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Smith and Critical groups of a Graph

Let G = (V ,E) be a simple connected graph and A be it’s adjacency
matrix.

The Laplacian matrix L := D − A , where D is the degree matrix. As a Z
matrix, rank(L) = |V | − 1
Both A and L are elements of EndZ(ZV).
The Smith group S(G) is ZV/A(ZV).
The critical group K(G) is the finite part of ZV/L(ZV) � Z ⊕ K(G)
These groups are important invariants of a graph.
Consider the complete graph on n vertices, Kn. In this case A = J − I, and
L = (n − 1)I − A . Here I is the identity matrix and J the all-one matrix of
size n × n.The Smith group of this graph is Z/(n − 1)Z, and the critical
group being (Z/nZ)n−2 .
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Chip Firing Game
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A configuration on a graph is an assignment of a non-negative integer s(v)
to every round vertex v and −

∑
s(v) to the square vertex(sink/bank).

A round vertex v can be fired if s(v) ≥ d(v) The square vertex fires only
when no other can fire.
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Sample game

1

2 2

-5

2

0 3

-5 0

1 3

-4 0

2 1

-3 1

0 2

-3

1

1 0

-2 2

1 1

-4 0

2 1

-3

A configuration is said to be recurrent if there is a sequence of firings
that lead back to the configuration.

A configuration is said to be stable if there no round vertex can be
fired

A configuration is said to be critical if it is both stable and recurrent
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Chip firing game and the Laplacian

If we start with a configuration s = (s(v)) and fire vertices in a sequence
in which v is fired x(v) times to get to a configuration s′, then

s′(v) = s(v) − x(v)deg(v) +
∑
w∼v

x(w)

s′ = s + Lx

Theorem (Biggs 1997)
Any starting configuration of a graph G leads to a unique critical
configuration.
The set of critical configuration has a natural group operation that is
isomorphic to the critical group K(G).
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For any tree Γ, K(Γ) = {0}

Complete graph on n vertices Kn, K(Kn) � (Z/nZ)n−2

Wheel graphs Wn, K(Wn) � (Z/`nZ)2 . Her `n is the nth Lucas
number.(Vince 1990, Biggs 1997 )

Complete multipartite graphs (Jacobson-Niedermaier-Reiner 2003)

Conference graphs on square free number of vertices (Lorenzini
2008)

Incidence graphs of lines in projective space (Brouwer-Sin-Ducey
2012)

Erdös-Renyi random graphs (Wood 2014)

Square Rook’s graph and complement(Berget1991,
Ducey-Gerhard-Watson 2015)

Paley graphs (Chandler-Sin-Xiang 2015)

Peisert graphs (Sin 2015)

Grassman graph and complement (Sin-Ducey to appear)
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Let H be a finite abelian group and fix a prime ` | |H|.
ei =the multiplicity of Z/`iZ as an elementary divisor of H.

If ` = 2, and H = Z/2Z × (Z/4Z)2
× (Z/3Z)3

× Z/27Z, e1 = 1, e2 = 2, and
ei = 0 for all other i.
Let G = (V ,E) be a graph with adjacency matrix A , and laplaican L .
Let C = A or L . Fix H to be abelian group Tor(coker(C)). We may
consider C to be a Z` matrix.
Define Mi := {x ∈ Z`V | Cx ∈ `iZ`V}. Then Mi = Mi ⊗ F` is a subspace of
F`V .

ker(C) ⊂ . . . ⊂ Mi+1 ⊂ Mi . . .M1 ⊂ M0 = Z`V

ker(C) ⊂ . . . ⊂ Mi+1 ⊂ Mi . . .M1 ⊂ M0 = F`V

1 ei = dim(Mi/Mi+1)

2 dim(Ma) = dim(ker(C)) +
∑

i≥a ei

3 v` (|H|) =
∑

i iei

Mi
′
s are F`Aut(G)-submodules of the permutation action of Aut(G) on V .
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Integer eigenvalues

Now if C has an integer eigenvalue λ of multiplicity f . Let v`(λ) = a.
Treating C an element of EndQ`(Q`V), define Vλ to be the eigensubspace
corresponding to λ. Then Vλ ∩ Z`V ⊂ Ma(C) and is a pure sublattice of
rank f . Therefore we have dim(Ma(C)) ≥ dim(Vλ ∩ Z`V) = f .
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Trivial application
Consider G = Kn(complete graph on n-vertices). Let C = A = J − I, with J
being the all 1 matrix.C has eigenvalues (n − 1,−1) with multiplicities
(1, n − 1). In this case, |S(G)| = |det(A)| = n − 1. Assume v`(n − 1) = a.
n − 1 is an integer eigen value with multiplicity 1, so

∑
i≥a

ei = dim(Ma) ≥ 1.

