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Let X be a topological space. In the last lecture all results were
stated for the category Shv(X ) of sheaves of sets on X , but in fact they
all hold, often with no change of statement or proof for the category
Ab(X ) of abelian sheaves on X . We now have all the material we need to
shows that Ab(X ) is an abelian category. We have shown:

limits and colimits in PAb(X ) are representable and can be computed
object-wise in the sense that

(lim←−
i

Fi )(U) ' lim←−
i

Fi (U)

(lim−→
i

Fi )(U) ' lim−→
i

Fi (U)

for all open U ⊆ X

limits in Ab(X ) are representable and coincide with the limits taken
in the category of presheaves. In particular the above formula for
sections of a limit applies to sheaves.

A morphism f : F → G is a monomorphism (resp. epimorphism,
isomorphism) if and only if for all x ∈ X the map on stalks
fx : Fx → Gx is a monomorphism (resp. epimorphism, isomorphism).
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Finally we have shown the the forgetful functor

Ab(X )→ PAb(X ) G 7→ G−

has a left adjoint

PAb(X )→ Ab(X ) F 7→ F+.

The adjunction is realized by a morphism of presheaves iF : F → (F+)−.
Given a morphism f : F+ → G of sheaves, f − ◦ iF is a morphism F → G−

and f 7→ f − ◦ iF is a bijection

HomAb(X )(F
+,G )

∼−→ HomPAb(X )(F ,G
−).

We can now show that colimits are representable in Ab(X ).
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Suppose we are given a functor i 7→ Fi from some indexing category
to Ab(X ). If G is any object of Ab(X ) there are bijections

lim←−
i

HomAb(X )(Fi ,G )
∼−→ lim←−

i

HomPAb(X )(F
−
i ,G

−)

∼−→ HomPAb(X )(lim−→
i

F−i ,G
−)

∼−→ HomAb(X )((lim−→
i

F−i )+,G )

where the first bijection is valid because Ab(X ) is by definition a full
subcategory of PAb(X ), the second is the universal property of a colimit of
presheaves and the third is the adjunction. These bijections are functorial
in G , so we conclude that the colimit of i 7→ Fi is representable, namely by
the sheafification of the presheaf colimit lim−→i

F−i . The same argument
shows that colimits are representable in the sheaf category Shv(X ).
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Theorem

For any topological space X the category Ab(X ) of abelian sheaves on X
is abelian.

Proof: The argument that Ab(X ) is additive is the same as the one
given for PShv(X ) (and applies equally well to PAb(X )). To show that
Ab(X ) is preabelian we have to show that kernels and cokernels are
representable in Ab(X ). In fact these are special cases respectively of
limits and colimits, so they are indeed representable. Finally we have
shown that a morphism in Ab(X ) is an isomorphism if it is a
monomorphism and an epimorphism, so a theorem proven earlier shows
that Ab(X ) is abelian.

The cokernel of a morphism f : G → F in Ab(X ) has the following
description. The presheaf cokernel is just U 7→ F (U)/G (U), and the
cokernel of f in Ab(X ) is the sheafification of this presheaf. This means
that a section of Coker(f ) is specified by giving sections si ∈ F (Ui ) on
some open cover {Ui} of U such that for all i and j ,

(si |Ui ∩ Uj)− (sj |Ui ∩ Uj) ∈ G (Ui ∩ Uj).
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Furthermore two systems (si ∈ F (Ui )) and (tj ∈ F (Vj)) yield the
same section of Coker(f ) if there is a common refinement {W`} of {Ui}
and {Vj} such that si |W` − tj |W` ∈ G (W`) for all i , j , ` such that
W` ⊆ Ui ∩ Vj .

Here is a more concrete example. Suppose X is an open subset of C,
and let OX be the presheaf on X such that for all open U ⊆ X , OX (U) is
the abelian group (under addition) of continuous C-valued functions on U.
The restriction maps OX (U)→ OX (V ) for V ⊆ U are the usual
restriction of functions. Next, define O×X to be the subsheaf of OX such
that O×X (U) is the set of nowhere vanishing sections of O×X . This is an
abelian sheaf if we take the group law to be multiplication of sections.
There is a morphism of abelian sheaves exp : OX → O×X given by

f ∈ OX (U) 7→ exp(f ) ∈ O×X (U).

