Homological Algebra Lecture 6

Richard Crew

Summer 2021

Richard Crew

Homological AlgebraLecture 6

Summer 2021 1 / 21

Additive functors

If \mathcal{A} and \mathcal{B} are additive functors, a functor $F : \mathcal{A} \to \mathcal{B}$ is additive if the map $\operatorname{Hom}_{\mathcal{A}}(X, Y) \to \operatorname{Hom}_{\mathcal{B}}(F(X), F(Y))$ is a homomorphism for all X, Y in \mathcal{A} . If F is additive then F(0) = 0.

Lemma

A functor $F : A \to B$ between abelian categories is additive if and only if it commutes with direct sums, i.e. the morphism

$$[F(i_1),F(i_2)]:F(X)\oplus F(Y)\to F(X\oplus Y)$$

is an isomorphism

Proof: If F is additive then applying F to the equality $1_{X\oplus Y}=i_1p_1+i_2p_2$ yields

$$1_{F(X \oplus Y)} = F(1_{X \oplus Y}) = F(i_1p_1 + i_2p_2) = F(i_1)F(p_1) + F(i_2)F(p_2)$$

by additivity, and this shows that

Richard Crew

 $(F(p_1), F(p_2)) : F(X \oplus Y) \to F(X) \oplus F(Y)$

is inverse to $[F(i_1), F(i_2)]$.

Suppose conversely that F commutes with direct sums. We first recall that for any X in A the diagonal morphism

$$\Delta_X:X\to X\oplus X$$

i.e. the unique morphism such that $p_1 \Delta_X = p_2 \Delta_X = 1_X$ is given by

$$\Delta_X=i_1+i_2.$$

Dually the codiagonal $\nabla_X : X \oplus X \to X$, which is the unique morphism such that $\nabla_X i_1 = \nabla_X i_2 = 1_X$ is given by

$$abla_X = p_1 + p_2$$

(I leave this as an exercise).

Finally we showed that if f and g are morphisms $X \to Y$, the direct sum $f \oplus g : X \oplus X \to Y \oplus Y$ is

$$f\oplus g=i_1fp_1+i_2gp_2.$$

This formula, together with

$$p_1 i_1 = p_2 i_2 = 1,$$
 $p_2 i_1 = p_1 i_2 = 0$

show that

$$f+g=
abla_Y(f\oplus g)\Delta_X.$$

Suppose now $F : A \to B$ commutes with direct sums, i.e. $F(X \oplus Y) \simeq F(X) \oplus F(Y)$ via the natural morphism. The universal properties of products and coproducts show that

$$F(\Delta_X) = \Delta_{F(X)}, \qquad F(\nabla_X) = \nabla_{F(X)}$$

for any X in A. Furthermore

$$F(f\oplus g)=F(f)\oplus F(g)$$

for any $f, g: X \to Y$. Therefore

$$egin{aligned} & F(f+g) = F(\Delta_Y(f\oplus g)
abla_X) \ & = \Delta_{F(Y)}(F(f)\oplus F(g))
abla_{F(X)} = F(f) + F(g). \end{aligned}$$

In general, a functor $F : A \to B$ is *left exact* (resp. *right exact*) if it commutes with finite limits (resp. finite colimits). Since any finite limit is the equalizer of two morphisms between two products, F is left exact if and only if it commutes with finite products and equalizers. Dually, F is right exact if and only if it commutes with finite coproducts and coequalizers.

In an abelian category finite products and finite coproducts coincide, so we conclude that a left or right exact functor $F : A \to B$ between abelian categories is additive.

Lemma

Suppose A and B are abelian. A functor $F : A \to B$ is left exact if and only if for every exact sequence

$$0 \rightarrow A \rightarrow B \rightarrow C$$

the sequence

$$0 \to F(A) \to F(B) \to F(C)$$

is also exact.

Proof: Suppose F is left exact and $f : B \to C$ is the morphism in the exact sequence. Then the exact sequence identifies $A \to B$ with the equalizer of f and the zero morphism $B \to C$, so by hypothesis F(A) is the equalizer of F(f) and 0 = F(0); this says that the second sequence is exact.

Suppose conversely that exactness of the first sequence implies exactness of the second. If f and $g : B \to C$ are two morphisms the equalizer of f and g is the kernel of f - g, so the hypothesis implies that F commutes with equalizers.

