Smith and critical groups of the symplectic polar graph.

Venkata Raghu Tej Pantangi Joint work with Peter Sin.

University of Florida

SRAC 2017-Mobile
(1) Preliminaries
(2) Chip Firing Game
(3) Some families of graphs with known Critical groups
(4) Useful elementary results from linear algebra
(5) Symplectic polar graph

(1) Preliminaries

(2) Chip Firing Game
(3) Some families of graphs with known Critical groups
4. Useful elementary results from linear algebra
(5) Symplectic polar graph

Smith and Critical groups of a Graph

Let $G=(V, E)$ be a simple connected graph and A be it's adjacency matrix.

Smith and Critical groups of a Graph

Let $G=(V, E)$ be a simple connected graph and A be it's adjacency matrix.
The Laplacian matrix $L:=D-A$, where D is the degree matrix. As a \mathbb{Z} matrix, $\operatorname{rank}(L)=|V|-1$

Smith and Critical groups of a Graph

Let $G=(V, E)$ be a simple connected graph and A be it's adjacency matrix.
The Laplacian matrix $L:=D-A$, where D is the degree matrix. As a \mathbb{Z} matrix, $\operatorname{rank}(L)=|V|-1$
Both A and L are elements of $E n d_{\mathbb{Z}}(\mathbb{Z} V)$. The Smith group $S(G)$ is $\mathbb{Z} V / A(\mathbb{Z} V)$.

Smith and Critical groups of a Graph

Let $G=(V, E)$ be a simple connected graph and A be it's adjacency matrix.
The Laplacian matrix $L:=D-A$, where D is the degree matrix. As a \mathbb{Z}
matrix, $\operatorname{rank}(L)=|V|-1$
Both A and L are elements of $E n d_{\mathbb{Z}}(\mathbb{Z} V)$.
The Smith group $S(G)$ is $\mathbb{Z} V / A(\mathbb{Z} V)$.
The critical group $K(G)$ is the finite part of $\mathbb{Z} V / L(\mathbb{Z} V) \cong \mathbb{Z} \oplus K(G)$
These groups are important invariants of a graph.

Smith and Critical groups of a Graph

Let $G=(V, E)$ be a simple connected graph and A be it's adjacency matrix.
The Laplacian matrix $L:=D-A$, where D is the degree matrix. As a \mathbb{Z}
matrix, $\operatorname{rank}(L)=|V|-1$
Both A and L are elements of $E n d_{\mathbb{Z}}(\mathbb{Z} V)$.
The Smith group $S(G)$ is $\mathbb{Z} V / A(\mathbb{Z} V)$.
The critical group $K(G)$ is the finite part of $\mathbb{Z V} / L(\mathbb{Z} V) \cong \mathbb{Z} \oplus K(G)$
These groups are important invariants of a graph.
Consider the complete graph on n vertices, K_{n}. In this case $A=J-I$, and $L=(n-1) I-A$. Here I is the identity matrix and J the all-one matrix of size $n \times n$. The Smith group of this graph is $\mathbb{Z} /(n-1) \mathbb{Z}$, and the critical group being $(\mathbb{Z} / n \mathbb{Z})^{n-2}$.

(1) Preliminaries

(2) Chip Firing Game

(3) Some families of graphs with known Critical groups

4 Useful elementary results from linear algebra
(5) Symplectic polar graph

Chip Firing Game

Chip Firing Game

A configuration on a graph is an assignment of a non-negative integer $s(v)$ to every round vertex v and $-\sum s(v)$ to the square vertex(sink/bank).

Chip Firing Game

A configuration on a graph is an assignment of a non-negative integer $s(v)$ to every round vertex v and $-\sum s(v)$ to the square vertex(sink/bank).
A round vertex v can be fired if $s(v) \geq d(v)$

Chip Firing Game

A configuration on a graph is an assignment of a non-negative integer $s(v)$ to every round vertex v and $-\sum s(v)$ to the square vertex(sink/bank). A round vertex v can be fired if $s(v) \geq d(v)$ The square vertex fires only when no other can fire.

Sample game

- A configuration is said to be recurrent if there is a sequence of firings that lead back to the configuration.

Sample game

- A configuration is said to be recurrent if there is a sequence of firings that lead back to the configuration.
- A configuration is said to be stable if there no round vertex can be fired

Sample game

- A configuration is said to be recurrent if there is a sequence of firings that lead back to the configuration.
- A configuration is said to be stable if there no round vertex can be fired
- A configuration is said to be critical if it is both stable and recurrent

Chip firing game and the Laplacian

If we start with a configuration $s=(s(v))$ and fire vertices in a sequence in which v is fired $x(v)$ times to get to a configuration s^{\prime}, then

Chip firing game and the Laplacian

If we start with a configuration $s=(s(v))$ and fire vertices in a sequence in which v is fired $x(v)$ times to get to a configuration s^{\prime}, then

$$
\begin{aligned}
s^{\prime}(v) & =s(v)-x(v) \operatorname{deg}(v)+\sum_{w \sim v} x(w) \\
s^{\prime} & =s+L x
\end{aligned}
$$

Chip firing game and the Laplacian

If we start with a configuration $s=(s(v))$ and fire vertices in a sequence in which v is fired $x(v)$ times to get to a configuration s^{\prime}, then

$$
\begin{aligned}
s^{\prime}(v) & =s(v)-x(v) \operatorname{deg}(v)+\sum_{w \sim v} x(w) \\
s^{\prime} & =s+L x
\end{aligned}
$$

Theorem (Biggs 1997)

Any starting configuration of a graph G leads to a unique critical configuration.
The set of critical configuration has a natural group operation that is isomorphic to the critical group $K(G)$.

(1) Preliminaries

(2) Chip Firing Game
(3) Some families of graphs with known Critical groups

4 Useful elementary results from linear algebra

(5) Symplectic polar graph

- For any tree $\Gamma, K(\Gamma)=\{0\}$
- For any tree $\Gamma, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- For any tree $\Gamma, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- For any tree $\Gamma, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- For any tree $\Gamma, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- For any tree $\Gamma, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- For any tree $Г, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- Erdös-Renyi random graphs (Wood 2014)
- For any tree $Г, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- Erdös-Renyi random graphs (Wood 2014)
- Square Rook's graph and complement(Berget1991, Ducey-Gerhard-Watson 2015)
- For any tree $Г, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- Erdös-Renyi random graphs (Wood 2014)
- Square Rook's graph and complement(Berget1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-Sin-Xiang 2015)
- For any tree $Г, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- Erdös-Renyi random graphs (Wood 2014)
- Square Rook's graph and complement(Berget1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-Sin-Xiang 2015)
- Peisert graphs (Sin 2015)
- For any tree $Г, K(\Gamma)=\{0\}$
- Complete graph on n vertices $K_{n}, K\left(K_{n}\right) \cong(\mathbb{Z} / n \mathbb{Z})^{n-2}$
- Wheel graphs $W_{n}, K\left(W_{n}\right) \cong\left(\mathbb{Z} / \ell_{n} \mathbb{Z}\right)^{2}$. Her ℓ_{n} is the nth Lucas number.(Vince 1990, Biggs 1997)
- Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)
- Conference graphs on square free number of vertices (Lorenzini 2008)
- Incidence graphs of lines in projective space (Brouwer-Sin-Ducey 2012)
- Erdös-Renyi random graphs (Wood 2014)
- Square Rook's graph and complement(Berget1991, Ducey-Gerhard-Watson 2015)
- Paley graphs (Chandler-Sin-Xiang 2015)
- Peisert graphs (Sin 2015)
- Grassman graph and complement (Sin-Ducey to appear)

(1) Preliminaries

(2) Chip Firing Game
(3) Some families of graphs with known Critical groups

4 Useful elementary results from linear algebra
(5) Symplectic polar graph

Let H be a finite abelian group and fix a prime $\ell\|H\|$. $e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H. If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$.