The kernel of exp is easy to describe: its sections over U ⊆ X consist of
locally constant C-valued functions on U (i.e. constant on every connected
component) taking their values in 2πiZ.
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Furthermore the morphism exp : OX → O×X is an epimorphism, i.e.
the cokernel is zero. In fact if x ∈ X and x ∈ U ⊆ X is a simply connected
neighborhood, then for any g ∈ O×X (U) there is a section f ∈ OX (U) such
that exp(f ) = g . This amounts to the assertion that a continuous
nonvanishing function on a simply connected open set U has a logarithm
(not unique, but unique up to an element of 2πiZ).

To see what goes wrong if U is not simply connected, take X = C
and U = C \ {0}. If z is the affine parameter on X then z ∈ O×X (U), but
there is no continuous function `(z) on U such that exp(`(z)) = z . If
U ⊆ X is a simply connected open subset not containing 0 we can define a
single-valued continuous function arg(z) on U and then set
`(z) = log |z |+ i arg(z) (as usual) but we cannot do this on U = C \ {0}.

Summary: we have shown there is an exact sequence

0→ 2πiZ→ OX
exp−−→ O×X → 0

of abelian sheaves on C. Here 2πiZ is the “constant sheaf with value
2πiZ,” i.e. its sections on a connected open set U ⊆ C is the group 2πiZ.
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Global sections, direct images

Suppose now X is a topological space. For any U ⊆ X and abelian
sheaf F on X the assignment U 7→ F (U) defines a functor Ab(X )→ Ab.
Tradition demands that this be denoted

Γ(U,F ) = F (U)

and as before Γ(U,F ) is called the group of sections of F over U. The
reason is that in the early days of sheaf theory, a sheaf F was construed as
a kind of topological space together with a local homeomorphism
π : F → X ; the sections F (U) were literally sections of the restricted map
π−1(U)→ U. Presheaves however were defined in the same way as now,
and it was Grothendieck who first defined sheaves as a particular kind of
presheaf.
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We have seen that if

0→ A→ B → C → 0

is an exact sequence in Ab(X ), the sequence

0→ Γ(X ,A)→ Γ(X ,B)→ Γ(X ,A)

is exact (and this would be true with X replaced by any open U ⊆ X ) but
we cannot in general complete this to a short exact sequence:
Γ(X ,B)→ Γ(X ,A) is not usually surjective. In other words the functor
F 7→ Γ(X ,F ) of “global sections” is left exact but not necessarily exact.

We would like to define the right derived functors of Γ(X , ) but for
this we need to show that Ab(X ) has enough injectives. NB: in general
Ab(X ) does not have enough projectives.
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Theorem

For any topological space X the abelian category Ab(X ) has enough
injectives.

Proof: One can use Grothendieck’s criterion by showing that Ab(X )
has a generator an satisfies axiom AB5, but it is easier to do this
explicitly. Suppose F is an abelian sheaf; since Ab has enough injectives
we may choose for all x ∈ X a monomorphism Fx → Ix for some injective
(i.e. divisible) abelian group Ix . We now set

I =
∏
x∈X

ix(Ix)

where as before ix(Ix) is the skyscraper sheaf on X at x defined by the
abelian group Ix . I will show that I is an injective abelian sheaf and
produce a monomorphism F → I. We first observe that for any abelian
sheaf G there are isomorphisms
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HomAb(X )(G , I)
∼−→ HomAb(X )(G ,

∏
x∈X

ix(Ix))

∼−→
∏
x∈X

HomAb(X )(G , ix(Ix))

∼−→
∏
x∈X

HomAb(Gx , Ix)

where the second isomorphism is the universal property of the product and
the third follows from the isomorphisms
HomAb(X )(G , ix(A)) ' HomAb(Gx ,A) which hold for any G and any
abelian group A.