We have

v`(|S |) = a =
∑
i≥0

iei

≥
∑
i≥a

iei

≥ a
∑
i≥a

ei

≥ a.

So we have ea = 1 and ei = 0 for i , a. So the Smith group of the
complete graph on n vertices is Z/(n − 1)Z.

Venkata Raghu Tej Pantangi Joint work with Peter Sin. (University of Florida SRAC 2017-Mobile)Smith and critical groups of the symplectic polar graph. 14 / 33



Trivial application
Consider G = Kn(complete graph on n-vertices). Let C = A = J − I, with J
being the all 1 matrix.C has eigenvalues (n − 1,−1) with multiplicities
(1, n − 1). In this case, |S(G)| = |det(A)| = n − 1. Assume v`(n − 1) = a.
n − 1 is an integer eigen value with multiplicity 1, so

∑
i≥a

ei = dim(Ma) ≥ 1.

We have

v`(|S |) = a =
∑
i≥0

iei

≥
∑
i≥a

iei

≥ a
∑
i≥a

ei

≥ a.

So we have ea = 1 and ei = 0 for i , a. So the Smith group of the
complete graph on n vertices is Z/(n − 1)Z.

Venkata Raghu Tej Pantangi Joint work with Peter Sin. (University of Florida SRAC 2017-Mobile)Smith and critical groups of the symplectic polar graph. 14 / 33



Trivial application
Consider G = Kn(complete graph on n-vertices). Let C = A = J − I, with J
being the all 1 matrix.C has eigenvalues (n − 1,−1) with multiplicities
(1, n − 1). In this case, |S(G)| = |det(A)| = n − 1. Assume v`(n − 1) = a.
n − 1 is an integer eigen value with multiplicity 1, so

∑
i≥a

ei = dim(Ma) ≥ 1.

We have

v`(|S |) = a =
∑
i≥0

iei

≥
∑
i≥a

iei

≥ a
∑
i≥a

ei

≥ a.

So we have ea = 1 and ei = 0 for i , a. So the Smith group of the
complete graph on n vertices is Z/(n − 1)Z.

Venkata Raghu Tej Pantangi Joint work with Peter Sin. (University of Florida SRAC 2017-Mobile)Smith and critical groups of the symplectic polar graph. 14 / 33



1 Preliminaries

2 Chip Firing Game

3 Some families of graphs with known Critical groups

4 Useful elementary results from linear algebra
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Venkata Raghu Tej Pantangi Joint work with Peter Sin. (University of Florida SRAC 2017-Mobile)Smith and critical groups of the symplectic polar graph. 15 / 33



Strongly regular graph
A strongly regular graph(SRG) with parameters (v , k , λ, µ) is a k−regular
graph on v vertices such that
any two adjacent vertices have λ neighbours in common; and
any two non-adjacent vertices have µ neighbours in common.

A cycle of length 5 is an SRG with parameters (5, 2, 0, 1)

The Petersen graph is an SRG with parameters (10, 3, 0, 1)

Let A be an adjacency matrix of a strongly regular graph with parameters
(v , k , λ, µ). Then A satisfies

A2 + (µ − λ)A + (µ − k)I = µJ,

where I is the v × v identity matrix and J is the v × v all one matrix.
We also have (v − k − 1)µ = k(k − λ − 1).
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q = pt , V be a symplectic vector space of dimension 2m(m > 2) over Fq.