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$. We may consider C to be a \mathbb{Z}_{ℓ} matrix.

Let H be a finite abelian group and fix a prime $\ell||H|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$. We may consider C to be a \mathbb{Z}_{ℓ} matrix.
Define $M_{i}:=\left\{x \in \mathbb{Z}_{\ell} V \mid C x \in \ell^{i} \mathbb{Z}_{\ell} V\right\}$. Then $\bar{M}_{i}=M_{i} \otimes \mathbb{F}_{\ell}$ is a subspace of $\mathbb{F}_{\ell} V$.

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$. We may consider C to be a \mathbb{Z}_{ℓ} matrix.
Define $M_{i}:=\left\{x \in \mathbb{Z}_{\ell} V \mid C x \in \ell^{i} \mathbb{Z}_{\ell} V\right\}$. Then $\bar{M}_{i}=M_{i} \otimes \mathbb{F}_{\ell}$ is a subspace of $\mathbb{F}_{\ell} V$.

$$
\begin{aligned}
& \operatorname{ker}(C) \subset \ldots \subset M_{i+1} \subset M_{i} \ldots M_{1} \subset M_{0}=\mathbb{Z}_{\ell} V \\
& \overline{\operatorname{ker}(C)} \subset \ldots \subset \overline{M_{i+1}} \subset \overline{M_{i}} \ldots \overline{M_{1}} \subset \overline{M_{0}}=\mathbb{F}_{\ell} V
\end{aligned}
$$

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$. We may consider C to be a \mathbb{Z}_{ℓ} matrix.
Define $M_{i}:=\left\{x \in \mathbb{Z}_{\ell} V \mid C x \in \ell^{i} \mathbb{Z}_{\ell} V\right\}$. Then $\bar{M}_{i}=M_{i} \otimes \mathbb{F}_{\ell}$ is a subspace of $\mathbb{F}_{\ell} V$.

$$
\begin{aligned}
& \operatorname{ker}(C) \subset \ldots \subset M_{i+1} \subset M_{i} \ldots M_{1} \subset M_{0}=\mathbb{Z}_{\ell} V \\
& \overline{\operatorname{ker}(C)} \subset \ldots \subset \overline{M_{i+1}} \subset \overline{M_{i}} \ldots \overline{M_{1}} \subset \overline{M_{0}}=\mathbb{F}_{\ell} V
\end{aligned}
$$

(1) $e_{i}=\operatorname{dim}\left(\overline{M_{i}} / \overline{M_{i+1}}\right)$
(2) $\operatorname{dim}\left(\overline{M_{a}}\right)=\operatorname{dim}(\overline{\operatorname{ker}(C)})+\sum_{i \geq a} e_{i}$
(3) $v_{\ell}(|H|)=\sum_{i} i e_{i}$

Let H be a finite abelian group and fix a prime $\ell\|H\|$.
$e_{i}=$ the multiplicity of $\mathbb{Z} / \ell^{i} \mathbb{Z}$ as an elementary divisor of H.
If $\ell=2$, and $H=\mathbb{Z} / 2 \mathbb{Z} \times(\mathbb{Z} / 4 \mathbb{Z})^{2} \times(\mathbb{Z} / 3 \mathbb{Z})^{3} \times \mathbb{Z} / 27 \mathbb{Z}, e_{1}=1, e_{2}=2$, and $e_{i}=0$ for all other i.
Let $G=(V, E)$ be a graph with adjacency matrix A, and laplaican L. Let $C=A$ or L. Fix H to be abelian group $\operatorname{Tor}(\operatorname{coker}(C))$. We may consider C to be a \mathbb{Z}_{ℓ} matrix.
Define $M_{i}:=\left\{x \in \mathbb{Z}_{\ell} V \mid C x \in \ell^{i} \mathbb{Z}_{\ell} V\right\}$. Then $\bar{M}_{i}=M_{i} \otimes \mathbb{F}_{\ell}$ is a subspace of $\mathbb{F}_{\ell} V$.

$$
\begin{aligned}
& \operatorname{ker}(C) \subset \ldots \subset M_{i+1} \subset M_{i} \ldots M_{1} \subset M_{0}=\mathbb{Z}_{\ell} V \\
& \overline{\operatorname{ker}(C)} \subset \ldots \subset \overline{M_{i+1}} \subset \overline{M_{i}} \ldots \overline{M_{1}} \subset \overline{M_{0}}=\mathbb{F}_{\ell} V
\end{aligned}
$$

(1) $e_{i}=\operatorname{dim}\left(\overline{M_{i}} / \overline{M_{i+1}}\right)$
(2) $\operatorname{dim}\left(\overline{M_{a}}\right)=\operatorname{dim}(\overline{\operatorname{ker}(C)})+\sum_{i \geq a} e_{i}$
(3) $v_{\ell}(|H|)=\sum_{i} i e_{i}$
$\bar{M}_{i}^{\prime} s$ are $\mathbb{F}_{\ell} A u t(G)$-submodules of the permutation action of $\operatorname{Aut}(G)$ on V.

Integer eigenvalues

Now if C has an integer eigenvalue λ of multiplicity f. Let $v_{\ell}(\lambda)=a$. Treating C an element of $E n d_{Q_{l}}\left(\mathbb{Q}_{\ell} V\right)$, define V_{λ} to be the eigensubspace corresponding to λ. Then $V_{\lambda} \cap \mathbb{Z}_{\ell} V \subset M_{a}(C)$ and is a pure sublattice of rank f. Therefore we have $\operatorname{dim}\left(\overline{M_{a}(C)}\right) \geq \operatorname{dim}\left(\overline{V_{\lambda} \cap \mathbb{Z}_{\ell} V}\right)=f$.

