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Filtered complexes

Earlier we defined the notion of a filtered module – essentially a
module M over a ring A, say, and a sequence of submodules F pM ⊆ M
such that F p+1 ⊆ F p. Typically we let p run through the set N or Z. In
the former case it is typical to assume M = F 0M.

More generally if A is an abelian category a filtered object of A is a
an object M of A and a sequence of monomorphisms

· · · → F p+1M → F pM → · · · → M.

The pth graded object is

grpF ·M = Coker(F p+1M → F pM)

(the word “the” is a little misleading). We denote filtered objects by
(M,F pM).
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If (M,F pM) and (M ′,F pM ′) are filtered objects of A a morphism
(M,F pM)→ (M ′,F pM ′) is a morphism M → M ′ such that
F pM → M → M ′ factors (necessarily uniquely) through F pM ′. It is
evident that this makes the filtered objects of A into a category. It is a
preabelian category but not abelian, as we saw when A is a module
category. In particular morphisms have kernels, cokernels, images and
coimages. A morphism f is strict if the natural morphism
Coim(f )→ Im(f ) is an isomorphism.

Again if A is an abelian category, a filtered complex in A is just a
filtered object of the abelian category of cochain complexes (sometimes,
chain complexes). Two standard examples are particularly important.
Suppose K · is a complex in A .

The complex σ≥pK
· defined by

σ≥pK
n =

{
0 n < p

Kn n ≥ p.

is a subobject of K ·. The filtration σ≥pK
· is called the dumb

filtration. Here grpK · has Kp in degree p and 0 elsewhere.
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The canonical filtration τ≤pK
· is defined by

τ≤pK
n =


Kp n < −p
Ker(d−p) n = −p
0 n > −p.

In this case grpK · is the bottom row of

K−p−2 //

��

Ker(d−p−1) //

��

0 //

��

0 //

��

0

��
K−p−2 //

��

K−p−1 //

��

Ker(d−p) //

��

0 //

��

0

��
0 // K−p−1/Ker(d−p−1) // Ker(d−p) // 0 // 0

Note that H−p(τ≤pK
·) ' H−p(K ·) and Hn(τ≤pK

·) = 0 for n 6= −p.
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In the last lecture we saw that the problem of comparing the two
definitions of Ext gave rise to a double complex and its associated single
complex. In fact the single complex associated to a double complex has
two natural filtrations. Let (K ij , d i

1, d
j
2) be a double complex, and recall

that the associated single complex has as its degree n term the direct sum

Tot(K ·,·)n =
⊕
i+j=n

K i ,j

and the differential is the sum of the morphisms

d = d i
1 + (−1)id j

2 : K i ,j → K i+1,j ⊕ K i ,j+1.

The two filtrations of Tot(K ·,·)· are

F p
I Tot(K ·,·)· =

⊕
i+j=n, j≥p

K i ,j , F p
II Tot(K ·,·)· =

⊕
i+j=n, i≥p

K i ,j .

with the induced differentials.
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If you like, these two filtrations the total complexes associated to the
two possible “dumb filtrations” of the double complex. Note that

grpI Tot(K ·,·)· ' K ·,p[−p]

where we have modified the shift operation [−p] by replacing the
differential d2 by (−1)pd2. There is a similar description of grII Tot(K ·,·)·

but this time there is no sign change.
Returning to the subject of filtered complexes in general, we now ask

the following question: suppose F pK · is a filtered complex; how are the
Hn(grpK ·) related to Hn(K ·)? It’s obviously too much to expect that
Hn(K ·) can be computed from the Hn(grpK ·), but it’s reasonable to
expect that they give some information. The answer, roughly is that
Hn(K ·) itself has a natural filtration whose graded pieces in favorable
situations can be computed from the Hn(grpK ·). The mechanism behind
this is the theory of spectral sequences.
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A spectral sequence in an abelian category A is the following massive
package of data:

For all p, q ∈ Z and r ≥ 1, an object Ep,q
r of A.

