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A bit more about exactness

Recall that a diagram

X
f−→ Y

g−→ Z

in an abelian category is a complex if gf = 0. In this case f has a natural
factorization

X → Im(f )
h−→ Ker(g)→ Y

and the complex is exact if h is an isomorphism. One might ask what the
dual of this construction is. It turns out to be a factorization

Y → Coker(f )
h′−→ Im(g)→ Z

and h′ is an epimorphism. It is important for what follows that Coker(h)
and Ker(h′) are isomorphic; in particular the complex is exact if and only if
h′ is an isomorphism. Let’s prove this.
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For simplicity we put K = Ker(g) and C = Coker(f ). Then gf = 0
implies the existence of morphisms a : X → K and b : C → Z making

C
b

��
X

f //

a   

Y g
//

c

OO

Z

K

k

OO

commutative. If we set h = ck then ha = cka = cf = 0 and
bh = bck = gk = 0. By the results of the previous slide there is a natural
epimorphism Coker(a)→ Im(h) and a natural monomorphism
Im(h)→ Ker(b). Combining these we get a morphism Coker(a)→ Ker(b).

Lemma

The natural morphism Coker(a)→ Ker(b) is an isomorphism.
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We first prove this under the assumption that f is a monomorphism
and g is an epimorphism, and then the general case will be reduced to
this. In this situation f is a kernel of c and g is a cokernel of k .

Let h = ck : K → C . I claim that a is a kernel of h and b is a
cokernel of h; this will prove the lemma since the canonical factorization of
h, which by definition is

K → Coim(h)→ Im(h)→ C

will in this case be

K → Coker(a)→ Ker(b)→ C

and in an abelian category Coim(f )→ Im(f ) is an isomorphism.
To show that a is a kernel of h we must show (i) ha = 0 and (ii) if

r : W → K is such that hr = 0 then r factors uniquely as r = as for some
s : W → X .
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C
b

��
X

f //

a   

Y g
//

c

OO

Z

W r
//

s

OO

K

k

OO h

kk

(i) ha = cka = cf = 0 since c is the cokernel of f .
(ii) Suppose r : W → K is such that hr = 0. Then ckr = 0, and since

f is a kernel of c there is a (unique) morphism s : W → X such that
fs = kr . Since f = ka, kas = kr and therefore as = r since k is a
monomorphism (it’s a kernel). Suppose s ′ : W → X is another morphism
such that as ′ = r . Then kas ′ = kr = kas, which is fs ′ = fs, and since f is
a monomorphism, s ′ = s.

The proof that b is a cokernel of h is dual to this.
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Finally we reduce the general case to the one just proven. Let

X → X ′
f ′−→ Y and Y

g ′−→ Y ′ → Z be the canonical factorizations, i.e.
X ′ = Im(f ) and Y ′ = Im(g). Since X → X ′ is an epimorphism and
Y ′ → Y is a monomorphism, g ′f ′ = 0. Since X → X ′ is an epimorphism
and Y ′ → Z is a monomorphism we can identify Ker(g) ' Ker(g ′) and
Coker(f ) ' Coker(f ′). The result is a diagram

C

b′   

b

''
X //

a
''

X ′
f ′ //

a′

  

Y
g ′
//

c

OO

Y ′ // Z

K

k

OO

in which f ′ is a monomorphism and g ′ is an epimorphism. We have
already shown that the canonical Coker(a′)→ Ker(b′) is an isomorphism,
so it suffices to show that the canonical maps Coker(a)→ Coker(a′) and
Ker(b′)→ Ker(b) are isomorphisms.
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For any object T there is a commutative diagram

0 // Hom(Coker(a′),T ) //

��

Hom(K ,T ) // Hom(X ′,T )� _

��
0 // Hom(Coker(a),T ) // Hom(K ,T ) // Hom(X ,T )

with exact rows; the right vertical map is injective since X → X ′ is an
epimorphism. Because it is injective, the snake lemma shows that the left
vertical map is a bijection (if you like, replace the terms on the right by
the image of Hom(K ,T ) in both). Therefore Coker(a)→ Coker(a′) is an
isomorphism. The case of kernels is dual.