Trivial application

Consider $G=K_{n}$ (complete graph on n-vertices). Let $C=A=J-I$, with J being the all 1 matrix. C has eigenvalues ($n-1,-1$) with multiplicities $(1, n-1)$. In this case, $|S(G)|=|\operatorname{det}(A)|=n-1$. Assume $v_{t}(n-1)=a$. $n-1$ is an integer eigen value with multiplicity 1 , so $\sum_{i \geq a} e_{i}=\operatorname{dim}\left(\bar{M}_{a}\right) \geq 1$. We have

Trivial application

Consider $G=K_{n}$ (complete graph on n-vertices). Let $C=A=J-I$, with J being the all 1 matrix. C has eigenvalues ($n-1,-1$) with multiplicities $(1, n-1)$. In this case, $|S(G)|=|\operatorname{det}(A)|=n-1$. Assume $v_{t}(n-1)=a$. $n-1$ is an integer eigen value with multiplicity 1 , so $\sum_{i \geq a} e_{i}=\operatorname{dim}\left(M_{a}\right) \geq 1$. We have

$$
\begin{aligned}
v_{\ell}(|S|) & =a=\sum_{i \geq 0} i e_{i} \\
& \geq \sum_{i \geq a} i e_{i} \\
& \geq a \sum_{i \geq a} e_{i} \\
& \geq a .
\end{aligned}
$$

Trivial application

Consider $G=K_{n}$ (complete graph on n-vertices). Let $C=A=J-I$, with J being the all 1 matrix. C has eigenvalues ($n-1,-1$) with multiplicities $(1, n-1)$. In this case, $|S(G)|=|\operatorname{det}(A)|=n-1$. Assume $v_{t}(n-1)=a$. $n-1$ is an integer eigen value with multiplicity 1 , so $\sum_{i \geq a} e_{i}=\operatorname{dim}\left(M_{a}\right) \geq 1$. We have

$$
\begin{aligned}
v_{\ell}(|S|) & =a=\sum_{i \geq 0} i e_{i} \\
& \geq \sum_{i \geq a} i e_{i} \\
& \geq a \sum_{i \geq a} e_{i} \\
& \geq a .
\end{aligned}
$$

So we have $e_{a}=1$ and $e_{i}=0$ for $i \neq a$. So the Smith group of the complete graph on n vertices is $\mathbb{Z} /(n-1) \mathbb{Z}$.

(1) Preliminaries

(2) Chip Firing Game
(3) Some families of graphs with known Critical groups
(4) Useful elementary results from linear algebra
(5) Symplectic polar graph

Strongly regular graph

A strongly regular graph(SRG) with parameters (v, k, λ, μ) is a k-regular graph on v vertices such that any two adjacent vertices have λ neighbours in common; and any two non-adjacent vertices have μ neighbours in common.

Strongly regular graph

A strongly regular graph(SRG) with parameters (v, k, λ, μ) is a k-regular graph on v vertices such that any two adjacent vertices have λ neighbours in common; and any two non-adjacent vertices have μ neighbours in common.

- A cycle of length 5 is an SRG with parameters $(5,2,0,1)$

Strongly regular graph

A strongly regular graph(SRG) with parameters (v, k, λ, μ) is a k-regular graph on v vertices such that any two adjacent vertices have λ neighbours in common; and any two non-adjacent vertices have μ neighbours in common.

- A cycle of length 5 is an SRG with parameters $(5,2,0,1)$
- The Petersen graph is an SRG with parameters $(10,3,0,1)$

Strongly regular graph

A strongly regular graph(SRG) with parameters (v, k, λ, μ) is a k-regular graph on v vertices such that
any two adjacent vertices have λ neighbours in common; and any two non-adjacent vertices have μ neighbours in common.

- A cycle of length 5 is an SRG with parameters $(5,2,0,1)$
- The Petersen graph is an SRG with parameters $(10,3,0,1)$

Let A be an adjacency matrix of a strongly regular graph with parameters (v, k, λ, μ). Then A satisfies

$$
A^{2}+(\mu-\lambda) A+(\mu-k) I=\mu J
$$

where l is the $v \times v$ identity matrix and J is the $v \times v$ all one matrix.
We also have $(v-k-1) \mu=k(k-\lambda-1)$.
$q=p^{t}, V$ be a symplectic vector space of dimension $2 m(m>2)$ over \mathbb{F}_{q}.
$q=p^{t}, V$ be a symplectic vector space of dimension $2 m(m>2)$ over \mathbb{F}_{q}. $\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $(\langle x\rangle,\langle y\rangle) \in E$ iff $\langle x\rangle \neq\langle y\rangle$ and $x \perp y$.
Γ is an SRG with parameters

$$
(v, k, \lambda, \mu)=\left(\left[\begin{array}{c}
2 m \\
1
\end{array}\right]_{q}, q\left[\begin{array}{c}
m-1 \\
1
\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}
2 m-2 \\
1
\end{array}\right]_{q}-2,\left[\begin{array}{c}
2 m-2 \\
1
\end{array}\right]_{q}\right) .
$$

$q=p^{t}, V$ be a symplectic vector space of dimension $2 m(m>2)$ over \mathbb{F}_{q}.
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $(\langle x\rangle,\langle y\rangle) \in E$ iff $\langle x\rangle \neq\langle y\rangle$ and $x \perp y$.
Γ is an SRG with parameters
$(v, k, \lambda, \mu)=\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.
Prof.Sin and I were able to calculate the elementary divisors of the Smith group S and critical group K of the graph Γ.
$q=p^{t}, V$ be a symplectic vector space of dimension $2 m(m>2)$ over \mathbb{F}_{q}.
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $(\langle x\rangle,\langle y\rangle) \in E$ iff $\langle x\rangle \neq\langle y\rangle$ and $x \perp y$.
Γ is an SRG with parameters
$(v, k, \lambda, \mu)=\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.
Prof.Sin and I were able to calculate the elementary divisors of the Smith group S and critical group K of the graph Γ.
$\operatorname{Spec}(A)=(k, r, s)=\left(q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right), q^{m-1}-1,-\left(1+q^{m-1}\right)\right)$ with
multiplicities $(1, f, g)=\left(1, \frac{q\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{2(q-1)}, \frac{q\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{2(q-1)}\right)$..
$\operatorname{Spec}(L)=(0, t, u)=\left(0,\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}\left(1+q^{m}\right),\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right)\right)$ with multiplicities $(1, f, g)$.
$q=p^{t}, V$ be a symplectic vector space of dimension $2 m(m>2)$ over \mathbb{F}_{q}.
$\Gamma=\left(\mathbb{P}^{1}(V), E\right)$ with $(\langle x\rangle,\langle y\rangle) \in E$ iff $\langle x\rangle \neq\langle y\rangle$ and $x \perp y$.
Γ is an SRG with parameters
$(v, k, \lambda, \mu)=\left(\left[\begin{array}{c}2 m \\ 1\end{array}\right]_{q}, q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right),\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}-2,\left[\begin{array}{c}2 m-2 \\ 1\end{array}\right]_{q}\right)$.
Prof.Sin and I were able to calculate the elementary divisors of the Smith group S and critical group K of the graph Γ.
$\operatorname{Spec}(A)=(k, r, s)=\left(q\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right), q^{m-1}-1,-\left(1+q^{m-1}\right)\right)$ with
multiplicities $(1, f, g)=\left(1, \frac{q\left(q^{m}-1\right)\left(q^{m-1}+1\right)}{2(q-1)}, \frac{q\left(q^{m}+1\right)\left(q^{m-1}-1\right)}{2(q-1)}\right)$..
$\operatorname{Spec}(L)=(0, t, u)=\left(0,\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}\left(1+q^{m}\right),\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\left(1+q^{m-1}\right)\right)$ with multiplicities $(1, f, g)$.
$|S|=|\operatorname{det}(A)|=\left|k r^{f} s^{g}\right|$ and $|K|=t^{f} u^{g} / v$ (by Kirchhoff's matrix-tree theorem.)

