + w.
Thus the perturbations satisfy a linear system. Further, we consider the eigenvalue
problem for the linearized system. We will denote the eigenvector again with x, y(a),
z, and w. These satisfy the following linear eigenvalue problem (here s, i, i2, and j
are the proportions in the corresponding equilibrium):

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(i2) − β2sz − β2xi2 +

∫ ∞

0

α1(a)y(a)da

− (γ1 + γ2)sw − (γ1 + γ2)xj − μx + α2z,

y′(a) = −λy − α1(a)y − δ(a)i2y − δ(a)i(a)z − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(i2) + γ1sw + γ1xj,

λz = β2sz + β2i2x + γ2sw + γ2jx− (μ + α2)z,

λw = i2

∫ ∞

0

δ(a)y(a)da + zi(0)D(i2) − (μ + ν)w.

(5.1)

5.1. Stability of the disease-free equilibrium. For the disease-free equilib-
rium we have i(0) = 0, i2 = 0, j = 0, and s = 1. Thus the system above simplifies to
the following system:



854 MAIA MARTCHEVA AND SERGEI S. PILYUGIN

λx = −
∫ ∞

0

β1(a)y(a)da− β2z − (γ1 + γ2)w − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − μy,

y(0) =

∫ ∞

0

β1(a)y(a)da + γ1w,

λz = β2z + γ2w − (μ + α2)z,

λw = −(μ + ν)w.

(5.2)

From this system we will establish the following result regarding the local stability of
the disease-free equilibrium E0.

Proposition 5.1. If R1 < 1 and R2 < 1, then the disease-free equilibrium E0 is
locally asymptotically stable. If R1 > 1 or R2 > 1, then the disease-free equilibrium
E0 is unstable.

Proof. To see this, first notice that from the last equation we have either λ =
−(μ + ν), which is the first eigenvalue, or w = 0. From the second-to-last equation
we have λz = β2z − (μ + α2)z, where either λ = β2 − (μ + α2) or z = 0. This
eigenvalue λ = β2 − (μ + α2) < 0 if and only if R2 < 1. Thus, if R2 > 1, the disease-
free equilibrium E0 is unstable because this eigenvalue is positive. Further, from the
second equation we have that the remaining eigenvalues satisfy the equation, also
referred to as the characteristic equation,

∫ ∞

0

β1(a)e
−(λ+μ)aπ1(a)da = 1.(5.3)

Denoting the left-hand side of the equation above by G(λ), where λ is in general a
complex number, assume 
λ ≥ 0. For such λ we have |G(λ)| ≤ G(
λ). Furthermore,
G(
λ) is a decreasing function of 
λ. Consequently,

|G(λ)| ≤ G(
λ) ≤ G(0) = R1 < 1.

Thus, if both R1 < 1 and R2 < 1, all eigenvalues have negative real part, and the
disease-free equilibrium E0 is locally asymptotically stable. If only R1 > 1, then if we
consider G(λ) for λ real, we see that G(λ) is a decreasing function of λ approaching zero
as λ approaches infinity. Since G(0) = R1 > 1, that implies that there is a positive
eigenvalue λ∗ > 0, and the disease-free equilibrium E0 is unstable. This concludes the
proof.

5.2. Stability of the primary disease equilibrium. In this subsection we
discuss the local stability of the equilibrium E1 and derive conditions for dominance
of the primary disease. We show that the equilibrium E1 can lose stability, and
dominance of the first disease is possible in the form of sustained oscillation. In this
case i2 = 0, j = 0, s = 1

R1
, and i(a) = i(0)π1(a)e

−μa, where

i(0) =
μ
(
1 − 1

R1

)
1 − Δ

.(5.4)
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The eigenvalue problem takes the form

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(0) − β2s z

− (γ1 + γ2)sw − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − δ(a)i(a)z − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(0) + γ1sw,

λz = β2sz + γ2sw − (μ + α2)z,

λw = zi(0)D(0) − (μ + ν)w.

(5.5)

From the last equation we have

w =
zi(0)D(0)

λ + μ + ν
.

Substituting in the equation for z, assuming z is nonzero, and canceling z, we arrive
at the following characteristic equation:

γ2si(0)D(0)

(λ + μ + ν)(λ + μ + α2 − β2s)
= 1.(5.6)

We are now ready to establish the first result.
Proposition 5.2. Let R1 > 1 and R1 > R2. Then the equilibrium E1 is

unstable if the secondary disease can invade the equilibrium of the primary disease,
that is, R̂2 > 1. If R̂2 < 1, then all solutions to the characteristic equation (5.6)
have negative real part.

Proof. To see these results, denote by G(λ) the left-hand side of the characteristic
equation (5.6). First, we notice that, using the values of s and i(0), we have

G(0) =
γ2si(0)D(0)

(μ + ν)(μ + α2 − β2s)
=

μγ2

(
1 − 1

R1

)
D(0)

(1 − Δ)(μ + α2)(μ + ν)(R1 −R2)
= R̂2.(5.7)

First, in the case R̂2 > 1 we have that G(0) > 1. In addition, if G(λ) is considered
as a function of a real variable, we see that G(λ) → 0 as λ → ∞. Since R1 > R2,
G(λ) is also a continuous function of λ for λ ≥ 0. Consequently, there exists λ∗ > 0
such that G(λ∗) = 1. Thus, E1 is unstable.

In the case when R̂2 < 1 we have for λ’s with 
λ ≥ 0

|G(λ)| =
γ2si(0)D(0)

|λ + μ + ν||λ + μ + α2 − β2s|

≤ γ2si(0)D(0)

(
λ + μ + ν)(
λ + μ + α2 − β2s)
≤ G(0) = R̂2 < 1.

Consequently, the equation G(λ) = 1 has no solutions with nonnegative real parts.
This concludes the proof of the proposition.