To finish we must show that F commutes with finite products, and by induction it suffices to treat the case of products of two objects. Given A and B in A, consider the exact sequence

$$0 \to A \xrightarrow{i_1} A \oplus B \xrightarrow{p_2} B \to 0.$$

By hypothesis the lower row in the diagram

is exact. The snake lemma then shows that $F(A) \oplus F(B) \rightarrow F(A \oplus B)$ is an isomorphism.

Many other important functors are additive. For example if A is an additive category, bilinearity of composition shows that the functors

$$T \mapsto \operatorname{Hom}_{\mathcal{A}}(X, T), \qquad T \mapsto \operatorname{Hom}_{\mathcal{A}}(T, X)$$

are additive. If $\ensuremath{\mathcal{A}}$ is abelian the translation functor

$$C^{\cdot}(\mathcal{A})
ightarrow C^{\cdot}(\mathcal{A}) \qquad X^{\cdot} \mapsto X^{\cdot}[1]$$

is additive (evidently – the shift just re-indexes components of a morphism). It will be important the the functors

$$Z^{\cdot}, B^{\cdot}, H^{\cdot}: C^{\cdot}(\mathcal{A}) \to \operatorname{gr}(\mathbb{Z}, \mathcal{A})$$

are all additive. It suffices to show that they commute with finite direct sums (i.e. finite products, or coproducts). The case of Z^{\cdot} is simple because it is a limit (in fact an equalizer) and thus commutes with direct sums (interpreted as products). Since B^{\cdot} is a cokernel (i.e. a colimit, in fact a coequalizer) it commutes with direct sums interpreted as coproducts. Finally H^{\cdot} can be interpreted as either a cokernel or a kernel, so it too commutes with direct sums.

Richard Crew

We now fix an abelian category A; unless otherwise stated objects and morphisms are in A.

A *chain resolution* of an object *M* is an exact complex

$$\cdots \to P_2 \to P_1 \to P_0 \to M \to 0 \to 0 \to \cdots$$
 (1)

where P_0 is in degree 0. A cochain resolution of M is an exact complex

$$\cdots \rightarrow 0 \rightarrow 0 \rightarrow M \rightarrow I^0 \rightarrow I^1 \rightarrow I^2 \rightarrow \cdots$$
 (2)

where again I^0 is in degree zero. Evidently a chain resolution of M in \mathcal{A} is a cochain resolution in \mathcal{A}^{op} and *vice versa*. We will frequently write $P_{\cdot} \to M$ for a chain resolution of M, and $M \to I^{\cdot}$ for a cochain resolution.

A chain resolution is a a projective resolution if the P_i are all projective. Likewise a cochain resolution is an *injective resolution* if the I_i are injective.

Chain and cochain resolutions are evidently not unique. To compare them we will make use of the following notion. Suppose f and $g : X^{\cdot} \to Y^{\cdot}$ are morphisms of cochain complexes. A *homotopy* between f and g is a morphism of graded objects $h : X^{\cdot} \to Y^{\cdot}[-1]$ (*not* of complexes) such that

$$f - g = d_Y[-1]h + h[1]d_X.$$
 (3)

Morphisms $f, g: X^{\cdot} \to Y^{\cdot}$ are *homotopic* if there exists a homotopy between f and g. A *null homotopy* of a morphism $f: X^{\cdot} \to Y^{\cdot}$ is a homotopy between f and the 0 morphism, and f is *null homotopic* if it has a null homotopy.

Proposition

If f, $g: X^{\cdot} \to Y^{\cdot}$ are homotopic, $H^{\cdot}(f) = H^{\cdot}(g)$.

Proof: Since H^{\cdot} is an additive functor it suffices to show that if f is null homotopic then $H^{\cdot}(f) = 0$. The assumption says that there is a morphism $h: X^{\cdot} \to Y^{\cdot}[-1]$ such that $f = d_{Y}[-1]h + h[1]d_{X}$. Observe that $d_{Y}[-1]h$ and $h[1]d_{X}$ are both morphisms $X^{\cdot} \to Y^{\cdot}$ as \mathbb{Z} -graded objects. I will show that they induce the zero map $H^{\cdot}(X) \to H^{\cdot}(Y)$; since H^{\cdot} is additive this will show that $H^{\cdot}(f) = 0$.

(1) $H^{\cdot}(h[1]d_X) = 0$: since $H^{\cdot}(X)$ is a quotient of $Z^{\cdot}(X)$ it suffices to show that $h[1]d_X$ annihilates Z^{\cdot} , but this is obvious since by definition $Z^{\cdot}(X)$ is the kernel of $d_X : X^{\cdot} \to X^{\cdot}[1]$.