Description of S

Theorem

Let $\ell||S|$, then
(1) If ℓ is odd prime with $v_{\ell}\left(1+q^{m-1}\right)=a>0$, then $e_{a}(\ell)=g+1$ and $e_{i}(\ell)=0$ for $i \neq a$.
(2) If ℓ is an odd prime with $v_{\ell}\left(\left[\begin{array}{c}{[-1} \\ 1\end{array}\right]_{q}\right)=a$ and $v_{\ell}(q-1)=b$, we have
(1) If $a>0, b>0, e_{a+b}(\ell)=f, e_{a}(\ell)=1$ and $e_{i}(\ell)=0$ for $i \neq 0, a+b, a$
(2) If $b=0, e_{a}=f+1$ and $e_{i}(\ell)=0$ for $i \neq 0, a$
(3) If $a=0, e_{b}=f$ and $e_{i}(\ell)=0$ for $i \neq 0, b$
(3) If $\ell \mid q, e_{v_{\ell}(q)}(\ell)=1$, and $e_{i}(\ell)=0$ for $i \neq v_{\ell}(q)$.
(4) If $\ell=2$ and q is odd,
(1) If m is even, $e_{a}(2)=f-g-1$ and $e_{a+b}(2)=g+1$ and $e_{i}(2)=0$ for all other i 's. Where $a=v_{2}(q-1)$ and $b=v_{2}\left(q^{m-1}+1\right)$.
(2) If m is odd, $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1, e_{a}(2)=1$, and $e_{i}(2)=0$ for all other i^{\prime} s. Here, $v_{2}\left(\left[\begin{array}{c}{[-1} \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b$.

Description of K

Theorem

Let $\ell||K|$, then
(1) If ℓ is odd prime with $v_{\ell}\left(\left[\begin{array}{l}m \\ 1\end{array}\right]_{q}\right)=a v_{\ell}\left(1+q^{m-1}\right)=b$, then
(1) If $a>0, b>0 e_{a+b}(\ell)=g-1, e_{b}(\ell)=1$ and $e_{i}(\ell)=0$ for $i \neq a$.
(2) If $a=0, e_{b}=g$ and $e_{i}=0$ for all other i.
(3) If $b=0, e_{a}=g-1$ and $e_{i}=0$ for all other i.
(2) If ℓ is an odd prime with $v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$ and $v_{\ell}\left(q^{m}+1\right)=b>0$, we have
(1) If $a>0, b>0 e_{a+b}(\ell)=f-1, e_{a}(\ell)=1$ and $e_{i}(\ell)=0$ for $i \neq a+b, a$.
(2) If $b=0, e_{a}=f$ and $e_{i}=0$ for all other i.
(3) If $a=0, e_{b}=f-1$ and $e_{i}=0$ for all other i.
(3) If $\ell=2$ and q is odd,
(1) If m is even, $v_{\ell}\left(\left[\begin{array}{l}m \\ 1\end{array}\right]_{q}\right)=a>0$, and $v_{\ell}\left(q^{m-1}+1\right)=b>0$, we have

$$
e_{a+b+1}(2)=g-1, e_{b+1}(2)=1 \text { and } e_{1}(2)=f-g-1
$$

(2) If m is odd, $v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, and $v_{\ell}\left(q^{m}+1\right)=b>0$, we have

$$
e_{a+b}(2)=f-g-1, e_{a+b+1}(2)=g+1 \text { and } e_{a}(2)=1
$$

Numerical Example

Let $q=9$ and $m=3$. Then Γ is an SRG with parameter ($66430,7380,818,820$). The eigenvalues of A are $(7380,80,-82)$ with multiplicities $(1,33579,32850)$. The eigenvalues of L are $(0,7300,7462)$.

Numerical Example

Let $q=9$ and $m=3$. Then Γ is an SRG with parameter $(66430,7380,818,820)$. The eigenvalues of A are $(7380,80,-82)$ with multiplicities $(1,33579,32850)$. The eigenvalues of L are $(0,7300,7462)$. We have

$$
\begin{gathered}
S=\mathbb{Z} / 9 \mathbb{Z} \times(\mathbb{Z} / 41 \mathbb{Z})^{32581} \times(\mathbb{Z} / 5 \mathbb{Z})^{33580} \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 16 \mathbb{Z})^{728} \times(\mathbb{Z} / 32 \mathbb{Z})^{32851} \\
\kappa=(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z})^{728} \times(\mathbb{Z} / 8 \mathbb{Z})^{32851} \times(\mathbb{Z} / 41 \mathbb{Z}) \times(\mathbb{Z} / 91 \mathbb{Z})^{32580} \times(\mathbb{Z} / 25 Z)^{33578} \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 73 \mathbb{Z})^{33579}
\end{gathered}
$$

Numerical Example

Let $q=9$ and $m=3$. Then Γ is an SRG with parameter $(66430,7380,818,820)$. The eigenvalues of A are $(7380,80,-82)$ with multiplicities $(1,33579,32850)$. The eigenvalues of L are $(0,7300,7462)$. We have

$$
\begin{gathered}
S=\mathbb{Z} / 9 \mathbb{Z} \times(\mathbb{Z} / 41 \mathbb{Z})^{32581} \times(\mathbb{Z} / 5 \mathbb{Z})^{33580} \times(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 16 \mathbb{Z})^{728} \times(\mathbb{Z} / 32 \mathbb{Z})^{32851} \\
\kappa=(\mathbb{Z} / 2 \mathbb{Z}) \times(\mathbb{Z} / 4 \mathbb{Z})^{728} \times(\mathbb{Z} / 8 \mathbb{Z})^{32851} \times(\mathbb{Z} / 41 \mathbb{Z}) \times(\mathbb{Z} / 91 \mathbb{Z})^{32580} \times(\mathbb{Z} / 25 Z)^{33578} \times(\mathbb{Z} / 5 \mathbb{Z}) \times(\mathbb{Z} / 73 \mathbb{Z})^{33579}
\end{gathered}
$$

There are about 4×10^{81} atoms in the observable universe. This graph has more spanning trees than the number of atoms in the observable universe!

