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Sheaves on a topological space

Suppose C and A are categories. An A-valued presheaf on C is simply
a functor Cop → A. Two particularly important cases are where A is the
category of sets, in which case these are called presheaves of sets on C,
and where A is the category of abelian groups, in which case these are
called presheaves of abelian groups on C, or more simply abelian
presheaves on C. For any C the A-valued presheaves form a category in
which the morphisms are morphisms of functors.

We now take C to be the following category. Let X be a topological
space. The category XZar is as follows:

Objects of XZar are open subsets of X .

For any objects U, V (i.e. open subsets), Hom(U,V ) is empty unless
U ⊆ V , in which case it is a singleton set.

The rule for composition of morphisms is the only one possible.
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Following Grothendieck we call the category XZar the Zariski site of
X . For any continuous map f : X → Y there is a functor f ∗ : YZar → XZar

given by f ∗(U) = f −1(U).
A presheaf of sets F on XZar has the following explicit description:

to every open set U ⊆ X we associate a set F (U);

to every inclusion U ⊆ V of open subsets we specify a map
ρUV : F (V )→ F (U).

The maps ρUV are called the restriction maps for the presheaf. They need
not be injective. If s ∈ F (V ) and U ⊆ V we will write s|U for ρUV (s) (as
if it were a function).

Presheaves of abelian groups have basically the same description,
except that each F (U) is an abelian group and the ρUV are group
homomorphisms.

In what follows “presheaf on X” means “presheaf of sets on XZar and
“abelian presheaf on X” means “presheaf of abelian groups on XZar.” We
denote by PShv(X ) the category of presheaves of sets on X , and by
PAb(X ) the category of abelian presheaves on X .
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For historic reasons the sets (or groups) F (U) are called the sections
of F over U. I will try to explain this laters.

Morphisms of presheaves (of sets, abelian groups...) are just
morphisms of the corresponding functors. Thus a morphism of presheaves
α : F → G on X is a collection of maps αU : F (U)→ G (U) for all open
U ⊆ X such that whenever U ⊆ V , the diagram

F (V )
ρUV //

αV

��

F (U)

αU

��
G (V )

ρUV // G (U)

is commutative. Similarly for morphisms of abelian sheaves, except now
the αU must be homomorphisms.

If x ∈ X is a point we denote by Ix the neighborhood filter of x , i.e.
the set of open neighborhoods of x partially ordered by the inverse of
inclusion, i.e. U ≤ V if and only if V ⊆ U. This is a filtered partially
order: given any two U and V in Ix there is a W ∈ Ix such that W ⊆ U
and W ⊆ V , i.e. U ≤W and V ≤W .
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We can identify Ix with a full subcategory of XZar, so a presheaf
F : X op

Zar → Set yields by composition a functor I opx → Set. The stalk of F
at x is the colimit

Fx = lim−→
U∈Iopx

F (U).

Since Ix is filtered, elements of Fx have the following description: they are
represented by sections s ∈ F (U) for some U ∈ Ix , and t ∈ F (V )
represents the same element of Fx if and only if s|W = t|W for some
W ⊆ U ∩V . If s ∈ F (U) and x ∈ U we denote by sx the image of s in Fx .

Since colimits are functorial in their arguments a morphism of
presheaves F → G induces a morhphism Fx → Gx of stalks. In other
words F 7→ Fx defines a functor PShv(X )→ Set. When F is an abelian
presheaf, Fx is naturally an abelian group and in this way we get a functor
PAb(X )→ Ab.

Richard Crew Homological AlgebraLecture 10 Summer 2021 5 / 25



Proposition

Let X be a topological space. Arbitrary limits and colimits in PShv(X ) are
representable, and for any functor

I → PShv(X ) i 7→ Fi

the limit is
(lim←−

i

Fi )(U) ' lim←−
i

Fi (U)

and the colimit is
(lim−→

i

Fi )(U) ' lim−→
i

Fi (U).

In other words limits and colimits can be computed “value by value.”
Proof (sketch): In fact the formulas define presheaves on X ; the

universal properties of the limit and colimit then show that they are indeed
the limit and colimit of the functor.
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Corollary

The category PAb(X ) of abelian presheaves on X is abelian.

Proof (really sketchy): We proceed in steps:
(1) PAb(X ) is preadditive: suppose f : F → G and g : F → G are

morphisms, so that for each U ⊆ X we are given homomorphisms
fU : F (U)→ G (U) and gU : F (U)→ G (U). We define (f + g) : F → G
by (f + g)U = fU + gU . This gives Hom(F ,G ) the structure of an abelian
group. The zero object is the zero preheaf F (U) = 0.

