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My area of research is algebraic combinatorics. I apply representation theory of finite groups to compute some
numerical invariants of combinatorial structures. My current focus is on computing the Smith and critical groups of
families of Strongly Regular Graphs. The Smith group of a graph is the abelian group with the same invariant factors
as the smith normal form of its Adjacency matrix. The critical group of a graph is the finite part of the abelian group
with the same invariant factors as the Smith normal form of its Laplacian matrix. The critical groups of various graphs
arise in combinatorics in the context of chip firing games (cf. [2]), as the abelian sandpile group in statistical mechanics
(cf. [6]), and also in arithmetic geometry. One may refer to [15] for a discussion on these connections. It is therefore
of some interest to compute the Smith groups and critical groups of graphs.

Background
Let Γ = (Ṽ , Ẽ) be a simple connected graph on vertex set Ṽ and edge set Ẽ. Let A be the adjacency matrix with
respect to some arbitrary but fixed order of V . Then the Laplacian matrix of Γ is the matrix L := D − A, where D is
the diagonal matrix whose ith diagonal entry is the valency of the ith vertex. By abuse of notation we may consider A

and L to be elements of End(ZV). The abelian group
ZV

A(ZV)
is called the Smith group S (Γ) of Γ. The torsion of the

abelian group
ZV

L(ZV)
is called the critical group K(Γ) of Γ. These groups are important invariants of the graph Γ. The

Kirchoff Matrix-Tree theorem implies that the order of K(Γ) is equal to the number of spanning trees of Γ (see for eg.
[22]).

The Smith normal forms of the integer matrices A and L completely determine the Smith and critical groups
respectively.

Some Families of graphs with known critical groups.
An early author on the critical group was Vince, who in [24] computed them for Wheel graphs and complete bipartite
graphs. In the same paper, it was shown that the group depends only on the cycle matroid of the graph. There are
relatively few classes of graphs with known Smith and critical groups. Other papers that include computation of
critical groups of families of graphs include [5], [1], [11], [7], [4], and [17].

The methodology described in the next section was used to compute the critical groups of the following graphs:
Paley Graphs (c.f. [5]); Peisert Graphs (c.f. [19]); Grassmann graph of lines in finite projective space and of its
complement (c.f. [4] and [9]); Polar Graphs (c.f. [17]); Kneser graph on 2-subsets of an n-element set (c.f [8]); and
van Lint-Schrijver cyclotomic Strongly Regular Graphs [16].

Recent work
As a part of my Ph.D. thesis under the supervision of Prof.Peter Sin (Univ. of Florida), I and P. Sin were able to deter-
mine the Smith group and critical group of the family of Polar graphs. Polar graphs are Strongly Regular collinearity
graphs of finite classical polar spaces. These graphs admit certain finite classical groups as automorphisms. The action
of finite classical groups on Polar spaces is a rank 3 permutation actions. The permutation modules corresponding to
this action have been studied in [14], [13], [12] ,and [20]. In [17], we used these results to determine the Smith and
Critical groups of the Polar graphs.

Methodology
Let Γ = (Ṽ , Ẽ) be a simple undirected graph. Fix an ordering on the set of vertices Ṽ , and let A be the adjacency
matrix with respect to this ordering.Let D be the diagonal matrix with Dii being the degree of the ith vertex of Γ. Then
L := DA is called the Laplacian matrix of Γ. With some abuse of notation we may assume that A and L are elements

1



of EndZ(ZṼ). The cokernal of A is the Smith group S of , and the finite part of the cokernal of L is the critical group
K of Γ. Let ` be a prime number, and Z` be the ring of `-adic integers. We may assume that A and L are elements of
EndZ` (Z`Ṽ). Given i ∈ N, define Mi(A) := {x ∈ Z`Ṽ | Ax ∈ `iZ`Ṽ}, and define Mi(L) in a similar fashion. Given any
submodule M of Z`Ṽ , define M := (M + `Z`Ṽ)/Z`Ṽ . We observe that M is a subspace of the vector space F`Ṽ . Using
some elementary Linear algebra, we can show the following result.

Lemma 1. Let ei be the multiplicity of Z/`iZ in the elementary divisor representation of S (respectively K) . Then
dim

(
Mi(A)/Mi+1(A)

)
= ei (respectively dim

(
Mi(L)/Mi+1(L)

)
= ei).