Some arithmetic

Let $\ell\left||S|=\left|k r^{f} s^{g}\right|\right.$ be a prime. We have $|s|-|r|=\left(1+q^{m-1}\right)-\left(q^{m-1}-1\right)=2, k=q \frac{r}{q-1} s$ and $\mu=\frac{r}{q-1} s . A$ satisfies $(A-r l)(A-s l)=\mu J$

Some arithmetic

Let $\ell\left||S|=\left|k r^{f} s^{q}\right|\right.$ be a prime. We have $|s|-|r|=\left(1+q^{m-1}\right)-\left(q^{m-1}-1\right)=2, k=q \frac{r}{q-1} s$ and $\mu=\frac{r}{q-1} s . A$ satisfies $(A-r l)(A-s l)=\mu J$ So $\ell \mid k, r, s$ if and only if q is odd and $\ell=2$.

Some arithmetic

Let $\ell\left||S|=\left|k r^{f} s^{g}\right|\right.$ be a prime. We have $|s|-|r|=\left(1+q^{m-1}\right)-\left(q^{m-1}-1\right)=2, k=q \frac{r}{q-1} s$ and $\mu=\frac{r}{q-1} s . A$ satisfies $(A-r l)(A-s l)=\mu \mathrm{J}$ So $\ell \mid k, r, s$ if and only if q is odd and $\ell=2$. If ℓ is an odd prime, either r or s is not $0 \equiv \bmod \ell$, so over \mathbb{F}_{ℓ}, A is diagonalizable. So we can find subspaces \bar{M}_{i}^{\prime} s using elementary linear algebra.

Some arithmetic

Let $\ell\left||S|=\left|k r^{f} s^{g}\right|\right.$ be a prime. We have $|s|-|r|=\left(1+q^{m-1}\right)-\left(q^{m-1}-1\right)=2, k=q \frac{r}{q-1} s$ and $\mu=\frac{r}{q-1} s . A$ satisfies $(A-r l)(A-s l)=\mu \mathrm{J}$ So $\ell \mid k, r, s$ if and only if q is odd and $\ell=2$. If ℓ is an odd prime, either r or s is not $0 \equiv \bmod \ell$, so over \mathbb{F}_{ℓ}, A is diagonalizable. So we can find subspaces \bar{M}_{i}^{\prime} s using elementary linear algebra.
However, in $\ell=2, r \equiv s \equiv \mu \equiv 0 \bmod 2$, so $A^{2}=0$ over \mathbb{F}_{2}. Elementary linear algebra does not help us much.

Some arithmetic

Let $\ell\left||S|=\left|k r^{f} s^{g}\right|\right.$ be a prime. We have $|s|-|r|=\left(1+q^{m-1}\right)-\left(q^{m-1}-1\right)=2, k=q \frac{r}{q-1} s$ and $\mu=\frac{r}{q-1} s . A$ satisfies $(A-r l)(A-s l)=\mu \mathrm{J}$ So $\ell \mid k, r, s$ if and only if q is odd and $\ell=2$. If ℓ is an odd prime, either r or s is not $0 \equiv \bmod \ell$, so over \mathbb{F}_{ℓ}, A is diagonalizable. So we can find subspaces \bar{M}_{i}^{\prime} s using elementary linear algebra.
However, in $\ell=2, r \equiv s \equiv \mu \equiv 0 \bmod 2$, so $A^{2}=0$ over \mathbb{F}_{2}. Elementary linear algebra does not help us much.
Same problems arise for the critical group when $\ell=2$.

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) Over $\mathbb{F}_{\ell},(\bar{A}-\bar{s})^{g}(\bar{A})^{t+1}=0$ and $\bar{A}(\bar{A}-\overline{s l})=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s I)=r(A-s I)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) Over $\mathbb{F}_{\ell},(\bar{A}-\bar{s})^{g}(\bar{A})^{t+1}=0$ and $\bar{A}(\bar{A}-\overline{s l})=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s I)=r(A-s I)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
v_{\ell}(|S|)=(a+b) f+a
$$

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) Over $\mathbb{F}_{\ell},(\bar{A}-\bar{s})^{g}(\bar{A})^{t+1}=0$ and $\bar{A}(\bar{A}-\overline{s l})=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s l)=r(A-s l)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
\begin{aligned}
v_{\ell}(|S|) & =(a+b) f+a \\
& =\sum_{i>0} i e_{i}
\end{aligned}
$$

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) $\operatorname{Over} \mathbb{F}_{\ell},(\bar{A}-\overline{s l})^{g}(\bar{A})^{f+1}=0$ and $\bar{A}(\bar{A}-\bar{s} I)=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s l)=r(A-s l)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
\begin{aligned}
v_{\ell}(|S|) & =(a+b) f+a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i}
\end{aligned}
$$

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) $\operatorname{Over} \mathbb{F}_{\ell},(\bar{A}-\overline{s l})^{g}(\bar{A})^{f+1}=0$ and $\bar{A}(\bar{A}-\bar{s} I)=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s l)=r(A-s l)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
\begin{aligned}
v_{\ell}(|S|) & =(a+b) f+a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i}
\end{aligned}
$$

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) Over $\mathbb{F}_{\ell},(\bar{A}-\overline{s l})^{g}(\bar{A})^{t+1}=0$ and $\bar{A}(\bar{A}-\bar{s} \bar{l})=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s l)=r(A-s l)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
\begin{aligned}
v_{\ell}(|S|) & =(a+b) f+a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i} \\
& \geq a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +(a+b)\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right)
\end{aligned}
$$

ℓ-part of S when $\ell \mid r$ and $\ell \nmid s$

Let $v_{\ell}(q-1)=b>0, v_{\ell}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a>0$, then $v_{\ell}(r)=a+b$ and $v_{\ell}(k)=v_{\ell}(\mu)=a$. Then $e_{a+b}=f, e_{a}=1$ and $e_{i}=0$ for all other positive i's.
(1) As r is an integer eigenvalue of valuation $a+b$, $\operatorname{dim}\left(\overline{M_{a+b}(A)}\right) \geq f$.
(2) Over $\mathbb{F}_{\ell},(\bar{A}-\bar{s})^{g}(\bar{A})^{t+1}=0$ and $\bar{A}(\bar{A}-\bar{s} \bar{l})=0$,
Thus $\operatorname{dim}(\operatorname{Im}(\bar{A}-\bar{s} I))=f+1$.
Since $A(A-s l)=r(A-s l)+\mu J$, we have $\operatorname{Im}(\bar{A}-\overline{s l}) \subset \overline{M_{a}(A)}$.

$$
\begin{aligned}
v_{\ell}(|S|) & =(a+b) f+a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i} \\
& \geq a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +(a+b)\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& \geq a+(a+b) f
\end{aligned}
$$

2-parts of S and K

In this case, $\ell=2$. The vector space $\mathbb{F}_{2} \Gamma$ is a permutation module for $\operatorname{Sp}(V)$. The vector spaces $\overline{M_{i}(A)}$, and $\overline{M_{i}(L)}$ are $\operatorname{Sp}(V)$ - submodules of $\mathbb{F}_{2} \Gamma$.