(2) PAb(X ) is additive: for abelian preasheaves F and G , the
proposition shows that F ⊕ G is representable and that
(F ⊕ G )(U) = F (U)⊕ G (U).

(3) PAb(X ) is preabelian: again by the proposition, kernels and
cokernels exist since this are finite limits and colimits. If α : F → G is a
morphism, the kernel of α is U 7→ Ker(αU) and the cokernel of α is
U 7→ Coker(αU).

(4) PAb(X ) is abelian: use the explicit formulas for the kernel and
cokernel.
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We now give some examples (in fact important motivating examples).

Fix a topological space X , and for any open U ⊆ X let OX (U) be the
set of R-valued continuous functions on X . The maps ρUV are the
usual restriction of functions. It is easily checked that U 7→ OX (U) is
a presheaf of abelian groups on X (in fact a presheaf of rings, i.e. a
functor X op

Zar → Ring).

Now let X be an open subset of Rn, and for open U ⊆ X let O∞X (U)
be the set of infinitely differentiable real-valued functions on U. This
is again a presheaf of rings if we take the ρUV to be the usual
restriction maps.

Finally let X be an open subset of Cn and for open U ⊆ X let
Ohol

X (U) be the set of holomorphic C-valued functions on U. This too
is a presheaf of rings if we take the ρUV to be the usual restriction
maps.
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These three examples all share a common important property, arising
from the fact the in each case the group. O(U), O∞(U) Ohol(U) assigned
to U is defined by local properties. This means that the groups of sections
satisfy certain “patching” properties. Suppose {Ui}i∈I is an open covering
of U and let F be one of O(U), O∞(U) or Ohol(U).

1 The morphism F (U)→
∏

i∈I F (Ui ) induced by the restrictions ρUi ,U

is injective.

2 An element (xi ) ∈
∏

i F (Ui ) lies in the image of F (U)→
∏

i∈I F (Ui )
if and only if

xi |Ui ∩ Uj = xj |Ui ∩ Uj

for all i and j ∈ I .

Definition

A presheaf F on X is a sheaf if it satisfies the properties (1) and (2)
above for all open U ⊆ X and open coverings {Ui}i∈I of U.
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The presheaves OX , O∞X and Ohol
X defined above are all sheaves,

since they are all defined by local conditions. For example you can tell if a
real-valued function from an open subset of Rn is differentiable at a point
x if you know its values in any open neighborhood of x , no matter how
small. This shows that O∞X satisfies (1), and (2) is clear: if I am given
functions fi on the Ui that agree on the overlaps Ui ∩ Uj then each fi is
the restriction to Ui of some function on U.

Here is a presheaf that is not a sheaf: take X = R and for open
U ⊆ X let Ob(U) be the group of real-valued bounded continuous
functions on U. With the usual restriction maps Ob is a presheaf on R. It
is not a sheaf: let U = R and for i ∈ N let Ui be the open disk with center
0 and radius i . Clearly {Ui}i∈N is an open covering of R. Suppose now f is
a continuous real-valued function on R; since f is continuous its restriction
fi to each Ui is bounded, so fi ∈ Ob(Ui ). For all i and j , fi and fj have the
same restriction to Ui ∩ Uj . If there is a section of Ob(R) whose
restriction to Ui is fi , that section must necessarily be f , but a continuous
function on R is not necessarily bounded. Thus condition (2) fails.
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The problem with the last example is that boundedness is a global
condition, not a local one. A function is not necessarily bounded if it is
bounded on every element of some open covering.

The following lemma gives one way of saying that sections of sheaves
are defined locally:

Lemma

Suppose F is a sheaf on X , U ⊆ X and s, t ∈ F (U). Then s = t if and
only if sx = tx for all x ∈ U.

Proof: The “if” part is evident. Suppose conversely that sx = tx for
all x ∈ U. Then for all x ∈ U there is an open neighborhood x ∈ Ux ⊆ U
such that s|Ux = t|Ux . The set {Ux}x∈U is an open cover of U, so by
condition (1) we must have s = t.