As S and K are abelian groups, they are the products of their Sylow subgroups. Thus the above Lemma re-
duces computing these groups to finding the dimensions of certain finite vector spaces. More over if G is a group of
automorphisms of Γ, then Mi(A)’s and Mi(L)’s are F`G-submodules of the permutation module F`Ṽ .

Results
Let V be a finite vector space endowed with a non degenerate quadratic form q or a non degenerate symplectic space.
Let V̂ be the set of isotropic one dimensional subspaces of V . A polar graph is a graph (V) on V̂ , in which two
elements of V̂ are connected if and only if they are perpendicular with respect to the form on V . Let G(V) be the group
of automorphisms of V . This action of G(V) on V̂ is a rank 3 permutation action (cf. [14] and [13]) and thus Γ(V) is a
strongly regular graph. Let K be the critical group of Γ(V).

Let p be the characteristic of the underlying field, then vp(|K|) = 1. Thus the p-part of K is cyclic. Let ` , p be a
prime dividing |K|. By the discussion above, the dimensions of F`G(V)-modules Mi(L)’s yield the `-part of K . These
modules are submodules of the cross characteristic permutation module F`V̂ . The submodule structure of the cross
characteristic permutation module corresponding to the action of G(V) on V̂ has been studied in [14], [13], [12], and
[20]. This submodule structure was used to determine the dimensions of Mi(L)’s. Using those dimensions and Lemma
1 we obtained the `-part of K . The following describes K when V is a symplectic space.

Theorem 2 (Pantangi-Sin 2017). Let V be a symplectic space of dimension 2m over a finite field Fq, and K be the
critical group of Γ(V). Given ` | |K| is a prime, let ei denote the multiplicity of Z/`iZ as an elementary divisor of K .
The following are true.

1. If ` is odd prime with v`(
[
m
1

]
q
) = a v`(1 + qm−1) = b, then

(a) If a > 0, b > 0 ea+b = g − 1, eb = 1 and ei = 0 for i , a.

(b) If a = 0, eb = g and ei = 0 for all other i.

(c) If b = 0, ea = g − 1 and ei = 0 for all other i.

2. If ` is an odd prime with v`(
[
m−1

1

]
q
) = a > 0 and v`(qm + 1) = b > 0, we have

(a) If a > 0, b > 0 ea+b = f − 1, ea = 1 and ei = 0 for i , a + b, a.

(b) If b = 0, ea = f , and ei = 0 for all other i.

(c) If a = 0, eb = f − 1, and ei = 0 for all other i.

3. If ` = 2 and q is odd,

(a) If m is even, v`(
[
m
1

]
q
) = a > 0 and v`(qm−1 + 1) = b > 0, we have ea+b+1 = g − 1, eb+1 = 1,e1 = f − g − 1,

and ei = 0 for all other i.

(b) If m is odd, v`(
[
m−1

1

]
q
) = a > 0 and v`(qm + 1) = b > 0, we have ea+b(2) = f − g − 1, ea+b+1(2) = g + 1,

ea(2) = 1, , and ei = 0 for all other i.
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In [17], we obtained similar descriptions for the critical groups of other Polar graphs.
In [16], I obtained a description of the critical groups of the van Lint-Schrijver cyclotomic Strongly Regular

Graphs. Let q = p f be a prime power, let N > 1 be a divisor of q − 1. Let D be a subgroup of multiplicative group of
the finite field Fq. Let Cay(Fq,D) be the Cayley graph on the additive group of Fq with connection set D. If Cay(G,D)
is a strongly regular graph, then we speak of a cyclotomic strongly regular graph. The Paley graph is a well known
example of a cyclotomic strongly regular graph. Extensive scholarship on these graphs include [23], [3], [18], and
[10].

In [23], van Lint and Schrijver define a family of cyclotomic Strongly Regular Graphs whose construction is similar
to that of the Paley Graph. Let p and ` be primes,with ` > 2 and p primitive (mod `). Let t ∈ N and q = p(`−1)t.
Consider the field K = Fq, and let S be the unique subgroup of K∗ of order k = (q− 1)/`. Then by G(p, `, t) we denote
the graph with vertex set K and edge set {{x, y} | x, y ∈ K & x − y ∈ S }. This is the undirected Cayley graph associated
with (K, S ). We call these families of graphs, Van Lint-Schrijver cylclotomic Strongly Regular Graphs.