Γ = (P1(V),E) with (< x >, < y >) ∈ E iff < x >,< y > and x ⊥ y.
Γ is an SRG with parameters
(v , k , λ, µ) = (

[
2m
1

]
q
, q

[
m−1

1

]
q
(1 + qm−1),

[
2m−2

1

]
q
− 2,

[
2m−2

1

]
q
) .

Prof.Sin and I were able to calculate the elementary divisors of the Smith
group S and critical group K of the graph Γ.
Spec(A) = (k , r , s) = (q

[
m−1

1

]
q
(1 + qm−1), qm−1 − 1,−(1 + qm−1)) with

multiplicities (1, f , g) = (1, q(qm−1)(qm−1+1)
2(q−1)

,
q(qm+1)(qm−1−1)

2(q−1)
)..

Spec(L) = (0, t , u) = (0,
[
m−1

1

]
q
(1 + qm),

[
m
1

]
q
(1 + qm−1)) with multiplicities

(1, f , g).
|S | = |det(A)| = |kr f sg | and |K | = t f ug/v(by Kirchhoff’s matrix-tree
theorem.)
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Description of S

Theorem
Let ` | |S |, then

1 If ` is odd prime with v`(1 + qm−1) = a > 0, then ea(`) = g + 1 and
ei(`) = 0 for i , a.

2 If ` is an odd prime with v`(
[
m−1

1

]
q
) = a and v`(q − 1) = b , we have

1 If a > 0, b > 0, ea+b(`) = f , ea(`) = 1 and ei(`) = 0 for i , 0, a + b , a
2 If b = 0, ea = f + 1 and ei(`) = 0 for i , 0, a
3 If a = 0, eb = f and ei(`) = 0 for i , 0, b

3 If ` | q, ev`(q)(`) = 1, and ei(`) = 0 for i , v`(q).

4 If ` = 2 and q is odd,
1 If m is even, ea(2) = f − g − 1 and ea+b(2) = g + 1 and ei(2) = 0 for

all other i′s. Where a = v2(q − 1) and b = v2(qm−1 + 1).
2 If m is odd, ea+b+1(2) = g + 1, ea+b(2) = f − g − 1, ea(2) = 1, and

ei(2) = 0 for all other i′s. Here, v2([m−1
1 ]q) = a, v2(q − 1) = b .
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Description of K

Theorem
Let ` | |K |, then

1 If ` is odd prime with v`([m
1 ]q) = a v`(1 + qm−1) = b , then

1 If a > 0, b > 0 ea+b(`) = g − 1, eb(`) = 1 and ei(`) = 0 for i , a.
2 If a = 0, eb = g and ei = 0 for all other i.
3 If b = 0, ea = g − 1 and ei = 0 for all other i.

2 If ` is an odd prime with v`([m−1
1 ]q) = a > 0 and v`(qm + 1) = b > 0, we have

1 If a > 0, b > 0 ea+b(`) = f − 1, ea(`) = 1 and ei(`) = 0 for i , a + b , a.
2 If b = 0, ea = f and ei = 0 for all other i.
3 If a = 0, eb = f − 1 and ei = 0 for all other i.

3 If ` = 2 and q is odd,

1 If m is even, v`([m1 ]q) = a > 0, and v`(qm−1 + 1) = b > 0, we have
ea+b+1(2) = g − 1, eb+1(2) = 1 and e1(2) = f − g − 1

2 If m is odd, v`([m−1
1 ]q) = a > 0, and v`(qm + 1) = b > 0, we have

ea+b(2) = f − g − 1, ea+b+1(2) = g + 1 and ea(2) = 1.
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Numerical Example

Let q = 9 and m = 3. Then Γ is an SRG with parameter
(66430, 7380, 818, 820). The eigenvalues of A are (7380, 80,−82) with
multiplicities (1, 33579, 32850). The eigenvalues of L are (0, 7300, 7462).