For all such p, q and r , a morphism dp,q
r : Ep,q

r → Ep+r ,q−r+1
r . If we

view the E ·,·r as a Z× Z-graded object of A, dr is a morphism of
graded objects of degree [r ,−r + 1]. We require that d2

r = 0, or more
explicitly that dp+r ,q−r+1

r dp,q
r = 0, and also that for every p, q there

is an r0(p, q) such that dp,q
r = dp−r ,q+r−1

r = 0 when r ≥ r0(p, q).

We define Hp,q(Er ) = Ker(dp,q
r )/ Im(dp−r ,q+r−1

r ). The next block of
data are isomorphisms αp,q

r : Hp,q(Er )
∼−→ Ep,q

r+1. From the last bullet
point we see that for any p, q the objects Ep,q

r are isomorphic for
r � 0. We denote by Ep,q

∞ their common value.

Finally, for each n ∈ Z a filtered object F pEn ⊆ En of A and
isomorphisms βp,q : grpEp+q ' Ep,q

∞ for all p and q. The grading
must satisfy En =

⋃
p F

pEn and
⋂

p F
pEn = 0 for all n.

Richard Crew Homological AlgebraLecture 12 Summer 2021 7 / 26



Sometimes we take r ≥ 2 or r ≥ 0. The graded object E · is the
ending or abutment of the spectral sequence. We also say that the
spectral sequence (Ep,q

r , dp,q
r ) converges to (En), and use the notation

Ep,q
1 ⇒ Ep+q

(with no explicit mention of αp,q
r , βp,qr , the filtration of En or the

differentials dp,q
r ).

Some important special cases: a first quadrant spectral sequence is
one for which Ep,q

1 = 0 if p < 0 or q < 0; i.e. E ·,·1 is “supported in the first

quadrant”. In this case the condition dp,q
r = dp−r ,q+r−1

r = 0 is automatic
for r ≥ p + q + 1 = r0(p, q). Similarly for third quadrant spectral
sequences. These are the most common cases, but by no means the only
ones.

If in fact dp,q
r = dp−r ,q+r−1

r = 0 for all r ≥ r0 we say that the spectral
sequence degenerates at Er0 .
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Let’s look at a first-quadrant spectral sequence and see what it has to
say about the first three terms E 0, E 1, E 2 of the abutment. The array of
E1 terms is

E 02
1

// E 12
1

// E 22
1

// E 32
1

//

E 01
1

// E 11
1

// E 21
1

// E 31
1

//

E 00
1

// E 10
1

// E 20
1

// E 30
1

//

where I have only indicated the possibly nonzero differentials. The rows
are complexes, and the E2 terms are just the cohomology of these
complexes. Note that for r > 1 the differentials entering and exiting E 00

r

are zero, so we must have E 00
∞ = E 00

2 = Ker(d00
1 ). This is the only E∞

term that can appear as a graded piece of E 0, so

E 0 = E 00
2 = Ker(d00

1 ).

The array of E2 terms and their differentials is then
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E 02
2

**

E 12
2

**

E 22
2

**

E 32
2

E 01
2

**

E 11
2

**

E 21
2

**

E 31
2

E 00
2 E 10

2 E 20
2 E 30

2

where again I have only indicated nonzero differentials (except for the ones
on the edges of the diagram). From this we see that E 01

3 ' Ker(d01
2 ) and

E 10
3 = E 10

∞ . Furthermore E 10
2 = E 10

∞ since there is no nonzero differential
entering or exiting E 10

r for r ≥ 0. Since gr0E 1 ' E 01
∞ and gr1E 1 ' E 10

∞ we
have a short exact sequence

0→ E 10
2 → E 1 → E 01

2

d01
2−−→ E 20

2

called the exact sequence of low-degree terms of the spectral sequence.
We also find

E 20
3 ' Coker(d01

2 ), E 11
3 ' Ker(d11

2 ), E 02
3 ' Ker(d02

2 ).

Richard Crew Homological AlgebraLecture 12 Summer 2021 10 / 26



The only possible nonzero differential in the E3 terms contributing to
E is the “edge morphism” d02

3 : E 02
3 → E 30

3 , and then

E 02
r = E 02

4 = Ker(d02
3 ) r ≥ 4.