Remark: this lemma only used condition (1), so it holds for a more
general class of presheaves. We say that a presheaf on X is separated if it
satisfies condition (1). Many of the results to be proven later will be
stated for sheaves but in fact are true for separated presheaves.
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We can rephrase conditions (1) and (2) in a more categorical manner.
If F is a presheaf on X and {Ui}i∈I is an open covering of an open subset
U ⊆ X there are two morphisms from

∏
i F (Ui )→

∏
ij F (Ui ∩ Uj). The

first, say f1 is induced by the universal property of the product from the
composition ∏

i

F (Ui )
pi−→ F (Ui )→ F (Ui ∩ Uj)

where pi is the projection and the second map is the restriction. The
second, f2 is the composition∏

i

F (Ui )
pj−→ F (Uj)→ F (Ui ∩ Uj).

The conjunction of (1) and (2) says that the diagram

F (U) //
∏

i F (Ui )
f1 ..

f2
00
∏

ij F (Ui ∩ Uj)

is an equalizer diagram.
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If F is an abelian sheaf, we can express this by saying that the
sequence

0→ F (U)→
∏
i

F (Ui )
f1−f2−−−→

∏
ij

F (Ui ∩ Uj)

is exact.
We denote by Shv(X ) the full subcategory of PShv(X ) consisting of

sheaves of sets. Likewise Ab(X ) is the full subcategory PAb(X )
consisisting of sheaves of abelian groups. There are evident forgetful
functors Shv(X )→ PShv(X ) and Ab(X )→ PAb(X ). We will usually not
use any notation for these forgetful functors.

That the condition defining a sheaf can be expressed in terms of a
diagram involving limits has many interesting consequences. The main
one, for the moment is that a limit of sheaves, computed in the presheaf
category PShv(X ) is actually a sheaf. Similarly for limits of abelian
sheaves.
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Theorem

Let X be a topological space. Arbitrary limits are representable in Shv(X ),
and for any open U ⊆ X ,

(lim←−
i

Fi )(U) = lim←−
i

F (Ui ).

In other words limits can be computed “value-by-value,” like
presheaves. We will see later that colimits Shv(X ) are also representable,
but the formula for them is more complicated.

Proof: The theorem says that a limit of sheaves in the presheaf
category PShv(X ) is in fact a sheaf. Suppose ` 7→ F` is a functor from
some indexing category to Shv(X ). Since each F` is a sheaf,

F`(U) //
∏

i F`(Ui )
f1 ..

f2
00
∏

ij F`(Ui ∩ Uj)

is an equalizer diagram for all `.
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We now recall the categorical principal that “inverse limits
commute,” and in particular that limits of equalizers is an equalizer of
limits. Thus the limit of the preceding diagram

lim←−` F`(U) // lim←−`(
∏

i F`(Ui ))
f1 //

f2
// lim←−`(

∏
ij F`(Ui ∩ Uj))

is another equalizer diagram. By the same token, the inverse limits
commute with products, so

lim←−` F`(U) //
∏

i lim←−` F`(Ui )
f1 //

f2
//
∏

ij lim←−` F`(Ui ∩ Uj)

is yet another equalizer diagram. Appealing to our very first proposition,
we write this as
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(lim←−` F`)(U) //
∏

i (lim←−` F`)(Ui )
f1 //

f2
//
∏

ij(lim←−` F`)(Ui ∩ Uj)

which says that the presheaf limit lim←−` F` is a sheaf.
It remains to check that the presheaf limit lim←−` F` is also a limit in

Shv(X ), but this is immediate since Shv(X ) is a full subcategory of
PShv(X ).

The same argument shows that arbitrary limits are representable in
Ab(X ), and coincide with their limits in PAb(X ).

Corollary

A morphism F → G of sheaves is a monomorphism if and only if
F (U)→ G (U) is injective for all open U ⊆ X .

Proof: In any category with finite limits, F → G is a monomorphism
if and only if the relative diagonal F → F ×G F is an isomorphism.
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In Shv(X ), the relative diagonal is an isomorphism if and only if
F (U)→ (F ×G F )(U) is a bijection for all U. By the theorem, this is
equivalent to F (U)→ F (U)×G(U) F (U) being bijective for all U, i.e.
F (U)→ G (U) being injective.

To deal with colimits we will need some preliminaries about stalks. In
what follows we fix a final object f in the category of sets, the singleton
set f = {∅}. If S is a set and x ∈ X is a point there is a presheaf of sets
ix ,S on X defined by

ix ,S(U) =

{
S x ∈ U

f x 6∈ U.