The additive group K, and multiplicative groups S and K∗ are automorphism groups for G(p, `, t). Let R be the
ring of integers of the unique unramified extension of degree (` − 1)t over QP. Let RK be the permutation module over
R, associated with the action of S on vertex set K. Let T be the Teichmller character of the multiplicative group K∗.
Given x ∈ K, by [x] we denote the basis element of RK corresponding to x. Let fi =

∑
x∈K∗

T i(x−1)[x] We obtained the

decomposition RK = ⊕k−1
i=0 Ni, where each Ni is a submodule of RK with basis { fi+mk | 0 ≤ m ≤ ` − 1}. Each Ni is an

isotopic component of for the character T i|S . By Li we denote the restriction L|Ni of the Laplacian L of G(p, `, t). With
respect to the basis of Li describe above, the matrix of Li has certain Jacobi sums as entries.

Computing the Smith Normal forms over R of the smaller matrices Li, give us a description of the SNF over R of
L. This information was used to compute the p-part of the critical group C of G(p, `, t). The p′-part was obtained by
conjugating L by 1

q X, where X is the complex character table K. I obtained the following descriptions of the critical
group of C in [16].

Theorem 3. Consider the graph G(p, `, t) with p(`−1)t/2 , ` − 1 whenever t is odd. Given integers a, b not divisible by
p(`−1)t − 1, let c(a, b) denote the number of carries when adding the p-adic expansions of a and b (mod q − 1). Let L
be the Laplacian matrix and C be the critical group of G(p, `, t). For 1 ≤ i < k − 1, let

c(i) = min ({c(i + mk, nk)|0 ≤ m ≤ ` − 1 & 0 ≤ n ≤ ` − 1}) .

Let e j be the multiplicity of Z/p jZ as an elementary divisor of C. Then we have the following.

1. e0 = |{i | 1 ≤ i ≤ k − 1 &c(i) = 0}| + 2 and e(`−1)t+d = e0 = |{i | c(i) = 0}|.

2. e j = |{i | 1 ≤ i ≤ k − 1 &c(i) = j}| for 0 < j < (`−1)t
2 .

3. e j = e(`−1)t+d− j for 0 < j < (`−1)t
2 .

4. If p - ` − 1, then e (`−1)t
2

= q + 1 − 2
∑
j<t

e j.

5. If p | ` − 1, then

(a) e (`−1)t
2 +d = k + 2 −

∑
j<t

e j and

(b) e (`−1)t
2

= (` − 1)k −
∑
j<t

e j.

6. e j = 0 for all other j.

In the case of G(p, 3, t), using the transfer matrix method (cf. Section 4.7 of [21]) we were able to determine a
closed form for the p-rank (i.e e0 in the context of the Theorem above) of the Laplacian. The following theorem gives
a quick recursive algorithm to compute other p-elementary divisors.

Let P =

((
p+1

3

)2
(x2y2 + x2y + xy2 + x + y + 1) +

(
p−2

3

)2
3xy

)
, R = p2x3y3 and

3



Q =

((
p+1

3

)2
(xy)(x2y2 + x2y + xy2 + x + y + 1) +

(
2p−1

3

)2
3x2y2

)
. We define the polynomial C(2t) ∈ C[x, y] recur-

sively as follows:

C(2) = 2P

C(4) = 2(P2 − 2Q),

C(6) = 6R + 2(P3 − 2QP) − 2PQ,

and C(2t) = PC(2t − 2) − QC(2t − 4) + RC(2t − 6) for t > 3.

(1)

Theorem 4. Let Cp be the p-part of the critical group of the graph G(p, 3, t) (with (p, t) , (2, 1)). Let e j denote the
multiplicity of Z/p jZ in the elementary factor form of Cp. Let Eab be the coefficient of xayb in C(2t). Then we have the
following.

1. e0 = e2t+δ2,p + 2 =
(

(p+1)
3

)2t
(2t+1 − 2).

2. For a < t, we have ea = e2t+δ2,p−a =
∑

a<b≤t
Eab

3. et+δ2,p = (k + 2 −
∑
j<t

e j) + (1 − δ2,p)(2k −
∑
j<t

e j).

4. et = (1 − δ2,p)(k + 2 −
∑
j<t

e j) + (2k −
∑
j<t

e j).

5. ea = 0 for all other a.

Future Work
I plan to find the Smith and critical groups of other families of Strongly Regular Graphs using the methodology
described in the previous section. I am currently interested in computing the critical groups of the following graphs.