Let’s now interpret this lemma. We have seen that the canonical
factorization of f : X → Y itself factors

X � Im(f ) ↪→ Ker(g) ↪→ Y

and we define the homology of this complex to be

H(f , g) = Coker(Im(f )→ Ker(g))
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On the other hand the morphism a in the lemma is the composite
X → Im(f )→ Ker(g), and since X → Im(f ) is an epimorphism,
X → Ker(g) and Im(f )→ Ker(g) have the same cokernel (this was the
argument of the last part of the lemma). Therefore

Coker(a) ' H(f , g).

On the other hand the canonical factorization of g is Y → Coker(f )→ Z ,
which factors

Y � Coker(f ) � Im(g) ↪→ Z

(dual argument to the one before). But again, c : Coker(f )→ Z is the
composite Coker(f )→ Im(g)→ Z , and the kernels of c and
Coker(f )→ Im(g) are isomorphic since Im(g)→ Z is a monomorphism.
The lemma therefore says that

H(f , g) ' Ker(c).
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Recalling that X
f−→ Y

g−→ Z is exact if and only if H(f , g) is zero, we
have another criterion for the exactness of a complex:

Lemma

A complex X
f−→ Y

g−→ Z is exact if and only if the canonical surjection
Coker(f )→ Im(g) is an isomorphism.

Recall also our earlier result that X
f−→ Y

g−→ Z is exact if and only if
for any morphism h : T → Y such that gh = 0 there is a commutative
diagram

T ′ // //

��

T

h
��

X
f
// Y g

// Z

with T ′ → T an epimorphism; if it is exact, one such epimorphism is
p2 : X ×Y T → T .
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Proposition

A complex X
f−→ Y

g−→ Z is exact if and only if for every morphism
h : Y → T such that hf = 0 there is a commutative diagram

X
f // Y

g //

h
��

Z

h′
��

T �
� // T ′

where T → T ′ is a monomorphism.

The proof is entirely dual to the earlier one so I will just indicate how
we construct a T ′ given that the complex is exact. Recall that the
canonical factorization of g expands to Y � Coker(f ) � Im(g) ↪→ Z . If
h : Y → T is such that hf = 0 it factors through a morphism
T → Coker(f ). Since Coker(f )→ Im(g) is an isomorphism the composite
Coker(f )→ Z is a monomorphism. In the diagram
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Y //

h
##

Coker(f ) �
� //

��

Z

h′
��

T �
� // T qY Z

the bottom row is a monomorphism since monomorphisms in an abelian
category are universal (i.e. pushouts of monomorphisms are
monomorphisms). We can take T ′ = T qY Z ; the rest of the argument is
similarly dual to the earlier one.
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Graded objects and complexes

Suppose A is an additive category and I is a set. An I -graded object
of A is an object X of A and a fixed isomorphism X '

⊕
i∈I Xi . We will

usually denote such objects by X· or (Xi )i∈I if I needs to be made explicit.
Each Xi is a subobject of X and is called the degree i component of X . A
morphism f : X· → Y· of I -graded objects is a set of morphisms
fi : Xi → Yi for all i ; we will denote it by f = f· Graded objects and their
morphisms form a category which I will denote by gr(I ,A). It can also be
viewed as the category of functors S → A where S is viewed as a discrete
category (the only morphisms are identities). It is easily checked the
gr(I ,A) is additive: the zero object is

⊕
i 0 and the direct sum of X· and

Y· is the graded object whose degree i component is Xi ⊕ Yi .
If A is preabelian so is gr(I ,A): the kernel of f· : X· → Y· is the

morphism Ker(f·) whose components are the canonical Ker(fi )→ Xi and
the cokernel has components Yi → Coker(fi ). Finally if A is abelian so is
gr(I ,A). I will leave all these verifications to you.
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The case when I is a monoid is particularly useful. The most common
cases are I = Z/2Z, Z or Zn. If i ∈ I and X =