It is easily checked that ix ,S is in fact a sheaf, and we call ix ,S the
skyscraper sheaf at x with value S . It is easily seen to be functorial in S : a
map S → T of sets yields a morphism ix ,S → ix ,T of sheaves.
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Now if F is any sheaf of sets on X and x ∈ X there is a canonical
morphism of sheaves αx : F → ix ,Fx where as before Fx is the stalk of F at
x . We must define maps αxU : F (U)→ ix ,Fx (U) for all open U ⊆ X
compatible with the restriction maps. If x ∈ U, ix ,Fx (U) = Fx and αxU

sends a section s ∈ F (U) to its image in the stalk Fx . If x 6∈ U,
ix ,Fx (U) = f = {∅} and we send s to ∅ ∈ f . It is clear that this is
compatible with the restriction maps, so this is a morphism of sheaves.

Theorem

Suppose f : F → G is a morphism in Shv(X ), and for x ∈ X let
fx : Fx → Gx be the induced morphism on stalks. Then f is a
monomorphism (resp. epimorphism) if and only if fx is a monomorphism
(resp. epimorphism) for all x ∈ X .

Proof: We first consider the case of monomorphisms. By an earlier
corollary it suffices to show that fU : F (U)→ G (U) is injective for all open
U ⊆ X if and only if fx is injective for all x ∈ X .
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Since the partially ordered set Ix of neighborhoods of x is filtered, the
injectivity of fU : F (U)→ G (U) for all U ∈ Ix implies that
lim−→U∈Ix

F (U)→ lim−→U∈Ix
G (U) is injective as well, i.e. fx : Fx → Gx is

injective.
Suppose conversely that fx : Fx → Gx is injective for all x ∈ X and

suppose s, t ∈ F (U) are such that fU(s) = fU(t). From this it follows that
for all x ∈ U, fx(s) = fx(t) and since fx is injective, s and t have the same
image in Fx for all x ∈ U. This means that for all x there is a open
neighborhood Ux ⊆ U of x such that s|Ux = t|Ux for all x ∈ U. Since the
{Ux}x∈U is an open cover of U, condition (1) in the definition of a sheaf
shows that s = t.

Suppose next that fx : Fx → Gx is surjective for all x ∈ X and that g ,
h : G → H are two morphisms in Shv(X ) such that gf = hf ; we want to
show that g = h. The equality gf = hf implies (gh)x = (hf )x , i.e.
gx fx = hx fx and since fx is surjective, gx = hx for all x ∈ X . To show that
g = h it suffices to show that for all open U ⊆ X , gU = hU as maps
G (U)→ H(U).
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Pick s ∈ G (U); since gx = hx there is for every x ∈ U an open
neighborhood x ∈ Ux ⊆ U such that g(s)|Ux = h(s)|Ux , and the
argument of the last paragraph shows that g(s)|U = h(s)|U. Therefore
g = h, showing that f is an epimorphism.

Suppose finally that fx is not surjective for some x ∈ X ; I will show
that f is not an epimorphism. Since fx is not surjective, Gx \ Im(fx) is
nonempty. Let S be a two-element set, say S = {0, 1} and let H = ix ,S be
the skyscraper sheaf with value S . There is a map Gx → S which sends
s ∈ Gx to 0 if s ∈ Im(fx) and 1 otherwise. This yields a morphism
gx : ix ,Gx → ix ,S and we define g : G → ix ,S to be the composition

G
αx−→ ix ,Gx

gx−→ ix ,S .

Similarly the constant map Gx → S sending every element of Gx to 0 ∈ S
defines a morphism of sheaves hx : ix ,Gx → ix ,S , and we define h : G → ix ,S
to be the composition

G
αx−→ ix ,Gx

hx−→ ix ,S .

I will show that gf = hf and g 6= h, which will show that f is not an
epimorphism.
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Suppose U is a neighborhood of x and s ∈ G (U) is a section such
that the image of s in Gx is not contained in Im(fx). Then gx(s) = 1 and
hx(s) = 0, which shows that g 6= h. On the other hand if t ∈ F (U) then
(gf )x(t) = gx fx(t) = 0 and (hf )x(t) = hx fx(t) = 0 by construction. From
this it follows that gf = hf , as asserted.

Theorem

If f : F → G is a morphism in Shv(X ) that is both a monomorphism and
an epimorphism, it is an isomorphism.