We note that the fact that all solutions to the characteristic equation (5.6) have
negative real part does not yet imply that E1 is stable, since there is a second charac-
teristic equation associated with this case. For stability both characteristic equations
must have only roots with negative real parts.
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Next, we extend the result above to the case R1 < R2. In particular, we have
the following result.

Proposition 5.3. Let R1 > 1. If R1 < R2, then the equilibrium E1 is unstable.
Proof. To see that, we rewrite the characteristic equation (5.6) in the form

γ2si(0)D(0)

λ + μ + ν
= λ + μ + α2 − β2s.(5.8)

We notice that μ + α2 − β2s = (μ + α2)(1 − R2

R1
), which is negative. Let λ∗ =

−(μ + α2 − β2s) > 0. Thus for λ ≥ λ∗ the expression λ + μ + α2 − β2s, considered
as a function of the real variable λ, is increasing from zero to infinity. On the other
hand, for λ ≥ λ∗ the expression

γ2si(0)D(0)

λ + μ + ν

is decreasing from some positive value to zero. Thus, there is a unique positive (ac-
tually larger than λ∗) solution of (5.8). Consequently, E1 is unstable. This completes
the proof.

We continue with our consideration of the system (5.5). If we assume that z = 0,
that implies w = 0. In this case the remaining two equations become

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(0) − μx +

∫ ∞

0

α1(a)y(a)da,

y′(a) = −λy − α1(a)y − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(0).

(5.9)

Solving the differential equation, substituting in the equation for x and the initial
condition, we obtain a system in x and y(0) which has a nontrivial solution if and
only if the following characteristic equation is satisfied:

(λ + μ)sB2(λ) = λ + μ + i(0)B(0)(1 −A2(λ)),(5.10)

where the following notation has been used:

B2(λ) =

∫ ∞

0

β1(a)π1(a)e
−(λ+μ)ada, A2(λ) =

∫ ∞

0

α1(a)π1(a)e
−(λ+μ)ada.

If we define

E2(λ) =

∫ ∞

0

π1(a)e
−(λ+μ)ada,

we can notice that integration by parts leads to the equality 1−A2(λ) = (λ+μ)E2(λ).
Consequently the characteristic equation (5.10) has one eigenvalue equal to −μ. The
remaining eigenvalues satisfy the following reduced characteristic equation:

sB2(λ) = 1 + i(0)B(0)E2(λ).(5.11)

This equation clearly does not have real nonnegative solutions since for λ real and non-
negative the left-hand side is smaller than one, while the right-hand side is larger than
one. However, the dominant eigenvalue is not necessarily real—it may be complex
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with nonnegative real part. Thus, the dominance equilibrium of the primary disease
may lose stability, and oscillations are possible. We include an example and results
of simulations later in this section. First, we show that the mechanism responsible
for the instability of the primary disease equilibrium is the presence of infection-age
structure and variable infectivity. Indeed, if β1(a) = β1 and α1(a) = α1 are con-
stants, then i(0)B(0) = β1i, where i is the proportion infected with primary disease.
In addition, B2(λ) = β1E2(λ) and E2(λ) = (λ + μ + α1)

−1. Hence, in the constant
coefficient case the characteristic equation (5.11) becomes λ+μ+α1 +β1i−β1s = 0.
Since β1s = μ+α1, the only eigenvalue is −β1i and is clearly negative. We formulate
this result in the following proposition.

Proposition 5.4. Let β1(a) = β1 and α1(a) = α1 be constants. Let R1 > 1.
Assume that R1 > R2 and that the secondary disease cannot invade the equilibrium of
the primary disease; that is, R̂2 < 1. Then the equilibrium E1 is locally asymptotically
stable. If R̂2 > 1, the equilibrium E1 is unstable.

We conclude this section with an example that the presence of infection-age struc-
ture may lead to loss of stability of the dominance equilibrium of the primary disease
and oscillations. For this specific example the characteristic equation (5.11) has a
complex root with a positive real part. Simulations show the presence of a stable
oscillatory solution with persistence of the primary disease only.

Consider the following values for the parameters: δ(a) = 0, μ = 0.05, γ1 = 0.1,
ν = 0. The recovery rate for the primary disease is

α1(a) =

{
0, 0 ≤ a < 3,

1.58259, a ≥ 3.
(5.12)

The transmission coefficient for the primary disease is

β1(a) =

{
2.33193e2a, 0 ≤ a < 1,

0, a ≥ 1.
(5.13)

The parameters related to the secondary disease are not relevant as I2 → 0 and J → 0,
but they were chosen as follows: β2 = 0.2, α2 = 0.1, γ2 = 8. The recruitment rate
Λ = 1. With these parameters the reproduction numbers are R1 = 7.207464746 and
R2 = 1.3333. The characteristic equation (5.11) has a root 0.05 + iπ2 (here i denotes

the imaginary unit, i =
√
−1). The initial conditions for the primary disease are

chosen close to the equilibrium: S0 = 2.77, I2(0) = 0, J0 = 0,

i0(a) =

{
5.2e−0.05a, 0 ≤ a < 3,

5.2e−1.58259(a−3)e−0.05a, a ≥ 3.
(5.14)

The results of the simulations are given in Figure 5.1. The step-size is 0.01, and
the integration in age is for up to 100 units. Both figures give the dynamics of the
proportion of all cases of the primary disease in the total population as a function of
time, that is I1

N , where I1 is the integral in age of i(a, t).
In the first figure all oscillations are presented. They are so dense that the space

they occupy looks like a solid. The oscillations grow in magnitude up to time unit
1000, and then they stabilize in magnitude. The solution takes a long time to stabilize
into sustained oscillations because the real part of the eigenvalue with positive real
part is relatively small: 0.05. In the second figure a zoomed-in picture is presented
for the oscillations between time units 1900 and 1950.
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Fig. 5.1. Left: the proportion of individuals infected with the primary disease I1
N

, where I1 is
the integral in age of i(a, t) for up to 2000 time units. The horizontal axis shows the time. Right:
a sample of the solution between the time units 1900 and 1950. The numerical solution exhibits
sustained oscillations.