2-parts of S and K

In this case, $\ell=2$. The vector space $\mathbb{F}_{2} \Gamma$ is a permutation module for $\operatorname{Sp}(V)$. The vector spaces $\overline{M_{i}(A)}$, and $\overline{M_{i}(L)}$ are $\operatorname{Sp}(V)$ - submodules of $\mathbb{F}_{2} \Gamma$.
The submodule structure of $\mathbb{F}_{2} \Gamma$ will help us calculate the 2-elementary divisors.

2-parts of S and K

In this case, $\ell=2$. The vector space $\mathbb{F}_{2} \Gamma$ is a permutation module for $\operatorname{Sp}(V)$. The vector spaces $\overline{M_{i}(A)}$, and $\overline{M_{i}(L)}$ are $\operatorname{Sp}(V)$ - submodules of $\mathbb{F}_{2} \Gamma$.
The submodule structure of $\mathbb{F}_{2} \Gamma$ will help us calculate the 2-elementary divisors.
Let $($,$) be the symmetric bilinear form on \mathbb{F}_{2} \Gamma$ with vertices of Γ being an orthonormal basis. If W is any subspace of $V,[W]:=\sum_{\langle v\rangle \in \mathbb{P}^{1}(W)}<v>$.

2-parts of S and K

In this case, $\ell=2$. The vector space $\mathbb{F}_{2} \Gamma$ is a permutation module for $S p(V)$. The vector spaces $\overline{M_{i}(A)}$, and $\overline{M_{i}(L)}$ are $S p(V)$ - submodules of $\mathbb{F}_{2} \Gamma$.
The submodule structure of $\mathbb{F}_{2} \Gamma$ will help us calculate the 2 -elementary divisors.
Let (,) be the symmetric bilinear form on $\mathbb{F}_{2} \Gamma$ with vertices of Γ being an orthonormal basis. If W is any subspace of $V,[W]:=\sum_{\langle v\rangle \in \mathbb{P}^{1}(W)}\langle V\rangle$. Let $\mathbf{1}=[V]$, and $C=\langle\{[W] \mid W$ is a maximal totally isotropic subspace $\}\rangle$ $C^{+}=\left\langle\left\{[W]-\left[W^{\prime}\right] \mid W, W^{\prime}\right.\right.$ are maximal totally isotropic subspace $\left.\}\right\rangle$.
Let $M \subset \mathbb{F}_{2} \Gamma$, then M^{\perp} is the orthogonal complement of M with respect to (,).

Theorem (Lattile Sin Tiep 2003)
The submodule structure for $\mathbb{F}_{2} \Gamma$ is given by the following Hasse diagrams:

m is odd

$\operatorname{dim}(C)=f+1, \operatorname{dim}\left(C^{+}\right)=f, \operatorname{dim}\left(\left(C^{+}\right)^{\perp}\right)=g+1, \& \operatorname{dim}\left(C^{\perp}\right)=g$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\mathbb{F}_{2} \Gamma$	
< $1>^{\perp}$	
\|	
C	
1	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{\ell}^{v}} \subset \overline{M_{a}}$
\|	
$\left(C^{+}\right)^{\perp}$	
\|	
C^{\perp}	$\neq \operatorname{lm}(\bar{A})$
< 1 >	$\subsetneq \operatorname{lm}(\bar{A})$
1	
\{0\}	

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$<1>^{\perp}$	
\|	
C	
$1{ }^{\text {l }}$	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{\ell}^{v}} \subset \overline{M_{a}}$
$\left(C^{+}\right)^{\perp}$	$\operatorname{Im}(\bar{A}) \subset \overline{M_{a+b}}$
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
${ }^{+}$	
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$<1>^{\perp}$	
\|	
C	
$1{ }^{\text {l }}$	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{\ell}^{v}} \subset \overline{M_{a}}$
$\left(C^{+}\right)^{\perp}$	$\operatorname{Im}(\bar{A}) \subset \overline{M_{a+b}}$
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
${ }^{+}$	
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\mathbb{F}_{2} \Gamma$	
\dagger	
$<1>^{\perp}$	
\|	
C	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{\rho}^{v}} \subset \overline{M_{a}}$
$\left(C^{+}\right)^{\perp}$	$\operatorname{Im}(\bar{A}) \subset \overline{M_{a+b}}$
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

$$
v_{2}(|S|)=b+g b+f a
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

${ }^{\mathbb{F}_{2} \Gamma}$	$\mathbb{F}_{2} \Gamma$
$<1>^{\perp}$	
-	
C	
$C^{+} \quad \subset V_{r} \cap \mathbb{Z}_{\ell}^{V} \subset M_{a}$	
$\left(C^{+}\right)^{\perp} \quad I m(\bar{A}) \subset \overline{M_{a+b}}$	
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i}
\end{aligned}
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

${ }^{\mathbb{F}_{2} \Gamma}$	$\mathbb{F}_{2} \Gamma$
$<1>^{\perp}$	
-	
C	
$C^{+} \quad \subset V_{r} \cap \mathbb{Z}_{\ell}^{V} \subset M_{a}$	
$\left(C^{+}\right)^{\perp} \quad I m(\bar{A}) \subset \overline{M_{a+b}}$	
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i}
\end{aligned}
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\underset{\mid}{\mathbb{F}_{2}} \Gamma$	
$<1>^{\perp}$	
\|	
c	
\|	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{f}^{v}} \subset \overline{M_{a}}$
\|	
$\left(C^{+}\right)^{\perp}$	$\operatorname{Im}(\bar{A}) \subset \overline{M_{a+b}}$
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
\|	
< 1 >	$\subsetneq \operatorname{lm}(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i}
\end{aligned}
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\underset{\mid}{\mathbb{F}_{2}} \Gamma$	
$<1>^{\perp}$	
\|	
c	
\|	
C^{+}	$\subset \overline{V_{r} \cap \mathbb{Z}_{f}^{v}} \subset \overline{M_{a}}$
\|	
$\left(C^{+}\right)^{\perp}$	$\operatorname{Im}(\bar{A}) \subset \overline{M_{a+b}}$
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
\|	
< 1 >	$\subsetneq \operatorname{lm}(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i} \\
& \geq a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +a+b\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right)
\end{aligned}
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\mathbb{F}_{2} \Gamma$	
\|	
$<1>^{\perp}$	
-	
C	
$C^{+} \quad \subset V_{r} \cap \mathbb{Z}_{\ell}^{V} \subset M_{a}$	
$\left(C^{+}\right)^{\perp} \quad I m(\bar{A}) \subset \overline{M_{a+b}}$	
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i} \\
& \geq a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +a+b\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& =a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)\right. \\
& +b\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right)
\end{aligned}
$$

2-part of S, when m is even.

Let $a=v_{2}(q-1)=v_{2}\left(q^{m-1}-1\right)$ and $b=v_{2}\left(q^{m-1}+1\right)$. Then $e_{a}=f-g-1$ and $e_{a+b}=g+1$ and $e_{i}=0$ for other i.