We have

S = Z/9Z × (Z/41Z)32581
× (Z/5Z)33580

× (Z/2Z) × (Z/16Z)728
× (Z/32Z)32851

K = (Z/2Z) × (Z/4Z)728
× (Z/8Z)32851

× (Z/41Z) × (Z/91Z)32580
× (Z/25Z)33578

× (Z/5Z) × (Z/73Z)33579

There are about 4×1081 atoms in the observable universe. This graph has
more spanning trees than the number of atoms in the observable universe!
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Some arithmetic

Let ` | |S | = |kr f sg | be a prime. We have
|s| − |r | = (1 + qm−1) − (qm−1 − 1) = 2, k = q r

q−1s and µ = r
q−1s. A

satisfies (A − rI)(A − sI) = µJ

So ` | k , r , s if and only if q is odd and ` = 2.
If ` is an odd prime, either r or s is not 0 ≡ mod`, so over F`, A is
diagonalizable. So we can find subspaces M

′

i s using elementary linear
algebra.
However, in ` = 2, r ≡ s ≡ µ ≡ 0mod2, so A2 = 0 over F2. Elementary
linear algebra does not help us much.
Same problems arise for the critical group when ` = 2.
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`-part of S when ` | r and ` - s

Let v`(q − 1) = b > 0, v`(
[
m−1

1

]
q
) = a > 0, then v`(r) = a + b and

v`(k) = v`(µ) = a. Then ea+b = f , ea = 1 and ei = 0 for all other positive
i′s.

1 As r is an integer eigenvalue of
valuation a + b,
dim(Ma+b (A)) ≥ f .

2 Over F`, (A − sI)g(A)f+1 = 0 and
A(A − sI) = 0,
Thus dim(Im(A − sI)) = f + 1.
Since A(A − sI) = r(A − sI) + µJ,
we have Im(A − sI) ⊂ Ma(A).

v`(|S |) = (a + b)f + a

=
∑
i>0

iei

≥
∑

a+b>i≥a

iei +
∑

i≥a+b

iei

≥ a
∑

a+b>i≥a

ei + (a + b)
∑

i≥a+b

ei

≥ a(dim(Ma(A)) − dim(Ma+b (A)))

+ (a + b)(dim(Ma+b (A)))

≥ a + (a + b)f
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2-parts of S and K

In this case, ` = 2. The vector space F2Γ is a permutation module for
Sp(V). The vector spaces Mi(A), and Mi(L) are Sp(V)− submodules of
F2Γ.

The submodule structure of F2Γ will help us calculate the 2-elementary
divisors.
Let ( , ) be the symmetric bilinear form on F2Γ with vertices of Γ being an
orthonormal basis. If W is any subspace of V , [W ] :=

∑
<v>∈P1(W)

< v > .

Let 1 = [V ], and C =
〈
{[W ]|W is a maximal totally isotropic subspace}

〉
C+ =

〈
{[W ] − [W ′]|W ,W ′ are maximal totally isotropic subspace}

〉
.

Let M ⊂ F2Γ, then M⊥ is the orthogonal complement of M with respect to
( , ).
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Theorem (Lattile Sin Tiep 2003)
The submodule structure for F2Γ is given by the following Hasse diagrams:
m is even
F2Γ

< 1 >⊥

C

C+

(C+)⊥

C⊥

< 1 >

{0}

m is odd
F2Γ

C < 1 >⊥

C+

(C+)⊥

< 1 > C⊥

{0}

dim(C) = f + 1, dim(C+) = f , dim((C+)⊥) = g + 1, &dim(C⊥) = g
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2-part of S, when m is even.

Let a = v2(q − 1) = v2(qm−1 − 1) and b = v2(qm−1 + 1). Then
ea = f − g − 1 and ea+b = g + 1 and ei = 0 for other i.
F2Γ

< 1 >⊥

C

C+

⊂ Vr ∩ Z
v
` ⊂ Ma

(C+)⊥

Im(A) ⊂ Ma+b

C⊥

, Im(A)

< 1 >

( Im(A)

{0}

So we have

v2(|S |) = b + gb + fa

=
∑
i>0

iei

≥
∑

a+b>i≥a

iei +
∑

i≥a+b

iei

≥ a
∑

a+b>i≥a

ei + (a + b)
∑

i≥a+b

ei

≥ a(dim(Ma (A)) − dim(Ma+b (A)))

+ a + b(dim(Ma+b (A)))

= a(dim(Ma (A))

+ b(dim(Ma+b (A)))

≥ af + b(g + 1)
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2-part of S, when m is odd.