5.3. Stability of the secondary disease equilibrium. In this subsection
we establish the local stability properties of the equilibrium E2 whenever it exists.
Thus, unlike E1, the presence of host age-structure does not lead to oscillations in the
dominance equilibrium of the secondary disease. In this case i(0) = 0, j = 0, s = 1

R2
,

and i2 = î2 = 1 − 1
R2

. The linear eigenvalue problem becomes

λx = −s

∫ ∞

0

β1(a)y(a)da− β2sz − β2xi2

− (γ1 + γ2)sw − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − δ(a)i2y − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + γ1sw,

λz = β2sz + β2i2x + γ2sw − (μ + α2)z,

λw = i2

∫ ∞

0

δ(a)y(a)da− (μ + ν)w.

(5.15)

From the last equation we have

w =
i2

λ + μ + ν

∫ ∞

0

δ(a)y(a)da.

From the equation for y(a) we have

y(a) = y(0)Γ(a; i2)π1(a)e
−(λ+μ)a.

Substituting in the equation for the initial condition y(0) and assuming that y(0) �= 0,
we obtain the following characteristic equation:

sB1(λ) +
γ1si2

λ + μ + ν
D1(λ) = 1,(5.16)
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where we have used the notation

B1(λ) =

∫ ∞

0

β1(a)Γ(a; i2)π1(a)e
−(λ+μ)ada,

D1(λ) =

∫ ∞

0

δ(a)Γ(a; i2)π1(a)e
−(λ+μ)ada.

Clearly, B1(0) = B(i2) and D1(0) = D(i2). Now we are ready to prove the main
result in this subsection.

Theorem 5.5. Let R2 > 1. Assume that the primary disease cannot invade
the equilibrium of the secondary disease; that is, R̂1 < 1. Then the equilibrium E2 is
locally asymptotically stable, and the secondary disease dominates in the population.
If R̂1 > 1, the equilibrium E2 is unstable.

Proof. Denote by G(λ) the left-hand side of the characteristic equation (5.16).
We notice that

G(0) = R̂1.

First we assume that R̂1 > 1. We consider G(λ) as a function of a real variable. We
have G(0) = R̂1 > 1. In addition, G(λ) → 0 as λ → ∞. Consequently, there exists
λ∗ > 0 such that G(λ∗) = 1 and the equilibrium E2 is unstable.

Next, we assume R̂1 < 1. For λ’s with real part 
λ ≥ 0 we have

|G(λ)| ≤ s|B1(λ)| + γ1si2
|λ + μ + ν| |D1(λ)|

≤ sB1(
λ) +
γ1si2


λ + μ + ν
D1(
λ)

≤ sB(i2) +
γ1si2
μ + ν

D(i2) = R̂1 < 1.

Thus, the characteristic equation (5.16) has no solution with nonnegative real part.
Furthermore, for y(0) = 0 we have that y(a) = 0 and w = 0. The remaining two
equations become

λx = −β2sz − β2xi2 − μx + α2z,
λz = β2sz + β2i2x− (μ + α2)z.

(5.17)

We express x from the first equation,

x =
(−β2s + α2)z

λ + μ + β2i2
,

and substitute in the equation for z. Assuming that z is nonzero, we cancel it to
obtain the following characteristic equation:

(λ + μ)(λ + μ + α2 + β2i2 − β2s) = 0.

Noticing that β2s = μ+α2, we obtain the eigenvalues −μ and −β2i2, which are both
negative. Consequently, the equilibrium E2 is locally asymptotically stable. This
concludes the proof.
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5.4. Loss of stability of a coexistence equilibrium—Oscillatory coex-
istence. The stability of the coexistence equilibria depends on the analysis of the
perturbation equations (5.1). For the general case, however, it is difficult to derive
the corresponding characteristic equation, let alone analyze the positions of its roots.
Since the main thrust is that a characteristic equation of this complexity is likely
to have roots with positive real part, we address the more interesting and tractable
question of whether a Hopf bifurcation of a coexistence equilibrium can occur in the
absence of age structure, that is, in the case when β1(a) = β1, α1(a) = α1, and
δ(a) = δ. We established that in the constant coefficient case the two dominance
equilibria are locally stable. Some additional but simple argument shows that in the
absence of the second disease, the solutions converge to the dominance equilibrium,
provided that the reproduction number is larger than one and that no oscillations are
possible. Thus, if a Hopf bifurcation occurs, the loss of stability of the coexistence
equilibrium is due to the presence of the competitor.

It turns out that a Hopf bifurcation of the coexistence equilibrium occurs for
a limiting and much simpler form of the original system (2.1) taken with constant
coefficients corresponding to α1 = α2 = γ1 = ν = 0. Since ν = 0, the total population
size is asymptotically constant, N(t) → Λ

μ = N∗. We will restrict our analysis to this

invariant subspace [21]. We further rescale all state variables by 1/N∗ and consider
the system

i′1 = β1si1 − μi1 − δi1i2,

i′2 = β2si2 + γ2sj − μi2,(5.18)

j′ = δi1i2 − μj,

where s ≡ 1 − i1 − i2 − j. We establish the existence of Hopf bifurcation for values
of the parameters satisfying the inequalities β2 < μ < β1 < γ2. In this case, we have
that

R1 =
β1

μ
> 1 >

β2

μ
= R2,

which implies that E2 does not exist, and the secondary disease alone is always elim-
inated. Hence, the coexistence of both diseases must be mediated by the presence of
the competitor, that is, the primary disease.