This yields

gr0E 2 ' E 02
4 = Ker(d02

3 ), gr1E 2 ' E 11
3 , gr2E 2 ' E 20

3 .

To compute gr·E 3 we would have to find the Epq
5 for p + q = 5, and so on

up the ladder.
In general a spectral sequence is an infinite collection of exact

sequences arranged so as to make it possible to get information out of
them in a comprehensible way. The next theorem is one of the more
important examples:
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Theorem

Suppose F pK · ⊆ K · is a filtered complex in an abelian category such that
for every n, F pKn = Kn for p � 0 and F pKn = 0 for p � 0. There is a
spectral sequence

Ep,q
1 = Hp+q(grpK ·)⇒ Hp+q(K ·)

for which the filtration on Hp+q(K ·) is the one induced by the morphisms
F pK · → K ·.

The proof is a prolonged agony of computation and I will only sketch
the construction of the Ep,q

r and dp,q
r , and pretend that I am working in a

module category. We start with the subobject

Zp,q
r = d−1(F p+rKp+q+1) ∩ F pKp+q

which in a module category would be the set of x ∈ F pKp+q such that dx
lies in the (p + r)-th filtered piece. In an arbitrary abelian category the
right hand side should be expressed as a fibered product.
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In particular an element of Zp,q
1 would represent an element of

Hp+q(grpK ·). Now Zp,q
r clearly contains two subobjects: one is

Zp+1,q−1
r−1 = d−1(F p+rKp+q+1) ∩ F p+1Kp+q

and as
Zp−r+1,q+r−2
r−1 = d−1(F pKp+q) ∩ F p−r+1Kp+q−1

another is

dZp−r+1,q+r−2
r−1 = d(F p+r−1Kp+q−1) ∩ F pKp+q.

since d2 = 0. We then set

Bp,q
r = Zp+1,q−1

r−1 + dZp−r+1,q+r−2
r−1 , Ep,q

r = Zp,q
r /Bp,q

r .

I claim that d induces morphisms
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dp,q
r : Zp,q

r → Zp+r ,q−r+1
r , dp,q

r : Bp,q
r → Bp+r ,q−r+1

r .

In the first case Zp+r ,q−r+1
r = d−1(F p+2rKp+q+1) ∩ F p+rKp+q+1, and

dZp,q
r ⊆ F p+rKp+q+1 by construction; finally since d2 = 0,

dZp,q
r ⊆ d−1(F p+2rKp+q+1). In the case of Bp,q

r ,

dBp,q
r = dZp+1,q−1

r−1

since d2 = 0, and since

Bp+r ,q−r+1
r = Zp+r+1,q−r−2

r−1 + dZp+1,q−1
r−1 ,

we see that dBp,q
r ⊆ Bp+r ,q−r+1

r as required. We conclude that d induces
a morphism

dp,q
r : Ep,q

r → Ep+r ,q−r+1
r

for all p, q and r .
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I refer you the the text of Gelfand-Manin for the rest of the argument.
I will illustrate the above computations by finding the E1 and E2 terms of
the filtered complexes arising from a double complex K ·,·. As before dI
and dII are the differentials of degrees [1, 0] and [0, 1], and the differential
of the total complex Tot(K ·,·) is induced by dI + (−1)pdII on Kp,q. We
recall that the degree n component of C · := Tot(K ·,·) is

Cn = Tot(K ·,·)n =
⊕
i+j=n

K i ,j

and that the first filtration of the complex is

F p
I C

n =
⊕

i+j=n, j≥p
K i ,j .

Our first task is to compute Zp,q
1 , where p + q = n. In a module category

it’s the subobject of F pCp+q consisting of x ∈ F pCp+q such that
dx ∈ F p+1Cp+q. Now d = dI + (−1)pdII and dII (x) ∈ F p+1Cp+q

automatically. We conclude that
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Zp,q
1 = Ker(dII |Kp,q)⊕

⊕
i+j=p+q, j≥p+1

K i ,j .