⊕
i Xi is an object of

gr(I ,A), the shifted object X [i ] is defined by X [i ]j = Xi+j . In other words
X [i ] is the same object of A, but the various degree components have
been shifted by j . Shifting is a functor: if f : X → Y is a morphism in
gr(I ,A) then f [i ] : X [i ]→ Y [i ] the morphism whose degree j component
is fi+j : Xi+j → Yi+j . When A is abelian it is an exact functor: if

0→ X → Y → Z → 0

is an exact sequence in gr(I ,A) then so is

0→ X [i ]→ Y [i ]→ Z [i ]→ 0

for any i .
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We now specialize to the case I = Z and take A to be an abelian
category. A chain complex of objects of A is an pair (X·, d) where X· is a
Z-graded object of A and d : X → X [−1] is a morphism in gr(Z,A) such
that

X·
d−→ X·[−1]

d [−1]−−−→ X·[−2]

is zero. In other words the morphisms di−1di : Xi → Xi−2 are zero for all
i ∈ Z. A morphism f : (X·, d

X
· )→ (Y·, d

Y
· ) is a morphism of Z-graded

complexes f : X· → Y·) such that

X·
f //

dX

��

Y·

dY

��
X·[−1]

f [−1] // Y·[−1]

commutes. We denote by C·(A) the category of chain complexes of
objects of A.
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Concretely a chain complex is a set of commutative diagrams

Xi
fi //

dX
i
��

Yi

dY
i
��

Xi−1
f−1 // Yi−1

for all i ∈ Z.
The dual notion is that of a cochain complex which is a pair (X ·, d)

where X · is a Z-graded object of A and d : X · → X ·[1] is a morphism
such that d [1]d = 0. Morphisms are defined similarly, and the category of
cochain complexes in A will be denoted by C ·(A).

Usually the grading of a cochain complex is written as a superscript,
so that the degree i part of d is d i : X i → X i+1. In any case we will
usually write X for X· or X · if the meaning is clear, i.e. if X is known to be
a chain or cochain complex.
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Obviously a chain complex in A is a cochain complex in Aop.
Alternatively, a chain complex X· in A can be made into a cochain
complex in A by setting X i = X−i , and vice versa. Thus everything we
prove for chain complexes holds for cochain complexes. In what follows I
will mostly use cochain complexes.

If (X , d) is a cochain complex the cocycles and coboundaries are the
Z-graded modules Z = Ker(d : X → X [1]) and
B = Im(d [−1] : X [−1]→ X ). Explictly,

Z i = Ker(d i : X i → X i+1), B i = Im(d i−1 : X i−1 → X i ).

Of course Z · and B · are objects of C ·, i.e. complexes in A, but since the
differential for both is 0 there is no point in regarding them as anything
other than graded modules.
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Since dd [−1] = 0, i.e. since

X [−1]
d [−1]−−−→ X

d−→ X [1] (1)

is a complex in C ·(A) there is a canonical monomorphism B · → Z · of
graded modules.

The (co)homology of the complex (1), i.e. the cokernel of
Im(d [−1])→ Ker(d) is thus the cokernel of B · → Z ·, so that

0→ B · → Z · → H ·(X )→ 0

is exact. Heuristically we could write this as

H ·(X ) ' Z ·/B ·

as if everything were modules.
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Let’s now apply the proposition we proved earlier: the cokernel of
Im(g)→ Ker(g) is isomorphic to kernel of Coker(d [−1])→ Im(d), which
we could write as an exact sequence

0→ H ·(X )→ X ·/B · → Z ·[1]→ 0

where X ·/B · → Z · is induced by d , which factors
X · → X ·/B · → Z · → X ·[1].

We now apply all this mechanism to an exact sequence of complexes

0→ A· → B · → C · → 0.