It is convenient to fix the parameters μ, β1, β2, and γ2 and treat δ as a bifurcation
parameter. Solving for positive coexistence equilibria, we find

s =
μγ2 + γ2δ − β1μ

γ2(δ + β1) − β1β2
, i1 =

μ2 − β2μs

γ2δs
, i2 =

β1s− μ

δ
, j =

δi1i2
μ

.

Under the above conditions, s and i1 are automatically positive. The value of i2 is
positive if and only if δ > δ∗, where

δ∗ =
μβ1(β1 − β2)

γ2(β1 − μ)
.

Since we consider δ as a bifurcation parameter, we view the values of the positive
equilibrium as functions of delta: s = s(δ), i1 = i1(δ), i2 = i2(δ), j = j(δ). The
variational matrix of the system (5.18) at the positive equilibrium (i1, i2, j) is given
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by

A(δ) =

⎛
⎝ −β1i1 −(β1 + δ)i1 −β1i1
−β2i2 − γ2j β2s− μ− β2i2 − γ2j γ2(s− j) − β2i2

δi2 δi1 −μ

⎞
⎠ .(5.19)

Calculating the determinant of A(δ), we find that detA(δ) = δi1i2[β1μ − γ2(μ + δ)].
Hence, detA(δ) < 0 whenever δ > δ∗ (since then i2 > 0). Since s(δ∗) = μ

β1
, i1(δ

∗) =

1 − μ
β1

, and i2(δ
∗) = j(δ∗) = 0, we have that

A(δ∗) =

⎛
⎜⎝
μ− β1 (β1 + δ)μ−β1

β1
μ− β1

0
(

β2

β1
− 1

)
μ γ2μ

β1

0 δ∗ β1−μ
β1

−μ

⎞
⎟⎠ .

The eigenvalues of A(δ∗) are given by λ1 = μ− β1 < 0, λ2 = (β2

β1
− 2)μ < 0, λ3 = 0.

Using the continuity of eigenvalues with respect to δ, we conclude that A(δ) has three
negative eigenvalues when δ is slightly greater than δ∗. Hence, the positive equilibrium
is stable for “small” δ > δ∗.

Next we argue that the positive equilibrium is unstable for sufficiently large values
of δ. First we notice that limδ→∞ s(δ) = 1. Furthermore,

lim
δ→∞

δi1(δ) =
μ2 − β2μ

γ2
, lim

δ→∞
δi2(δ) = β1 − μ, lim

δ→∞
j(δ) = 0.

Thus, we have that

lim
δ→∞

A(δ) = A∞ =

⎛
⎜⎝ 0 −μ2−β2μ

γ2
0

0 β2 − μ γ2

β1 − μ μ2−β2μ
γ2

−μ

⎞
⎟⎠ .

The characteristic polynomial of A∞ has the form

p∞(λ) = λ3 + (2μ− β2)λ
2 + (β1 − μ)(μ2 − β2μ).

Since 2μ− β2 > 0 and (β1 − μ)(μ2 − β2μ) > 0, p∞(λ) has one real negative and two
complex roots with positive real parts. We conclude that the positive equilibrium
changes stability as we increase δ. Since the determinant of the variational matrix
remains negative for all δ > δ∗, the change of stability corresponds to a Hopf bi-
furcation. The rigorous analysis of this bifurcation is outside of the scope of this
paper.

A continuation argument can establish that this bifurcation must also occur when
the parameters α1, α2, γ1, and ν are small and positive. In Figure 5.2 we demonstrate
the presence of oscillatory coexistence when α1, α2, and γ1 are small and positive.
The figure shows a periodic orbit in the three-dimensional space of the variables I1(t),
I2(t), and J(t). In this example the parameter values are taken as β1 = 10, β2 = 0.2,
α1 = 1, α2 = 0.1, μ = 1, δ = 4, ν = 0, γ1 = 0.1, γ2 = 80, Λ = 1. Since Λ

μ = 1 the
values of I1, I2, and J are also the values of the proportions. The reproduction number
of the primary disease is R1 = 5, while the reproduction number of the secondary
disease is below one, R2 = 0.18182. Despite the fact that R1 � R2, the prevalence
for the secondary disease I2 is much higher than that of the primary disease I1—a
result of the very high rate at which the jointly infected individuals can infect with
the secondary disease γ2 = 80.
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Fig. 5.2. Existence of a periodic orbit for the age-independent case. Values of the parameters
are as in the text.

6. Backward bifurcation. In this section we analyze the existence of backward
bifurcations in the system (2.1). In the single disease case, a backward bifurcation
occurs when the equilibrium number (or proportion) of infectives bifurcates at the
critical value of the reproduction number R = 1 not forward but backward, and there
are nontrivial equilibria when the reproduction number is below one.

In the case of two diseases, an analogous phenomenon occurs when the equilibrium
number (or proportion) of infectives with each disease i1 and i2 bifurcates backward
in both parameters R1 and R2, and nontrivial equilibria exist for values of both
reproduction numbers below one. We will call this phenomenon a two-parameter
backward bifurcation. In what follows we derive necessary and sufficient conditions for
two-parameter backward bifurcation.

We treat β1(a) and β2 (equivalently, R1 and R2) as bifurcation parameters and
assume that all other parameters are fixed. Specifically, we define

β1(a, ε1) = β̃1(a)(1 + ε1ṽ1(a)), β2(ε2) = β̃2(1 + ε2),

so that β̃2 = α2 + μ and the functions β̃1(a) and ṽ1(a) are normalized as follows:

∫ ∞

0

β̃1(a)π1(a)e
−μa da =

∫ ∞

0

β̃1(a)ṽ1(a)π1(a)e
−μa da = 1.