We must next compute

Bp,q
1 = Zp+1,q−1

0 + dZp,q−1
0 .

Note that Zp,q
0 = F pCp+q by definition, so

Bp,q
1 = F p+1Cp+q + dF pCp+q−1.

Since Zp+1,q−1
0 ⊆ F p+1Cp+q, we find that

Bp,q
1 = Im(dII |Kp,q−1)⊕

⊕
i+j=p+q, j≥p+1

K i ,j .

We conclude that
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Ep,q
1 = Ker(dII |Kp,q)/ Im(dII |Kp,q−1) = Hq(Kp,·).

We know that dp,q
1 : Ep,q

1 → Ep+1,q
1 is induced by the action of

d = dI + (−1)pdII on Cp+q. Since dII annihilates Zp,q
1 and Bp,q

1 we find
that

dp,q
1 : Hq(Kp,·)→ Hq(Kp+1,·)

is induced by the morphism of complexes dI : Kp,· → Kp+1,·. We conclude
that

Ep,q
2 = Hp

I H
q
II (K

·,·)

where the subscript I refers to the first index and the subscript II to the
second.

In what follows we will denote this E2 by IEp,q
2 to distinguish it from

the E2 term of the spectral sequence arising from the second filtration,
which we recall is

F p
IIC

n =
⊕

i+j=n, i≥p
K i ,j .
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An exactly parallel argument shows that the E2 term for the spectral
sequence arising from this filtration is

IIEp,q
2 = Hp

IIH
q
I (K ·,·)

which we should compare with the previous formula

IEp,q
2 = Hp

I H
q
II (K

·,·)

It is customary to take the spectral sequences as starting with the E2, so
we write these as

IEp,q
2 = Hp

I H
q
II (K

·,·)⇒ Hp+q(Tot(K ·,·))
IIEp,q

2 = Hp
IIH

q
I (K ·,·)⇒ Hp+q(Tot(K ·,·))

They are called the first and second spectral sequences associated to the
double complex.
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We will now use this vast machine to show that when the abelian
category A has both enough injectives and enough projectives, the Ext
groups can be computed using either projective resolutions of the first
argument or injective resolutions of the second. Suppose M and N are
objects of A, P· → M is a projective resolution and N → I · is an injective
resolution. We consider the double complex K ·,· for which
(i , j)-component is

K i ,j = HomA(Pi , I
j)

and the differentials are

d i
I : HomA(Pi , I

j)→ HomA(Pi+1, I
j)

d j
II : HomA(Pi , I

j)→ HomA(Pi , I
j+1).

We will drop the subscript A from now on. As before the associated total
complex C · has

Cn = Tot(K ·,·)n =
⊕
i+j=n

Hom(Pi , I
j).
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Since Hom(Pp, ) is an exact functor,

Hq
II (Hom(Pp, I

·)) =

{
Hom(Pp,N) q = 0

0 q > 0

so the E2 term of the first spectral sequence is

IEp,q
2 =

{
Hp(Hom(P·,N)) q = 0

0 q > 0
.

The spectral sequence degenerates at E2 since only nonzero entries in the
array of E2 terms are in the bottom row. We conclude that

Hp(C ·) ' Hp(Hom(P·,N))

This is the computation of ExtnA(M,N) using the projective resolution
P· → M.
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Let’s now compute Hn(C ·) using the second spectral sequence. The
procedure is entirely parallel. Since Hom( , I q) is an exact functor,

Hp
I (Hom(P·, I

q) =

{
Hom(M, I q) p = 0

0 p > 0
.

and the E2 term is

IIEp,q
2 =

{
Hq(Hom(M, I ·)) p = 0

0 p > 0
.