(2) $H^{\cdot}(d_{Y}[-1]h) = 0$: since $H^{\cdot}(Y^{\cdot})$ is subobject of $Y^{\cdot}/B^{\cdot}(Y)$ it suffices to show that the morphism $Z^{\cdot}(X)[-1] \to Y^{\cdot}/B^{\cdot}(Y)$ induced by d_{Y} is zero, but this is obvious since by definition $B^{\cdot}(Y)$ is the image of $d_{Y}[-1] : Y^{\cdot}[-1] \to Y^{\cdot}$.

If f and $g: X^{\cdot} \to Y^{\cdot}$ are morphisms we will write $f \sim g$ to indicate that f and g are homotopic. This is easily seen to be an equivalence relation:

• If
$$f = g$$
 we can take $h = 0$, so $f \sim f$.

• If
$$f \sim g$$
 then $f - g = d_Y[-1]h + h[1]d_X$ and then $g - f = d_Y[-1](-h) + (-h)[1]d_X$, whence $g \sim f$.

• Suppose $f \sim g$ and $g \sim h$, and let ℓ and m be such that

$$f - g = d_Y[-1]\ell + \ell[1]d_X, \qquad g - h = d_Y[-1]m + m[1]d_X.$$

Then

$$f - h = d_Y[-1](\ell + m) + (\ell + m)[1]d_X.$$

and thus $f \sim h$.

Suppose finally that $f, f': X \to Y^{\cdot}$ and $g, g': Y \to Z^{\cdot}$ are morphisms. If $f \sim f'$ and $g \sim g'$ then $gf \sim g'f'$. Suppose $h: X^{\cdot} \to Y^{\cdot}[-1]$ and and $h': Y^{\cdot} \to Z^{\cdot}[-1]$ are such that

$$f'-f = d_Y[-1]h + h[1]d_X, \qquad g'-g = d_Z[-1]h' + h'[1]d_Y.$$

Then

$$g'(f' - f) = g'(d_Y[-1]h + h[1]d_X) = d_Z[-1]g'h + g'h[1]d_X$$

(g' - g)f = (d_Z[-1]h' + h'[1]d_Y)f = d_Z[-1]h'f + h'f[1]d_X

since g' and f are morphisms of complexes. Adding, we find

$$g'f' - gf = d_Z(g'h + h'f) + (g'h + h'f)d_X$$

which shows that $g'f' \sim gf$.

Remark: there is some interesting structure here that we are ignoring. For any objects X^{\cdot} , Y^{\cdot} of $C^{\cdot}(\mathcal{A})$ we can make $\operatorname{Hom}_{C^{\cdot}(\mathcal{A})}(X^{\cdot}, Y^{\cdot})$ into a category by taking as morphisms $f \to g$ chain maps $h: X^{\cdot} \to Y^{\cdot}[-1]$ such that $g - f = d_Y h + hd_X$. Our earlier proof that homotopy is an equivalence relation then shows that the axioms of a category are satisfied and that every morphism in $\operatorname{Hom}_{C^{\cdot}(\mathcal{A})}(X^{\cdot}, Y^{\cdot})$ is an isomorphism. This in turn means that $C^{\cdot}(\mathcal{A})$ itself has the structure of a 2-category (the Hom sets have a category structure compatible with composition).

Richard Crew

Proposition

Suppose A is an abelian category, M and N are objects of A, $M \to M^{\cdot}$ is a cochain resolution, $N \to I^{\cdot}$ is an injective resolution and $f : M \to N$ is a morphism. There is a morphism of complexes $\overline{f} : M^{\cdot} \to I^{\cdot}$ such that

is commutative. If $\tilde{f} : M^{\cdot} \to I^{\cdot}$ is another such morphism, \bar{f} and \tilde{f} are homotopic.

In other words \overline{f} is unique up to homotopy. There is a similar assertion for projective resolutions:

Proposition

Suppose A is an abelian category, M and N are objects of A, M. $\rightarrow M$ is a chain resolution, P. $\rightarrow N$ is an projective resolution and $f : N \rightarrow M$ is a morphism. There is a morphism of complexes $\overline{f} : P$. $\rightarrow M$. such that

is commutative. If $\tilde{f} : P \to M$ is another such morphism, \bar{f} and \tilde{f} are homotopic.