1. Cyclotomic Strongly Regular graphs.
2. Strongly regular graphs arising from Latin square designs.
3. The complements of Polar graphs.
4. The families of Strongly regular graphs arising from rank 3 permutation action of certain finite classical groups

on the set of non-isotropic points.
My current focus is to try to obtain the critical groups of some other families of Cyclotomic Strongly Regular

graphs. The methods I used to find the critical groups of the van Lint-Schrijver family were extensions of to those
used in [5] to compute the same for Paley Graphs. I believe these methods can be generalized to other families of
Cyclotomic Strongly Regular Graphs.

References
[1] Hua Bai. On the critical group of the n-cube. Linear algebra and its applications, 369:251–261, 2003.

[2] N.L. Biggs. Chip-firing and the critical group of a graph. Journal of Algebraic Combinatorics, 9(1):25–45, Jan
1999.

[3] AE Brouwer, RM Wilson, and Qing Xiang. Cyclotomy and strongly regular graphs. Journal of Algebraic
Combinatorics, 10(1):25–28, 1999.

[4] Andries Brouwer, Joshua Ducey, and Peter Sin. The elementary divisors of the incidence matrix of skew lines in
PG(3, q). Proceedings of the American Mathematical Society, 140(8):2561–2573, 2012.

4



[5] David B. Chandler, Peter Sin, and Qing Xiang. The smith and critical groups of paley graphs. Journal of
Algebraic Combinatorics, 41(4):1013–1022, Jun 2015.

[6] Deepak Dhar. Self-organized critical state of sandpile automaton models. Physical Review Letters, 64(14):1613,
1990.

[7] Joshua E Ducey, Jonathan Gerhard, and Noah Watson. The smith and critical groups of the square rook’s graph
and its complement. arXiv preprint arXiv:1507.06583, 2015.

[8] Joshua E Ducey, Ian Hill, and Peter Sin. The critical group of the kneser graph on 2-subsets of an n-element set.
arXiv preprint arXiv:1707.09115, 2017.

[9] Joshua E Ducey and Peter Sin. The smith group and the critical group of the grassmann graph of lines in finite
projective space and of its complement. arXiv preprint arXiv:1706.01294, 2017.

[10] Tao Feng, Koji Momihara, and Qing Xiang. Constructions of strongly regular cayley graphs and skew hadamard
difference sets from cyclotomic classes. Combinatorica, 35(4):413–434, 2015.

[11] Brian Jacobson, Andrew Niedermaier, and Victor Reiner. Critical groups for complete multipartite graphs and
cartesian products of complete graphs. Journal of Graph Theory, 44(3):231–250, 2003.

[12] JM Lataille, Peter Sin, and Pham Huu Tiep. The modulo 2 structure of rank 3 permutation modules for odd
characteristic symplectic groups. Journal of Algebra, 268(2):463–483, 2003.

[13] Martin W Liebeck. Permutation modules for rank 3 unitary groups. Journal of Algebra, 88(2):317–329, 1984.

[14] Martin W Liebeck. Permutation modules for rank 3 symplectic and orthogonal groups. Journal of Algebra,
92(1):9–15, 1985.

[15] Dino Lorenzini. Smith normal form and laplacians. Journal of Combinatorial Theory, Series B, 98(6):1271 –
1300, 2008.

[16] Venkata Raghu Tej Pantangi. Critical group of van lint-schrijver cyclotomic strongly regular graphs. 2018.

[17] Venkata Raghu Tej Pantangi and Peter Sin. Smith and critical groups of polar graphs. arXiv preprint
arXiv:1706.08175, 2017.

[18] Bernhard Schmidt and Clinton White. All two-weight irreducible cyclic codes? Finite Fields and Their Appli-
cations, 8(1):1–17, 2002.

[19] Peter Sin. The critical groups of the peisert graphs P∗(q). arXiv preprint arXiv:1606.00870, 2016.

[20] Peter Sin and Pham Huu Tiep. Rank 3 permutation modules of the finite classical groups. Journal of Algebra,
291(2):551–606, 2005.

[21] Richard P. Stanley. Enumerative Combinatorics: Volume 1. Cambridge University Press, New York, NY, USA,
2nd edition, 2011.

[22] Richard P Stanley. Smith normal form in combinatorics. Journal of Combinatorial Theory, Series A, 144:476–
495, 2016.

[23] Jacobus H van Lint and Alexander Schrijver. Construction of strongly regular graphs, two-weight codes and
partial geometries by finite fields. Combinatorica, 1(1):63–73, 1981.

[24] A. Vince. Elementary divisors of graphs and matroids. European Journal of Combinatorics, 12(5):445 – 453,
1991.

5