In this setting, the choice ε1 = ε2 = 0 corresponds to the basic reproduction numbers
of both strains being equal to unity, that is, R1 = R2 = 1. We also introduce the
auxiliary functions

B(i2, ε1) =

∫ ∞

0

β̃1(a)(1 + ε1ṽ1(a))Γ(a; i2)π1(a)e
−μa da,(6.1)

G(i2) =

∫ ∞

0

Γ(a; i2)π1(a)e
−μa da,(6.2)

where Γ(a; i2) is given by (3.3). Previously, we have shown that the fraction of sus-



THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS 863

ceptible individuals at the coexistence equilibrium must equal

s =

(
B(i2, ε1) +

γ1i2D(i2)

μ + ν

)−1

= S(i2, ε1),

where i2 is the fraction of individuals infected by secondary infection. Solving for
i(0), we find that

i(0) = (μ + ν)(μ + α2)
1 − (1 + ε2)S(i2, ε1)

γ2S(i2, ε1)D(i2)
= T (i2, ε1, ε2),

and thus the total fraction of individuals infected by primary infection is given by
i1 = G(i2)T (i2, ε1, ε2). The fraction of individuals carrying both infections can be
expressed as

j =
i2D(i2)T (i2, ε1, ε2)

μ + ν
.

The relation s + i1 + i2 + j = 1 now can be written as

M(i2, ε1, ε2) = i2 + S(i2, ε1) + G(i2)T (i2, ε1, ε2) +
i2D(i2)T (i2, ε1, ε2)

μ + ν
= 1.

Since

S(0, 0) =
1

B(0, 0)
=

(∫ ∞

0

β̃1(a)π1(a)e
−μa da

)−1

= 1,

we find that T (0, 0, 0) = 0 and M(0, 0, 0) = 1. For a given pair (ε1, ε2), we define the
equilibrium values of i2(ε1, ε2) as an implicit solution of the equation M(i2, ε1, ε2) = 1.
The corresponding equilibrium values i1(ε1, ε2) are obtained from i1 = G(i2)T (i2, ε1, ε2).
The backward bifurcation occurs whenever both functions i1(ε1, ε2) and i2(ε1, ε2) have
positive values for (perhaps some) ε1, ε2 < 0. To pose the conditions for backward
bifurcation we need all partial derivatives ∂im

∂εn
(0, 0), where m,n = 1, 2.

We compute the required partial derivatives. First, we have

∂B

∂i2
(0, 0) = −

∫ ∞

0

β̃1(a)π1(a)e
−μa

(∫ a

0

δ(s) ds

)
da = −δ̂ < 0.

Next, if we define

σ = δ̂ − γ1D(0)

μ + ν
, τ =

(μ + ν)(μ + α2)

γ2D(0)
,

then the remaining partial derivatives are given by

∂S

∂ε1
(0, 0) = −1,

∂S

∂i2
(0, 0) = σ,

∂T

∂ε1
(0, 0, 0) = τ,

∂T

∂ε2
(0, 0, 0) = −τ,

∂T

∂i2
(0, 0, 0) = −τσ.

Finally, we have that

∂M

∂i2
(0, 0, 0) = 1 + (1 −G(0)τ)σ,

∂M

∂ε1
(0, 0, 0) = −1 + G(0)τ,

∂M

∂ε2
(0, 0, 0) = −G(0)τ.

(6.3)
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Using the implicit function theorem, we find the derivatives of i2 and, as a result,
those of i1:

∂i2
∂ε1

(0, 0) =
1 −G(0)τ

1 + (1 −G(0)τ)σ
,

∂i1
∂ε1

(0, 0)=
G(0)τ

1 + (1 −G(0)τ)σ
,(6.4)

∂i2
∂ε2

(0, 0) =
G(0)τ

1 + (1 −G(0)τ)σ
,

∂i1
∂ε2

(0, 0)=
−G(0)τ(1 + σ)

1 + (1 −G(0)τ)σ
.(6.5)

Since G(0)τ > 0, all of these partial derivatives are negative if and only if

1 + (1 −G(0)τ)σ < 0 and 1 −G(0)τ > 0.(6.6)

Note that (6.6) enforces σ < −1.
Since we consider a two-parameter bifurcation, it may occur for all pairs (ε1, ε2)

or only for some pairs (ε1, ε2). We will call a backward bifurcation total if the positive
equilibrium exists for all pairs (ε1, ε2) with sufficiently small εk < 0, k = 1, 2. We will
call a backward bifurcation partial if the positive equilibrium exists for some pairs
(ε1, ε2) with sufficiently small εk < 0, k = 1, 2. In what follows, we argue that the
model (2.1) admits only total backward bifurcations.

Indeed, a partial backward bifurcation occurs if and only if there exist pairs of
positive numbers (ω1, ω2) such that

ω1
∂i1
∂ε1

(0, 0) + ω2
∂i1
∂ε2

(0, 0) < 0,

ω1
∂i2
∂ε1

(0, 0) + ω2
∂i2
∂ε2

(0, 0) < 0.

In contrast, total backward bifurcation occurs if the above inequalities are valid for
all pairs of nonnegative numbers (ω1, ω2). These inequalities are equivalent to

(1 −G(0)τ) + ωG(0)τ

1 + (1 −G(0)τ)σ
< 0,(6.7)

G(0)τ(1 − ω(1 + σ))

1 + (1 −G(0)τ)σ
< 0,(6.8)

where ω = ω2/ω1 > 0 (we assume ω1 > 0). We also note that G(0)τ > 0.
Suppose that 1 + (1 −G(0)τ)σ > 0. Then (6.7)–(6.8) imply that σ > −1 and

1

1 + σ
< ω <

G(0)τ − 1

G(0)τ
,

and thus G(0)τ < (G(0)τ − 1)(1 +σ). The last inequality clearly contradicts 1 + (1−
G(0)τ)σ > 0. No backward bifurcations occur in this case.

Now suppose that 1 + (1 −G(0)τ)σ < 0. Then (6.7)–(6.8) imply that

ω >
G(0)τ − 1

G(0)τ
, 1 − ω(1 + σ) > 0.