$\mathbb{F}_{2} \Gamma$	
\|	
$<1>^{\perp}$	
-	
C	
$C^{+} \quad \subset V_{r} \cap \mathbb{Z}_{\ell}^{V} \subset M_{a}$	
$\left(C^{+}\right)^{\perp} \quad I m(\bar{A}) \subset \overline{M_{a+b}}$	
\|	
C^{\perp}	$\neq \operatorname{Im}(\bar{A})$
< 1 >	$\subsetneq I m(\bar{A})$
\|	
\{0\}	

So we have

$$
\begin{aligned}
v_{2}(|S|) & =b+g b+f a \\
& =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+\sum_{i \geq a+b} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) \sum_{i \geq a+b} e_{i} \\
& \geq a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +a+b\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& =a\left(\operatorname{dim}\left(\bar{M}_{a}(A)\right)\right. \\
& +b\left(\operatorname{dim}\left(\bar{M}_{a+b}(A)\right)\right) \\
& \geq a f+b(g+1)
\end{aligned}
$$

2-part of S, when m is odd.

We assume $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b, v_{2}(r)=a+b, v_{2}(s)=1$, $v_{2}(k)=v_{2}(\mu)=a+1$. We get $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1$, and $e_{i}(2)=0$

2-part of S, when m is odd.

We assume $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b, v_{2}(r)=a+b, v_{2}(s)=1$, $v_{2}(k)=v_{2}(\mu)=a+1$. We get $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1$, and $e_{i}(2)=0$

2-part of S, when m is odd.

We assume $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b, v_{2}(r)=a+b, v_{2}(s)=1$, $v_{2}(k)=v_{2}(\mu)=a+1$. We get $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1$, and $e_{i}(2)=0$

2-part of S, when m is odd.

We assume $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b, v_{2}(r)=a+b, v_{2}(s)=1$, $v_{2}(k)=v_{2}(\mu)=a+1$. We get $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1$, and $e_{i}(2)=0$

2-part of S, when m is odd.

We assume $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a, v_{2}(q-1)=b, v_{2}(r)=a+b, v_{2}(s)=1$, $v_{2}(k)=v_{2}(\mu)=a+1$.We get $e_{a+b+1}(2)=g+1, e_{a+b}(2)=f-g-1$, $e_{a}(2)=1$, and $e_{i}(2)=0$

$$
\begin{aligned}
v_{2}(|S|) & =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+(a+b)\left(e_{a+b}\right)+\sum_{i \geq a+b+1} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) e_{a+b} \\
& +(a+b+1) \sum_{i \geq a+b+1} e_{i} \\
& \geq a\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\bar{M}_{a}(A)\right)-\operatorname{dim}_{\mathbb{F}_{2}}\left(\bar{M}_{a+b}(A)\right)\right) \\
& +a+b\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\bar{M}_{a+b}(A)\right)-\operatorname{dim}_{\mathbb{F}_{2}}\left(\bar{M}_{a+b+1}(A)\right)\right) \\
& +(a+b+1)\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\bar{M}_{a+b+1}(A)\right)\right) \\
& \geq a+(a+b) f+g+1=v_{2}(|S|)
\end{aligned}
$$

2-part of K, when m is even.

As $\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(q^{m}-1\right)>1$, and thus $v_{2}\left(q^{m}+1\right)=1$. Assume $v_{2}\left(\left[\begin{array}{c}{\left[\begin{array}{c}1 \\ 1\end{array}\right]_{q}}\end{array}\right)=a\right.$ and $v_{2}\left(q^{m-1}+1\right)=b$. Then we have $e_{a+b+1}=g-1, e_{b+1}=1, e_{1}=f-g-1$

2-part of K, when m is even.

As $\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(q^{m}-1\right)>1$, and thus $v_{2}\left(q^{m}+1\right)=1$. Assume $v_{2}\left(\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\right)=a$ and $v_{2}\left(q^{m-1}+1\right)=b$. Then we have $e_{a+b+1}=g-1, e_{b+1}=1, e_{1}=f-g-1$

$\subset \overline{M_{1}}$

2-part of K, when m is even.

As $\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(q^{m}-1\right)>1$, and thus $v_{2}\left(q^{m}+1\right)=1$. Assume $v_{2}\left(\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\right)=a$ and $v_{2}\left(q^{m-1}+1\right)=b$. Then we have $e_{a+b+1}=g-1, e_{b+1}=1, e_{1}=f-g-1$

2-part of K, when m is even.

As $\left[\begin{array}{l}m \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(q^{m}-1\right)>1$, and thus $v_{2}\left(q^{m}+1\right)=1$. Assume $v_{2}\left(\left[\frac{m}{1}\right]_{q}\right)=a$ and $v_{2}\left(q^{m-1}+1\right)=b$. Then we have $e_{a+b+1}=g-1, e_{b+1}=1, e_{1}=f-g-1$ $\begin{array}{cc}\mathbb{F}_{2} \Gamma \\ 1 & \\ <1>^{\perp} & \\ 1 \\ C & \\ \mid & \\ C^{+} & C \overline{M_{1}} \\ \mid & \\ \left(C^{+}\right)^{\perp} & C \overline{M_{b+1}} \\ \mid & \\ C^{\perp} & \subset \overline{M_{a+b+1}} \\ \mid & \\ <1> & \\ 1 & \\ 00 & \end{array}$

2-part of K, when m is even.

As $\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(q^{m}-1\right)>1$, and thus $v_{2}\left(q^{m}+1\right)=1$. Assume $v_{2}\left(\left[\begin{array}{c}m \\ 1\end{array}\right]_{q}\right)=a$ and $v_{2}\left(q^{m-1}+1\right)=b$. Then we have $e_{a+b+1}=g-1, e_{b+1}=1, e_{1}=f-g-1$

$\mathbb{F}_{2} \mathrm{I}$	
<1> ${ }^{+}$	
c	
C^{+}	$\subset \overline{M_{1}}$
(${ }^{+}$	$c \overline{M_{b+1}}$
${ }^{+}$	$c \overline{M_{a+b+1}}$
<1 1 ¢	

So we have

$$
\begin{aligned}
v_{2}(|K|)=f+(a+b) g-(a+1) & =\sum_{i>0} i e_{i} \\
& =\sum_{b+1>i>0} i e_{i}+\sum_{a+b+1>i \geq b+1} i e_{i}+\sum_{i \geq a+b+1} i e_{i} \\
& \geq \sum_{b+1>i>0} e_{i}+b \sum_{a+b+1>i \geq b+1} e_{i}+ \\
& (a+b+1) \sum_{i \geq a+b+1} e_{i} \\
& =\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{1}(L)}\right)- \\
& \operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{b+1}(L)}+(b+1)\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{b+1}(L)}\right)\right.\right. \\
& -\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{a+b+1}(L)}\right)+ \\
& (a+b+1)\left(\operatorname{dim}_{\mathbb{P}_{2}}\left(\overline{M_{a+b+1}(L)}-\operatorname{dim}_{\mathbb{P}_{2}} \overline{\operatorname{Ker}(L)}\right)\right) \\
& \geq f-(g+1)+b+1(a+b+1)(g-1) \\
& =(f+(a+b) g-(a+1)) .
\end{aligned}
$$

2-part of K when m is odd.