Once again the spectral sequence degenerates at E2 since the only nonzero
E2 terms are in the first column. We conclude that

Hq(C ·) ' Hq(Hom(M, I ·))

which is ExtnA(M,N) computed by means of an injective resolution of N.
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Summary: if A has enough projectives and enough injectives we can
compute the ExtnA(M,N) using a projective resolution of M, and injective
resolution of N, or by using the total complex of a double complex that
uses both resolutions. In terms of the latter, and element of ExtnA(M,N) is
represented by an (n + 1)-tuple

(upq)p+q=n upq ∈ Hom(Pp, I
q)

if P· → M and N → I · are resolutions of the appropriate sort. The upq
must satisfy

dIupq + (−1)p+1dIIup+1,q−1 = 0

for 0 ≤ p < n. Two (n + 1)-tuples (upq), (u′pq) yield the same element of
Hn(C ·) if there is an n-tuple (vpq)p+q=n−1 such that u′ − u = dv .
Concretely this means that

upq = dI vp−1,q + (−1)pdII vp,q−1 0 ≤ p ≤ n, p + q = n

if we set v−1,n = vn,−1 = 0.
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The explicit isomorphism between Hn(Hom(P·,N) and
Hn(Hom(M, I ·) is the composition

Hn(P·,N) ' IEn0
∞
∼−→ Hn(C ·)

∼−→ IIE 0n
∞ ' Hn(Hom(M, I ·).

The previous description of Hn(C ·) leads to the following method for
computing this isomorphism. Consider a class in Hn(Hom(P·,N)
represented by an f ∈ Hom(Pn,N) in the kernel of
Hom(Pn,N)→ Hom(Pn+1,N). The image un0 of f in Hom(Pn, I

0)
satisfies dIun0 = dIIun0 = 0, so (0, · · · , 0, un0) is an (n + 1)-tuple
representing the image of f under Hn(P·,N)→ Hn(C ·). Since Hom( , I 0)
is exact there is a vn−1,0 ∈ Hom(Pn−1, I

0) such that dI vn−1,0 = un0. If we
set un−1,0 = (−1)n−1dII vn−1,0 then

(0, · · · , 0, un0) ∼ (0, · · · , 0, un−1,1, 0)

i.e. both sides have the same image in Hn(C ·).
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Clearly dIIun−1,1 = 0, and since Hom( , I 1) is exact there is a
vn−2,1 ∈ Hom(Pn−2, I

2) such that un−1,1 = dI vn−2,1. If we set
un−2,2 = (−1)n−2dII vn−2,1 then

(0, · · · , 0, un−1,1, 0) ∼ (0, · · · , 0, un−2,2, 0, 0).

Continuing in this fashion we eventually wind up with an (n + 1)-tuple
(u0n, 0, · · · , 0) that represents the same element of Hn(C ·) as
(0, · · · , 0, u0n). Now u0n ∈ Hom(P0, I

n) and dIu0n = 0, so there is a
g ∈ Hom(M, I n) mapping to u0n under Hom(M, I n)→ Hom(P0, I

n).
Finally the image of the class of f in Hn(Hom(P·,N)) under the
isomorphism Hn(Hom(P·,N)

∼−→ Hn(Hom(M, I ·)) is the class of
g ∈ Hom(M, I n). The entire process can be seen from the following
diagram:
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g � // u0n

v0,n−1
�
dI
//_

dII

OO

u1,n−1

un−2,2

vn−2,1
_
(−1)n−2dII
OO

�
dI
// un−1,1

vn−1,0
_
(−1)n−1dII
OO

�
dI
// un,0

f
_
OO

Note that the argument is completely reversible: starting with a
g ∈ Hom(M, I n) the same considerations lead to an f ∈ Hom(Pn,N).
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The diagram yields the barest hint of the nightmare of signs that is
always just below the surface whenever you are doing explicit
computations in this subject. The particular signs we have here are a
consequence of the particular choice of differential for the total complex of
the double complex Hom(P·, I

·), namely d = dI + (−1)pdII . Different
choices are possible, and indeed quite frequent in the literature, and would
lead to different isomorphisms of Hn(Hom(P·,N) with Hn(Hom(M, I ·).

In particular, you never really know if the commutative square you are
looking at is commutative or anticommutative, unless you work out
exactly what the maps are.
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