If 1 + σ > 0, then the second inequality implies that

G(0)τ − 1

G(0)τ
< ω <

1

1 + σ
,



THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS 865

and thus G(0)τ > (G(0)τ − 1)(1 + σ), which is a contradiction. If 1 + σ < 0, then
1 − ω(1 + σ) > 0 holds for all ω > 0. On the other hand, we must have that σ < 0
and

G(0)τ <
1 + σ

σ
< 1.

Therefore, (1 −G(0)τ) + ωG(0)τ > 0 also holds for all ω ≥ 0. In this case, the
backward bifurcation is total. We conclude that only total backward bifurcations
may occur in this model, and the criterion is given by (6.6). We summarize this result
in the following proposition.

Proposition 6.1. The model (2.1) exhibits the backward bifurcation if and only
if

1 + (1 −G(0)τ)σ < 0 and 1 −G(0)τ > 0.(6.9)

If at least one of the inequalities in (6.9) does not hold, then the model (2.1) does
not admit any nontrivial equilibria with R1,R2 < 1. If both inequalities in (6.9)
hold, then the backward bifurcation is total; that is, there exists a sufficiently small
0 < ε0 < 1 such that the model (2.1) admits nontrivial equilibria for all pairs of the
reproduction numbers (R1,R2) such that 1 − ε0 < R1,R2 < 1.

7. Numerical results. In this section we consider several types of complex
behavior which stem largely from the presence of coinfection. These regimes have
important consequences for the development and eradication of one or both diseases.

We consider the following phenomena: subthreshold coexistence equilibria, mul-
tiple coexistence equilibria, and bistable dominance. Subthreshold coexistence equi-
libria may be generated by two-parameter backward bifurcation. These are multiple
coexistence equilibria (two in our case), but multiple coexistence equilibria may also
exist superthreshold. Finally, we consider the bistability of the dominance equilib-
ria, which is defined as dominance of one of the diseases depending on the initial
conditions. All these are illustrated in Figure 7.1. The figure is generated with the
following values of the parameters: α1 = 14, α2 = 25, μ = 3.9, ν = 0.1, δ = 20,

Fig. 7.1. Boundaries of coexistence and stability of dominance equilibria. Parameters as in text.
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γ1 = 20, γ2 = 20. The values of R1 and R2 are treated as operating parameters that
are directly related to the values of β1 and β2. In this section, we consider only the
case where β1(a) ≡ β1 is age-independent. The values of R1 and R2 are plotted on
the x and y axes, respectively. The upper of the two curves that originate at (1, 1)
is obtained from the equation R̂1 = 1, while the lower is obtained from the equation
R̂2 = 1. We denoted these curves by C1 and C2, respectively. The geometry of these
curves was analyzed in Lemma 3.1.

7.1. Backward bifurcation and subthreshold equilibria. The presence of
subthreshold equilibria has important implications for the control of a single disease.
It means that the disease might not be eradicated by reducing its reproduction number
slightly below one. Instead, it is necessary to reduce the reproduction number below
the minimal transition value R∗ such that there are no nontrivial equilibria for values
of the reproduction number below R∗.

When multiple diseases are present the situation is more complex. We call a
coexistence equilibrium subthreshold if it occurs when at least one of the reproduc-
tion numbers is below one. Furthermore, there are two distinct cases with different
consequences for the control of the diseases. In the first scenario, coexistence equi-
libria occur when exactly one of the reproduction number is below one. We will call
those weakly subthreshold equilibria. In Figure 7.1 weakly subthreshold coexistence
equilibria occur both in the case R1 < 1, R2 > 1 and in the case R1 > 1, R2 < 1.
Those are to be found to the right of the curve C1 but to the left of the line R1 = 1
(Figure 7.1, region D2) and above the curve C2 but below the line R2 = 1 correspond-
ingly (Figure 7.1, region D1). Given coinfection δ �= 0, a necessary condition for the
first area to be nonempty is that γ1 �= 0; similarly, the second area can be nonempty
only if γ2 �= 0. In both of these areas there is a unique coexistence equilibrium not
obtained as a result of a backward bifurcation. In terms of disease control the pres-
ence of weakly subthreshold equilibria leads to the fact that reducing only one of the
reproduction numbers below unity does not necessarily lead to the disappearance of
the corresponding disease. Thus, eradicating only one of the two diseases may be
difficult, particularly as the curves C1 and C2 pass very close to the corresponding
axes. However, if both reproduction numbers are brought slightly below unity, both
diseases will be eliminated. We note here that we may have weakly subthreshold
coexistence equilibria only with R1 < 1, R2 > 1 without having such with R1 > 1,
R2 < 1 or vice versa (not shown). In this case only the primary disease cannot be
eliminated by reducing R1 below one, while the secondary will be eliminated if R2 is
reduced below one. Weakly subthreshold equilibria also appear as a consequence of
backward bifurcation (see Figure 7.2) and are discussed more in the next subsection.

In the second scenario, coexistence equilibria occur when both of the reproduc-
tion numbers are below one. We call those strongly subthreshold coexistence equilibria.
Strongly subthreshold equilibria in our model are the result of a backward bifurca-
tion in two parameters, namely R1 and R2. We established necessary and sufficient
conditions for the two-parameter backward bifurcation in the previous section. If we
consider J∗ as the coexistence variable and we view it as a function of R1 and R2,
then the surface J∗ = f(R1,R2) bifurcates backwards along the curves C1 and C2 near
the critical point (1, 1) and then turns around and heads in the direction of increasing
values of R1 and R2. The projection of the turning curve on the plane (R1,R2) is the
curve that connects C1 and C2 (see Figure 7.2, region S = S1 ∪ S2 ∪ S3). In analogy
with the single disease case, we will call this curve the minimal transition curve. In
Figure 7.2 the area enclosed by the curves C1, C2 and the minimal transition curve,
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Fig. 7.2. This is a zoom-in of the area from Figure 7.1 near the critical point where both
reproduction numbers are near one.