In particular the given monomorphisms Fx → Ix correspond under the
above to a morphism F → I. The stalk of this at a point x ∈ X is
Fx → Ix , and one checks easily that Ix ' Ix . Then Fx → Ix is injective
for all x , so F → I is a monomorphism.
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It remains to show that I is injective, i.e. for any epimorphism
G → H in Ab(X ) the map HomAb(X )(G , I)→ HomAb(X )(H, I) is
surjective. By the above computation this map is the same as∏

x∈X
HomAb(Gx , Ix)→

∏
x∈X

HomAb(Hx , Ix)

which is surjective: since G → H is an epimorphism the maps Gx → Hx

are surjective, whence HomAb(Gx , Ix)→ HomAb(Hx , Ix) is surjective since
Ix is injective, and finally a product of surjective maps is surjective (serious
use of the axiom of choice on this last step).

We can now define sheaf cohomology as the right derived functors of
the global section functor:

Hn(X ,F ) = RnΓ(X ,F ).

Thus if
0→ F → G → H → 0

is a short exact sequence of abelian sheaves there is a long exact sequence
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· · · → H i (X ,F )→ H i (X ,G )→ H i (X ,H)→ H i+1(X ,F )→ · · ·

for all i .
If X is a “reasonable” topological space (a paracompact manifold,

say) and Z denotes the “constant sheaf Z on X (its sections over a a
connected open U ⊆ X is Z) then H i (X ,Z) is isomorphic to the ith
singular cohomology of X . Recall now our earlier short exact sequence

0→ 2πiZ→ OX
exp−−→ O×X → 0

of sheaves on X = C \ {0}. One can show that H i (X ,OX ) = 0 for all
i > 0. The long exact sequence associated to this breaks up into an exact
sequence

0→ 2πiZ→ Γ(X ,OX )→ Γ(X ,O×X )→ H1(X , 2πiZ)→ 0

and isomorphisms
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H i (X ,O×X )
∼−→ H i+1(X , 2πiZ)

for all i > 0. In particular we recover our earlier observation that
Γ(X ,OX )→ Γ(X ,O×X ) is not surjective, and in fact now we have and idea
of by how much it fails to be surjective. Since X = C \ {0} has the
homotopy type of the circle S1, H1(X , 2πiZ)

∼−→ 2πiZ is an infinite cyclic
group. We also find that H i (X ,O×X ) = 0 for all i > 0.

There is a generalization of the global sections functor that is
important in algebraic and analytic geometry. Suppose f : Y → X is a
continuous map of topological spaces and F is a sheaf on Y . We get a
presheaf on X by sending

U 7→ F (f −1(U))

for any open U ⊆ X (this makes sense since f −1(U) ⊆ Y is open). Since
inverse images are compatible in an obvious sense with intersections this
construction in face defines a sheaf on X , which we denote by f∗F . It is
called the direct image of F by the map f : Y → X .
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The same argument we used before shows that f∗ is left exact. Since
Ab(Y ) has enough injectives, f∗ has right derived functors which we
simply denote by Rnf∗; they are called the higher direct images of f . Thus
for any short exact sequence

0→ F → G → H → 0

we get a long exact sequence

· · · → Rnf∗(F )→ Rnf∗(G )→ Rnf∗(H)→ Rn+1f∗(F )→ · · ·

of higher direct images.
There are other left exact functors whose derived functors are

important. We have already seen the Ext functors which are defined in any
abelian category with enough injective. Particular to the case of sheaf
categories are the so-called local Ext functors, which are defined as follows.
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Suppose X is a topological space and U ⊆ X is an open set. Any
open subset of U in the induced topology is automatically an open subset
of X , so a sheaf F on X has a natural “restriction” F |U to a sheaf on U:
for any open V ⊆ U we define (F |U)(V ) = F (V ) (this is a very particular
case of the inverse image functor which we will not make use of). If F and
G are abelian sheaves on X we can define a presheaf on X by

U 7→ HomAb(U)(F |U,G |U).

This assignment is clearly compatible with the restrictions, so this does
indeed define a presheaf. Slightly less obvious is the fact that this presheaf
is in fact a sheaf. Suppose the {Ui} is an open covering of an open set
U ⊆ X and fi : F |Ui → G |Ui are morphisms of sheaves such that
fi |Ui ∩ Uj = fj |Ui ∩ Uj for all i and j . We must show that the fi are the
restrictions of a unique f : F → G . To this end we let V ⊆ X be any open
subset and observe that {V ∩Ui} is an open covering of V . We then have
a commutative diagram of solid arrows

Richard Crew Homological AlgebraLecture 11 Summer 2021 16 / 25



0 // F (V ) //

��

∏
i F (V ∩ Ui ) //

∏
i fi |V∩Ui

��

∏
ij F ((V ∩ Ui ) ∩ (V ∩ Uj))

etc.