As $\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(-1+q^{m-1}\right)>1$ and thus $v_{2}\left(1+q^{m-1}\right)=1$. Assume $v_{2}\left(q^{m}+1\right)=b$ and $v_{2}\left(\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{a}\right)=a$. Then $e_{a+b+1}=g+1$, $e_{a+b}=f-g-1, e_{a}=1$, and $e_{i}=0$ for all other i.

2-part of K when m is odd.

As $\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(-1+q^{m-1}\right)>1$ and thus $v_{2}\left(1+q^{m-1}\right)=1$. Assume $v_{2}\left(q^{m}+1\right)=b$ and $v_{2}\left(\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}\right)=a$. Then $e_{a+b+1}=g+1$, $e_{a+b}=f-g-1, e_{a}=1$, and $e_{i}=0$ for all other i.

2-part of K when m is odd.

As $\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(-1+q^{m-1}\right)>1$ and thus $v_{2}\left(1+q^{m-1}\right)=1$. Assume $v_{2}\left(q^{m}+1\right)=b$ and $v_{2}\left(\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{a}\right)=a$. Then $e_{a+b+1}=g+1$, $e_{a+b}=f-g-1, e_{a}=1$, and $e_{i}=0$ for all other i.

2-part of K when m is odd.

As $\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(-1+q^{m-1}\right)>1$ and thus $v_{2}\left(1+q^{m-1}\right)=1$. Assume $v_{2}\left(q^{m}+1\right)=b$ and $v_{2}\left(\left[\begin{array}{c}m-1 \\ 1\end{array}\right]_{q}\right)=a$. Then $e_{a+b+1}=g+1$, $e_{a+b}=f-g-1, e_{a}=1$, and $e_{i}=0$ for all other i.

2-part of K when m is odd.

As $\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}$ is even, $v_{2}\left(-1+q^{m-1}\right)>1$ and thus $v_{2}\left(1+q^{m-1}\right)=1$. Assume $v_{2}\left(q^{m}+1\right)=b$ and $v_{2}\left(\left[\begin{array}{c}c-1 \\ 1\end{array}\right]_{q}\right)=a$. Then $e_{a+b+1}=g+1$, $e_{a+b}=f-g-1, e_{a}=1$, and $e_{i}=0$ for all other i.

$$
\begin{aligned}
v_{2}(|K|) & =\sum_{i>0} i e_{i} \\
& \geq \sum_{a+b>i \geq a} i e_{i}+(a+b)\left(e_{a+b}\right)+\sum_{i \geq a+b+1} i e_{i} \\
& \geq a \sum_{a+b>i \geq a} e_{i}+(a+b) e_{a+b} \\
& +(a+b+1) \sum_{i \geq a+b+1} e_{i} \\
& \geq a\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{a}(L)}\right)-\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{a+b}(L)}\right)\right) \\
& +a+b\left(\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{a+b}(L)}\right)-\operatorname{dim}_{\mathbb{F}_{2}}\left(\overline{M_{a+b+1}(L)}\right)\right) \\
& +(a+b+1)\left(\operatorname { d i m } _ { \mathbb { F } _ { 2 } } \left(\overline{M_{a+b+1}(L)}\right.\right. \\
& \left.-\operatorname{dim}_{\mathbb{F}_{2}}(\overline{\operatorname{ker}(L)})\right) \\
& \geq(a+b) f+g-b=v_{2}(|K|)
\end{aligned}
$$

Other Results

Consider the graph on a non-degenerate quadric in $\mathbb{P}^{n}(q)$, in which two points are adjacent if and only if they are orthogonal.

Other Results

Consider the graph on a non-degenerate quadric in $\mathbb{P}^{n}(q)$, in which two points are adjacent if and only if they are orthogonal.

- If n is odd, $O(n, q)$ is a subgroup of the automorphism group.
- If n is even, one of $O^{+}(n, q), O^{-}(n, q)$ is a subgroup of the automorphism group

Other Results

Consider the graph on a non-degenerate quadric in $\mathbb{P}^{n}(q)$, in which two points are adjacent if and only if they are orthogonal.

- If n is odd, $O(n, q)$ is a subgroup of the automorphism group.
- If n is even, one of $O^{+}(n, q), O^{-}(n, q)$ is a subgroup of the automorphism group
Using the submodule structure given in Rank 3 permutation modules of the finite classical groups , J. Algebra 291 (2005) 551-606 by Sin and Tiep, we were able to determine the Smith and Critical groups of the above family of graphs.

References I

- Bose R.C, Bose, R. C. Strongly regular graphs, partial geometries and partially balanced designs., Pacific J. Math. 13 (1963), no. 2, 389-419.
R.Stanley, Smith Normal Form in Combinatorics, arXiv:1602.00166v2
N.G.Biggs, Chip-Firing and the Critical Group of a Graph, J. Algebraic Combin. 9 (1999), no. 1, 2545.
围 A. E. Brouwer and W. H. Haemers, Spectra of graphs, Universitext, Springer, New York, 2012. MR 2882891
R- Andries E. Brouwer, Joshua E. Ducey and Peter Sin, The Elementary Divisors of the Incidence Matrix of Skew Lines in PG(3, q)., Proc. Amer. Math. Soc. 140 (2012) 2561-2573
目 D. Dhar, Self-organized critical state of sandpile automaton models,, Phys. Rev. Lett. 64 (1990),no. 14, 16131616.

References II

目 Higman，Donald G．Finite permutation groups of rank 3．，Math．Z． 86 1964145156.

R Martin W Liebeck，Permutation modules for rank 3 symplectic and orthogonal groups．，Journal of Algebra Volume 92，Issue 1，January 1985，Pages 9－15
囦 Martin W Liebeck，Permutation modules for rank 3 unitary groups．， Journal of Algebra Volume 88，Issue 2，June 1984，Pages 317－329
－Peter Sin，Pham Huu Tiep，Rank 3 permutation modules of the finite classical groups，J．Algebra 291 （2005）551－606
围 J．M．LATAILLE，PETER SIN，AND PHAM HUU TIEP，The Modulo 2 Structure of rank 3 permutation modules for odd characteristic symplectic groups，J．Algebra 268 （2003），463－483．

References III

雷 J.M.Lataille, The elementary divisors of incidence matrices between certain subspaces of a finite symplectic space, Journal of Algebra Volume 268, Issue 2, 15 October 2003, Pages 444462
Reter Sin, The permutation module of a symplectic vector space over a field of prime order,, Journal of Algebra 241, 578-591 (2001)

Thank You!