The two propositions are proven in the same way, the proof of the second being in essence the proof of the first with the arrows reversed. I will prove the existence of \overline{f} and its uniqueness up to homotopy in the first case, the second begin dual to the first.

イロト 不得下 イヨト イヨト 二日

We construct the \overline{f}^i by induction. Since $M \to M^0$ is a monomorphism I^0 is an injective module the composite $M \to N \to I^0$ factors through $M \to M^0$, via a homomorphism $\overline{f}^0 : M^0 \to I^0$. By construction the square

is commutative.

If \bar{f}^i has been constructed for $0 \le i \le n$ then consider the diagram with exact rows

where \overline{M}^{n-1} and \overline{I}^{n-1} are the images of M^{n-1} and I^{n-1} in M^n and I^n .

Since $M^n/\bar{M}^{n-1} \to M^{n+1}$ is an injective homomorphism and I^{n+1} is an injective module the composite $M^n/\bar{M}^{n-1} \to I^n/\bar{I}^{n-1} \to I^{n+1}$ factors through $M^n/\bar{M}^{n-1} \to M^{n+1}$ via some homomorphism $\bar{f}^{n+1}: M^{n+1} \to I^{n+1}$. Then

is commutative. This completes the recursion.

We now show that if $\tilde{f}: M^{\cdot} \to I^{\cdot}$ is another morphism of complexes with the same property then \bar{f} and \tilde{f} are homotopic. Given such a \tilde{f} there is a commutative diagram

$$0 \longrightarrow M \longrightarrow M^{0} \xrightarrow{d_{M}^{0}} M^{1} \longrightarrow \cdots$$
$$\downarrow_{0} \qquad \qquad \downarrow_{\tilde{f}^{0} - \tilde{f}^{0}} \qquad \qquad \downarrow_{\tilde{f}^{1} - \tilde{f}^{1}} \\ 0 \longrightarrow N \longrightarrow I^{0} \xrightarrow{d_{I}^{0}} I^{1} \longrightarrow \cdots$$

which shows that $\overline{f}^0 - \widetilde{f}^0$ annihilates $M \subseteq M^0$. In what follows we set $a^i = \overline{f}^i - \widetilde{f}^i$ and consider the diagram

of solid arrows. The dotted arrow exists since the top row is exact and I^0 is injective. Let $h^0: M^0 \to 0$ be the zero map (the only possiblity!) Since $M^0/M \to M^1$ and $M^0/M \to I^0$ are induced by d_M^0 and $a^0 = \overline{f}^0 - \widetilde{f}^0$ we have

$$ar{f}^0 - ar{f}^0 = a^0 = d_I^0 h^0 + h^1 d_M^0.$$

Suppose that $h^i: M^i \to I^{i-1}$ has been constructed for $0 \le i \le n$. Then there is a commutative diagram of solid arrows

in which the vertical arrows are $a^i ar{f}^i - ar{f}^i : M^i
ightarrow I^i$ and

$$a^{n-1} = h^n d_M^{n-1} + d_J^{n-2} h^{n-1}.$$

Then

$$(a^{n} - d_{I}^{n-1}h^{n})d_{M}^{n-1} = a^{n}d_{M}^{n-1} - d_{I}^{n-1}h^{n}d_{M}^{n-1}$$

= $a^{n}d_{M}^{n-1} - d_{I}^{n-1}(a^{n-1} - d_{I}^{n-2}h^{n-1})$
= $(a^{n}d_{M}^{n-1} - d_{I}^{n-1}a^{n-1}) - d_{I}^{n-1}d_{I}^{n-2}h^{n-1}$
= 0

shows that $a^n - d_I^{n-1}h^n : M^n \to I^n$ factors through a homomorphism $j : M^n / \overline{M}^{n-1} \to I^n$, which as before \overline{M}^{n-1} is the image of M^{n-1} in M^n . We now have a diagram

in which the top row is exact, and the dotted arrow can be filled in because I^n is injective.

Richard Crew

Homological AlgebraLecture 6

Summer 2021 20 / 21

Since
$$j$$
 and $M^n/\bar{M}^{n-1} \to M^{n+1}$ are induced by $\bar{f}^n - \tilde{f}^n - d_I^{n-1}h^n$ and d_M^n ,
 $\bar{f}^n - \tilde{f}^n - d_I^{n-1}h^n = h^{n+1}d_M^n$

and therfore

$$\bar{f}^n - \tilde{f}^n = d_I^{n-1}h^n + h^{n+1}d_M^n$$

as desired.

Image: A mathematical states of the state