��
0 // G (V ) //

∏
i G (V ∩ Ui ) //

∏
ij G ((V ∩ Ui ) ∩ (V ∩ Uj))

with exact rows (expressing that F and G are sheaves. A quick diagram
chase shows that the dotted arrow can be filled in uniquely so as to make
a commutative diagram. It is easily checked (by means of a 3-dimensional
diagram) that the morphisms F (V )→ G (V ) just constructed are
compatible with restrictions, so they define a morphism f : F → G of
sheaves.

We denote by HomX (F ,G ) the sheaf defined by

HomX (F ,G )(U) = HomAb(U)(F |U,G |U).

It is called simply the “sheaf Hom” of F and G .
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Since the (global) Hom is left exact in its second argument it follows
easily that the sheaf Hom is left exact in its second argument. It therefore
has derived functors which are denoted by ExtnX (F ,G ). As usual they are
computed by choosing an injective resolution G → I ·, and then

ExtnX (F ,G ) = Hn(HomX (F , I ·)).

We can now raise the following question. Some of the left exact
functors we have been discussing are compositions of other left exact
functors of our acquaintance. For example if f : Y → X is a continuous
map of topological spaces, our definition of the direct image f∗ shows that

Γ(X , f∗F ) ' Γ(Y ,F )

for any abelian sheaf F on Y . Similarly if F and G are abelian sheaves on
X , the definition of the sheaf Hom showed that

Γ(X ,HomX (F ,G )) ' HomAb(X )(F ,G ).
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We then ask: in these cases can the derived functors of the target
(the H i (Y ,F ) in the first case, and the Exti (F ,G ) in the second) be
somehow computed in terms of the derived functors appearing on the left?
In other words, how are the H i (Y ,F ) related to the H i (X ,R j f∗F )? How
are the Exti (F ,G ) related to the H i (X ,Ext jX (F ,G ))?

More generally, if F : A → B and G : B → C are functors between
abelian categories, and if A and B have enough injectives, how are the
derived functors Rn(G ◦ F ) of the composite related to the objects
R iF ◦ R jG? Is Rn(G ◦ F ) isomorphic to RnF ◦ RnG? Evidently this is true
for n = 0; it’s almost always false for n > 0.

The answer is that there is a relation and it’s not a simple one. You
can’t really compute Rn(G ◦ F ) from the R iF ◦ R jG , but in favorable
cases you can at least get a handle on them. The method for doing this is
the theory of spectral sequences. This is also one way of showing that the
Ext groups in a module category (or in any abelian category with enough
projectives and injectives) can be computed using either projective or
injective resolutions, so I will use this to motivate the theory.
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Suppose A is an abelian category and A, B are objects of A. If
P· → A is a projective resolution and B → I · is an injective resolution we
have seen that we can compute the Ext groups ExtnA(A,B) either as
Hn(Hom(A, I ·)) or as Hn(Hom(P·,B)). A natural idea for showing that
these are isomorphic is to compare them with a third object that uses both
resolutions at the same time. This leads us to contemplate the diagram

...
...

...

Hom(P0, I
2)

d ′
0 //

d ′′
2

OO

Hom(P1, I
2)

d ′
1 //

d ′′
2

OO

Hom(P2, I
2)

d ′
2 //

d ′′
2

OO

· · ·

Hom(P0, I
1)

d ′
0 //

d ′′
1

OO

Hom(P1, I
1)

d ′
1 //

d ′′
1

OO

Hom(P2, I
1)

d ′
2 //

d ′′
1

OO

· · ·

Hom(P0, I
0)

d ′
0 //

d ′′
0

OO

Hom(P1, I
0)

d ′
1 //

d ′′
0

OO

Hom(P2, I
0)

d ′
2 //

d ′′
0

OO

· · ·

and in particular, to wonder how it might compute the Ext groups.
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To do this the obvious idea is to turn it into some kind of complex,
possibly by taking the “antidiagonal sums” En =