S, is the projection of the overlapping branches of the surface J∗ = f(R1,R2). Thus,
in this area there are two distinct coexistence equilibria. Figure 7.2 is a zoom-in of
the part of Figure 7.1 near the critical point (1, 1).

Next, we show that backward bifurcation occurs if and only if the angle between
the tangent lines to the curves C1 and C2 (see Figure 7.1) at the point (1, 1) is suffi-
ciently small—smaller than 180◦. Let l1 be the tangent to C1 with slope m1, and l2 be
the tangent to the curve C2 with slope m2. Along the curve C1 we have i1(ε1, ε2) = 0.
Along the curve C2 we have i2(ε1, ε2) = 0. The slopes of l1 and l2 are given by dε2

dε1
,

which is obtained for each curve by differentiating implicitly. Thus, by (6.4) and (6.5),

m1 =
1

1 + σ
, m2 = −1 −G(0)τ

G(0)τ
.

The angle between the tangents is obtuse if m2 < m1 < 0. The angle between the
tangents is larger than 180◦ and backward bifurcation does not occur if m1 < m2 < 0.
Consequently, the conditions for the angle to be obtuse are

G(0)τ − 1

G(0)τ
<

1

1 + σ
< 0.

It is easy to see that these inequalities are equivalent to the inequalities (6.9).
The fact that backward bifurcation occurs only if the angle between the tan-

gent lines of the curves C1 and C2 at the point (1, 1) is obtuse implies that strongly
subthreshold coexistence equilibria are present only in conjunction with both types
of weakly subthreshold coexistence equilibria. Thus, the existence of strongly sub-
threshold coexistence equilibria through two-parameter backward bifurcation is the
analogue of the backward bifurcation in the single disease case. It has the same im-
plication for the disease control—reducing both reproduction numbers slightly below
one does not lead to the eradication of either disease. It is necessary to reduce both
reproduction numbers in the square [0, 1]× [0, 1] below the minimal transition curve.
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7.2. Multiple coexistence equilibria. Bistability. The presence of multiple
equilibria, and particularly of multiple stable equilibria, can have significant impact
on the outcome of the disease, as for a fixed set of parameters this outcome depends
on the initial status of the population. For the present model and parameter values,
as in Figure 7.1, results in previous sections and simulations suggested the presence
of multiple coexistence equilibria in two areas.

The first such area is the subthreshold area S illustrated also in Figure 7.2. As we
discussed above, the multiple equilibria there are obtained from backward bifurcation.
In this case there are two coexistence equilibria. If they are ordered in increasing
order of J∗, simulations suggest that the lower one is unstable, while the upper one
is locally stable. In the subregion S2 there is also the disease-free equilibrium which
is locally stable. Thus, in that region the two diseases might coexist, or they might
both disappear depending on the initial conditions. Looking at Figure 7.2, we see
that the area of backward bifurcation overlaps also with the regions R1 > 1, R2 < 1
forming region S1 and R1 < 1, R2 > 1 forming region S3. Consequently, we have
multiple weakly subthreshold coexistence equilibria. In those regions the disease-
free equilibrium is unstable. However, in addition to the locally stable coexistence
equilibrium, in the region S1 the equilibrium E1 is also locally stable, while in the
second region S3 the equilibrium E2 is also locally stable. Thus, the ultimate outcome
is either dominance of one of the diseases or coexistence, depending on the initial
conditions.

The second area where multiple coexistence equilibria exist is the superthreshold
area in Figure 7.1, where the curves C1 and C2 cross and a third curve touches both of
them forming a curvilinear triangle, denoted by D4. There are two coexistence equi-
libria in that area; the lower one there is stable, while the upper one is unstable. The
disease-free equilibrium is again unstable. Both dominance equilibria E1 and E2 exist;
however, E1 is unstable and E2 is locally stable. Consequently, if the combination of
the reproduction numbers forms a point in that area, there are two possible outcomes
for the long-term dynamics of the diseases: dominance of the secondary disease or
coexistence. Which of the two will materialize depends on the initial status of the
population.

A unique coexistence equilibrium exists in the area D = D− ∪ D+ ∪ D1 ∪ D2

between the curves C1 and C2, which for most parameter values is locally stable.
When it loses stability, oscillatory coexistence occurs.

7.3. Bistable dominance. One of distinctive features of this model is that the
two curves that define the boundaries of stability of the dominance equilibria E1 and
E2 always intersect (see Lemma 3.1 for details).

In the constant coefficient case, there is a unique intersection of the curves C1 and
C2 that occurs at the point (R∗

1,R∗
2), where R∗

1 > 1 and R∗
2 > 1. This intersection

creates a region between the curves C1 and C2 with R1 > R∗
1 and R2 > R∗

2 (see
Figure 7.1, area D3), where both dominance equilibria E1 and E2 are locally stable and
the outcome of the competition between the diseases depends on the initial conditions.
In other words, based only on the parameters values we cannot predict which disease
will persist in the population. Figures 7.3 and 7.4 show the possible outcomes with
two sets of initial conditions which differ only in the value of J0. In the first figure
J0 = 0.05, while in the second J0 = 0.04.

The curve C1 will not cross below the diagonal if γ1 = 0, given that there is
coinfection (δ �= 0). Thus the bistable dominance occurs as a result of the possibility
that the jointly infected individuals can infect with the primary disease γ1 �= 0.
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Fig. 7.3. Primary disease persists, secondary disease dies out. Parameters are as in Figure 7.1
with R1 = 17.5 and R2 = 12 (from region D3). Initial conditions are S0 = 0.2, I1(0) = 0.01,
I2(0) = 0.05, J0 = 0.05.
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Fig. 7.4. Primary disease dies out, secondary disease persists. Parameters as in Figure 7.1
with R1 = 17.5 and R2 = 12 (from region D3). Initial conditions are S0 = 0.2, I1(0) = 0.01,
I2(0) = 0.05, J0 = 0.04.