Since the differential of a complex is in fact a morphism of complexes, we
get a commutative diagram

0 // A· //

dA
��

B · //

dB
��

C · //

dC
��

0

0 // A·[1] // B ·[1] // C ·[1] // 0.
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Let’s write Z ·(A) and B ·(A) for the cocycles and coboundaries of A,
and similarly for B and C . The snake lemma then gives us a 6-term exact
sequence

0→ Z ·(A)→ Z ·(B)→ Z ·(C )→
→ A·[1]/B ·(A[1])→ B ·[1]/B ·(B[1])→ C ·[1]/B ·(C [1])→ 0

This can now be reassembled into a commutative diagram

A·/B ·(A) //

��

B ·/B ·(B) //

��

C ·/B ·(C ) //

��

0

0 // Z ·(A)[1] // Z ·(B)[1] // Z ·(C )[1]

in which the vertical morphisms are induced by the differentials of the
complexes.
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For any complex X · the kernel of X ·/B ·(X )→ Z ·(X )[1] is isomorphic
to the kernel of X ·/B ·(X )→ X ·[1], which by our earlier results is
isomorphic to H ·(X ). Likewise the cokernel of X ·/B ·(X )→ Z ·(X )[1] is
isomorphic to the cokernel of X · → Z ·(X )[1], which is H ·(X )[1].
Therefore applying the snake lemma yet again to the last diagram yields a
six-term exact sequence

H ·(A)→ H ·(B)→ H ·(C )→ H ·(A)[1]→ H ·(B)[1]→ H ·(C )[1].

In terms of components this is an infinite exact sequence

→ H i (A)→ H i (B)→ H i (C )→ H i+1(A)→ H i+1(B)→ H i+1(C )→

called the long exact sequence associated to the original short exact
sequence of complexes. The morphism H i (C )→ H i+1(A) is called the
connecting or Bockstein morphism.
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The formula for the connecting morphism comes from the same
formula for the connecting morphism in the snake lemma. For simplicity
we set

T = (B ·/B ·(B))×(C ·/B·(C)) H
·(C )

and consider

T //

��

H ·(C )

��
A·/B ·(A) //

��

B ·/B ·(B) //

��

C ·/B ·(C ) //

��

0

0 // Z ·(A)[1] //

��

Z ·(B)[1] // Z ·(C )[1]

H ·(A)[1]
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We recall that in this diagram there is a unique morphism

f : T → Z ·(A)[1] such that the composite T
f−→ Z ·(A)[1]→ Z ·(B)[1] is

the same as T
p1−→ B ·/B ·(B). Then ∂ : H ·(C )→ H ·(A)[1] is the unique

morphism such that

T
p1 //

f
��

H ·(C )

∂
��

Z ·(A)[1] // H ·(A)[1]

commutes.
In module categories ∂ is computed as follows. Suppose x ∈ H i (C )

and pick an element y ∈ B ·/B ·(B) such that y and x map to the same
element of C ·/B ·(C ) under the respective maps (note, in particular that
(x , y) ∈ T ). The image of dB(y) ∈ Z i+1(B) dies in Z i+1(C ), so it comes
from a unique element of Z i+1(A) whose image in H i+1(A) is ∂(x).
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From this we can deduce that the connecting morphism is functorial
in the following sense: suppose

0 // A· //

��

B · //

��

C · //

��

0

0 // A′· // B ′· // C ′· // 0

is a commutative diagram of cochain complexes in which the rows are
exact. Then the square

H ·(C )
∂ //

��

H ·(A)[1]

��
H ·(C ′)

∂′
// H ·(A′)[1]

is commutative.
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One way to prove this is to use the Freyd-Mitchell theorem to reduce
to the case of module categories and then use the description given in that
case. Another is to consider the cubical diagram

T //

&&
f

��

H ·(C )

&&
∂

��

T ′ //

f ′

��

H ·(C ′)

∂′

��

Z ·(A)[1] //

&&

H ·(A)[1]

&&
Z ·(A′)[1] // H ·(A′)[1]

in which all faces are commutative except possibly for the right-hand side
face, which is the on expressing the functoriality of the connecting
morphism.
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To show that the two compositions in the right-hand side face are
equal it suffices to show that their pre-compositions with the epimorphism
T → H ·(C ) are equal. This is easy to do; easier at any rate than
typesetting the cubical diagram.
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