⊕
i+j Hom(Pi , I

j) as the
nth degree component. The question is then how to find a differential
d : En → En+1. To do this it suffices to find for all i + j = n a morphism
Hom(Pi , I

j)→ En+1. Now we have morphisms

d ′i : Hom(Pi , I
j)→ Hom(Pi+1, I

j)→ En+1

d ′′j : Hom(Pi , I
j)→ Hom(Pi , I

j+1)→ En+1

which it might make sense to add to get Hom(Pi , I
j)→ En+1, and then

take the direct sum of all of these to get d : En → En+1. The problem is
that we don’t get d2 = 0. What happens is that the component
Hom(Pi , I

j)→ Hom(Pi+1, I
j+1) induced by d2 is d ′i d

′′
j + d ′′j d

′
i 6= 0 (the

other two are d ′i d
′
i+1 : Hom(Pi , I

j)→ Hom(Pi+2, I
j) and

d ′′j d
′′
j+1 : Hom(Pi , I

j)→ Hom(Pi , I
j+2), which are 0).
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The solution is clear when we recall that d ′i d
′′
j = d ′′j d

′
i in the diagram,

so that d ′i d
′′
j − d ′′j d

′
i = 0. We must therefore alternate signs in the

definition of d . The puzzling thing is that there are many natural ways to
do this. One popular choice is

d = d ′i + (−1)nd ′′j : Hom(Pi , I
j)→ En+1

for i + j = n but this is not the only one seen in the literature. This
amounts to using the naive definition on the complex

...
...

...

Hom(P0, I
2)

d ′
0 //

d ′′
2

OO

Hom(P1, I
2)

d ′
1 //

−d ′′
2

OO

Hom(P2, I
2)

d ′
2 //

d ′′
2

OO

· · ·

Hom(P0, I
1)

d ′
0 //

−d ′′
1

OO

Hom(P1, I
1)

d ′
1 //

d ′′
1

OO

Hom(P2, I
1)

d ′
2 //

−d ′′
1

OO

· · ·

Hom(P0, I
0)

d ′
0 //

d ′′
0

OO

Hom(P1, I
0)

d ′
1 //

−d ′′
0

OO

Hom(P2, I
0)

d ′
2 //

d ′′
0

OO

· · ·
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and with this description it’s easy to see that d2 = 0. Alternatively we
could just compute

d2 = (d ′i + (−1)nd ′′j )(d ′i + (−1)n+1d ′′j )

= d ′i d
′
i + (−1)nd ′′j d

′
i + d ′i (−1)n+1d ′′j − d ′′j d

′′
j

= 0 + (−1)n(d ′′j d
′
i − d ′i d

′′
j ) + 0 = 0.

This kind of business arises quite frequently so we make some general
definitions. A double complex or bicomplex in A is a Z2-graded object E ·,·

equipped with two commuting morphisms

d ′ : E → E [1, 0], d ′′ : E → E [0, 1]

such that d ′d ′ = d ′′d ′′ = 0. Here E [i , j ] is the Z2-graded object whose
component in degree (m, n) is Em+i ,n+j . The associated simple complex
Tot(E ) is the cochain complex whose degree n component and differential
are

Tot(E )n =
⊕
i+j=n

E i ,j , d = d ′ + (−1)nd ′′ : En → En+1.
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If E ·· is a double complex with differentials d ′, d ′′ we get two series of
cochain complexes by fixing the first or second index:

d ′ : E ·j → E ·j [1], d ′′ : E i · → E i ·[1]

This in turn give rise to cohomology objects which we denote by

′Hn(E ·j), ′′Hn(E j ·).

Then the differentials d ′, d ′′ induce morphisms

d ′′ : ′Hn(E ·j)→ ′Hn(E ·j+1), d ′ : ′′Hn(E j ·)→ Hn(E j+1·)

which since (d ′′)2 = (d ′)2 = 0 make the ′Hn(E ·j) and ′′Hn(E j ·) into
complexes. We thus arrive at Z2-graded objects

′′Hp(′Hq(E ··)), ′Hp(′′Hq(E ··))

by taking cohomology.
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The goal is to get as much information as we can about Hn(Tot(E ··))
using the ′′Hp(′Hq(E ··)) and ′Hp(′′Hq(E ··)). But this is best
conceptualized by generalizing the situation even further, as we shall see
next time.
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