We assume v2(
[
m−1

1

]
q
) = a, v2(q − 1) = b , v2(r) = a + b , v2(s) = 1,

v2(k) = v2(µ) = a + 1.We get ea+b+1(2) = g + 1, ea+b(2) = f − g − 1,
ea(2) = 1, and ei(2) = 0

F2Γ

Ma ⊃

C < 1 >⊥

Ma+b ⊃

C+

Ma+b+1 ⊃

(C+)⊥

< 1 > C⊥

{0}

v2(|S |) =
∑
i>0

iei

≥
∑

a+b>i≥a

iei + (a + b)(ea+b ) +
∑

i≥a+b+1

iei

≥ a
∑

a+b>i≥a

ei + (a + b)ea+b

+ (a + b + 1)
∑

i≥a+b+1

ei

≥ a(dimF2 (Ma (A)) − dimF2 (Ma+b (A)))

+ a + b(dimF2 (Ma+b (A)) − dimF2 (Ma+b+1(A)))

+ (a + b + 1)(dimF2 (Ma+b+1(A)))

≥ a + (a + b)f + g + 1 = v2(|S |)
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2-part of K , when m is even.
As

[
m
1

]
q

is even , v2(qm − 1) > 1, and thus v2(qm + 1) = 1. Assume

v2(
[
m
1

]
q
) = a and v2(qm−1 + 1) = b . Then we have

ea+b+1 = g − 1, eb+1 = 1, e1 = f − g − 1
F2Γ

< 1 >⊥

C

C+

⊂ M1

(C+)⊥

⊂ Mb+1

C⊥

⊂ Ma+b+1

< 1 >

{0}

So we have

v2(|K |) = f + (a + b)g − (a + 1) =
∑
i>0

iei

=
∑

b+1>i>0

iei +
∑

a+b+1>i≥b+1

iei +
∑

i≥a+b+1

iei

≥
∑

b+1>i>0

ei + b
∑

a+b+1>i≥b+1

ei +

(a + b + 1)
∑

i≥a+b+1

ei

= dimF2 (M1(L))−

dimF2 (Mb+1(L) + (b + 1)(dimF2 (Mb+1(L))

− dimF2 (Ma+b+1(L))+

(a + b + 1)(dimF2 (Ma+b+1(L) − dimF2 (Ker(L)))

≥ f − (g + 1) + b + 1(a + b + 1)(g − 1)

= (f + (a + b)g − (a + 1)).
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2-part of K when m is odd.

As
[
m−1

1

]
q

is even, v2(−1 + qm−1) > 1 and thus v2(1 + qm−1) = 1. Assume

v2(qm + 1) = b and v2(
[
m−1

1

]
q
) = a. Then ea+b+1 = g + 1,

ea+b = f − g − 1, ea = 1, and ei = 0 for all other i.
F2Γ

Ma ⊃

C < 1 >⊥
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C+

(C+)⊥

Ma+b+1 ⊃

C⊥ < 1 >

{0}

v2(|K |) =
∑
i>0

iei

≥
∑

a+b>i≥a

iei + (a + b)(ea+b ) +
∑

i≥a+b+1

iei

≥ a
∑

a+b>i≥a

ei + (a + b)ea+b

+ (a + b + 1)
∑

i≥a+b+1
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≥ a(dimF2 (Ma (L)) − dimF2 (Ma+b (L)))

+ a + b(dimF2 (Ma+b (L)) − dimF2 (Ma+b+1(L)))

+ (a + b + 1)(dimF2 (Ma+b+1(L)

− dimF2 (ker(L)))

≥ (a + b)f + g − b = v2(|K |)
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Other Results

Consider the graph on a non-degenerate quadric in Pn(q), in which two
points are adjacent if and only if they are orthogonal.

If n is odd, O(n, q) is a subgroup of the automorphism group.

If n is even, one of O+(n, q), O−(n, q) is a subgroup of the
automorphism group

Using the submodule structure given in Rank 3 permutation modules of
the finite classical groups , J. Algebra 291 (2005) 551-606 by Sin and Tiep,
we were able to determine the Smith and Critical groups of the above
family of graphs.
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Thank You!
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