Proof: The last theorem shows that if f is both a monomorphism and
an isomorphism then fx : Fx → Gx is a bijection for all x ∈ X .
Furthermore fU : F (U)→ G (U) is injective for all open U ⊆ X since f is a
monomorphism, so we must show it is surjective as well. Pick t ∈ G (U)
and for x ∈ X let x ∈ Ux ⊆ U be an open neighborhood for which there is
a section s(x) ∈ F (Ux) such that fx(s(x)x) = tx . Since t|Ux and fUx (s(x))
both have the same image tx ∈ Gx , we arrange to have fUx (s(x)) = t|Ux

by shrinking Ux if necessary.
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Suppose now x and y are any two points of U; then fUx (s(x)) = t|Ux

and fUy (s(y)) = t|Uy imply that

fUx∩Uy (s(x)|Ux ∩ Uy ) = fUx (s(x))|Ux ∩ Uy

= fUx (s(y))|Ux ∩ Uy

= fUx∩Uy (s(y)|Ux ∩ Uy )

and since fUx∩Uy is injective, s(x)|Ux ∩ Uy = s(y)|Ux ∩ Uy for all x and y .
Since the Ux for all x ∈ U form an open cover of U, there is a section
s ∈ F (U) such that s|Ux = s(x) (this is the first time we have used sheaf
property (2)). We show, finally that fU(s) = t: for this it suffices by sheaf
property (1) that fU(s)|Ux = t|Ux for all x , but this is clear since

fU(s)|Ux = fU(s|Ux) = fU(s(x)) = t|Ux .
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In what follows I will denote the forgetful functor
Shv(X )→ PShv(X ) by F 7→ F− (this is not standard notation). The
next step is to construct a left adjoint to this functor. If F is a presheaf of
sets on X we denote by F+ the following presheaf: for open U ⊆ X
F+(U) is the subset of

∏
x∈U Fx such that

(sx)x∈U ∈ F+(U) if and only if for all x ∈ U there is a neighborhood
x ∈ Ux ⊆ U and a section s(x) ∈ F (Ux) such that s(x)y = sy for all
y ∈ Ux .

In other words, a section of F+ over U is a tuple of elements of the stalks
Fx for all x ∈ U that “locally come from the section of F .”

It is “evident” that F+ is actually a sheaf, so we will view it as an
object of Shv(X ). Furthermore there is a morphism of presheaves
iF : F → (F+)− which to s ∈ F (U) assigns the tuple (sx)x∈U such that sx
is the stalk of s at x . Observe finally that for any x ∈ X , iF induces an
isomorphism Fx

∼−→ (F+)x . We call the pair (F+, iF ) the sheafification of
F .
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Theorem

For any sheaf G on X the morphism iF : F → (F+)− induces a bijection

HomShv(X )(F
+,G )

∼−→ HomPShv(X )(F ,G
−)

functorially in G .

The theorem implies that F 7→ F+ defines a functor of F , so that
F 7→ F+ is the left adjoint of G 7→ G−.

Proof: The map itself comes about as follows: given f : F+ → G ,
apply the forgetful functor to obtain f − : (F+)− → G−, and compose this
with iF : F → (F+)−. Suppose conversely that we are given a morphism
of presheaves g : F → G−. For each x ∈ X this induces maps
gx : Fx → (G−)x = Gx and thus for all U ⊆ X a map∏

x∈U Fx →
∏

x∈U Gx . Suppose now U ⊆ X and s = (sx)x∈U ⊆
∏

x∈U lies
in F+(U). For every x ∈ U there is a neighborhood x ∈ Ux ⊆ U and
s(x) ∈ F (Ux) such that s(x)y = sy for all y ∈ Ux .
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Then gUx (s(x)) ∈ G (Ux) for all x . Suppose now y ∈ U is another
point and s(y) ∈ F (Uy ) is such that s(y)z = sz for all z ∈ Uy . If
z ∈ Ux ∩ Uy then

gUx (s(x))z = gz(s(x)z) = gz(sz) = gz(s(y)z) = gUy (s(y))z

and since G is a sheaf, an earlier lemma shows that

gUx (s(x))|Ux ∩ Uy = gUy (s(y))|Ux ∩ Uy .

Again since G is a sheaf there is a unique section g(s) ∈ G (U) such that
gUx (s(x)) = g(s)|Ux for all x ∈ U. The construction shows that the the
formation of g(s) is compatible with the restriction maps, so s 7→ g(s)
defines a morphism of sheaves g : F+ → G . This defines a map
HomPShv(X )(F ,G

−)→ HomShv(X )(F
+,G ) and I will leave it to you to

check that it is inverse to the previous one.
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