8. Discussion. At any given time thousands of diseases cocirculate in a popu-
lation. Many of them participate in joint infections of a single host. New diseases like
SARS appear; others fade only to re-emerge later with strains that are more difficult
to treat. The complexity of interactions of the diseases through the host population
can have a significant impact on the dynamics and management of each disease.

In this paper we introduce and investigate a simple epidemiological model with
two diseases that can coinfect a single host. We compute the reproduction numbers
and the invasion reproduction numbers of both diseases. We observe a variety of
complex dynamic phenomena with significant consequences for disease control.

1. Cooperative subthreshold coexistence. First, we establish that the dominance
equilibria E1 and E2 are present only if R1 > 1 and R2 > 1, correspondingly. That
implies that neither disease can exist by itself when its reproduction number is below
one. However, the “cooperation” of the two leads to subthreshold coexistence. Conse-
quently, both diseases can persist concurrently for values of the reproduction numbers
below one. We call this phenomenon cooperative subthreshold coexistence. We show
two types of cooperative subthreshold coexistence: weakly subthreshold coexistence
(occurs when exactly one of the reproduction numbers is below one) and strongly
subthreshold coexistence (occurs when both reproduction numbers are below one).
The strongly subthreshold coexistence is a result of backward bifurcation in both R1
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and R2. Weakly subthreshold coexistence can result from backward bifurcation or
from expansion of the coexistence region between the curves C1 and C2 to the below
threshold areas. We derive necessary and sufficient conditions for existence of back-
ward bifurcation. We show that the bifurcation is always total; that is, it occurs for
all pairs of (R1,R1) which are close to (1, 1). A sufficient condition for backward
bifurcation is that the angle between the tangents to those curves at the critical point
(1, 1) be obtuse, which occurs if both γ1 and γ2 are large. We establish that γ1 = 0
leads to extinction of the primary disease if R1 < 1, and γ2 = 0 with R2 < 1 leads to
extinction of the secondary disease. No backward bifurcation occurs in these cases.
One consequence of the observation is that public health mechanisms that lead to
reduction of spread of either disease by the jointly infected individuals—like isolating
those who are infected with both diseases—can have very dramatic effects on the
eradication of one or both diseases. Furthermore, disease-induced mortality in the
jointly infected class ν is a mechanism that impedes the backward bifurcation. This
suggests that diseases which are more lethal in a combination are easier to manage
from an epidemiological perspective.

2. Restricted pathogenic diversity. Bistable dominance. The dynamics of two
diseases is reminiscent of the dynamics of two variants of the same pathogen. In many
instances coexistence in stable form occurs in unbounded domains of the parameter
space [17]. This is not the case here. The curves C1 and C2 intersect, thus making the
region R̂1 > 1, R̂2 > 1 finite (Figure 7.1). We find coexistence in domains outside
that one—namely, the area of backward bifurcation (Figure 7.2) and the area of two
coexistence equilibria adjacent to the cross-point of C1 and C2. It appears from the
simulations that these two areas are also finite. Consequently, stable coexistence is
limited to finite regions in the (R1,R2) plane and does not occur if the reproduction
numbers are sufficiently large. We call this restricted pathogenic diversity. In other
words, if evolution maximizes the reproduction numbers, then under this scenario it
works against pathogenic diversity. It is interesting to know what mechanisms would
lead to such an effect. In our case this is the ability of the jointly infected individuals to
spread the primary diseases, γ1 �= 0. The intersection of the curves C1 and C2 also leads
to emergence of a region between them where R̂1 < 1, R̂2 < 1. Simulations suggest
that in this region there is still a unique coexistence equilibrium which is unstable.
At the same time the two boundary equilibria are both locally stable. A situation like
this has been described as occurring in a two-sex two-strain model of STD [6]. The
result is bistable dominance—which disease persists and which dies out depend on the
initial conditions, and the outcome can be very sensitive (Figures 7.3 and 7.4). In fact,
bistability is somewhat common for the model (2.1). We find bistability in several
regions of the (R1,R2) plane, particularly where multiple coexistence equilibria exist.
In all remaining cases, however, one of the possible outcomes is stable coexistence;
the other is either dominance of one of the diseases or extinction.

9. Summary. In this paper, we have analyzed an epidemic model of two dis-
eases with age-since-infection structure in the primary disease. We have obtained
expressions for the basic reproduction numbers Ri for both diseases, and showed that
the unique primary (resp., secondary) single disease equilibrium exists if and only if
R1 > 1 (resp., R2 > 1). We have also shown that the disease-free equilibrium is
locally stable if R1,R2 < 1 and unstable if Ri > 1 for some i = 1, 2 (Proposition 5.1),
and obtained sufficient conditions for the extinction of one or both diseases (section 4).

We have computed the invasion reproduction numbers R̂i for both single disease
equilibria. We presented the necessary condition for the local stability of the pri-
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mary disease equilibrium in Propositions 5.2 and 5.3. In the case of the secondary
disease equilibrium, we presented the necessary and sufficient condition for the local
stability in Proposition 5.5. In Theorem 3.2, we presented sufficient conditions for
the presence of coexistence equilibria. In Proposition 6.1, we showed that multiple
coexistence equilibria may exist via the backward bifurcation. In the absence of the
age structure, we showed that a coexistence equilibrium can lose stability via a Hopf
bifurcation (section 5.4). In general, the stability of coexistence equilibria remains an
open problem. Finally, we presented results of numerical simulations that illustrate
different dynamic outcomes of the interactions between the two diseases.
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