Homological Algebra Lecture 6

Richard Crew

Summer 2021

Additive functors

If \mathcal{A} and \mathcal{B} are additive functors, a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is additive if the map $\operatorname{Hom}_{\mathcal{A}}(X, Y) \rightarrow \operatorname{Hom}_{\mathcal{B}}(F(X), F(Y))$ is a homomorphism for all X, Y in \mathcal{A}. If F is additive then $F(0)=0$.

Lemma

A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories is additive if and only if it commutes with direct sums, i.e. the morphism

$$
\left[F\left(i_{1}\right), F\left(i_{2}\right)\right]: F(X) \oplus F(Y) \rightarrow F(X \oplus Y)
$$

is an isomorphism
Proof: If F is additive then applying F to the equality $1_{X \oplus Y}=i_{1} p_{1}+i_{2} p_{2}$ yields

$$
1_{F(X \oplus Y)}=F\left(1_{X \oplus Y}\right)=F\left(i_{1} p_{1}+i_{2} p_{2}\right)=F\left(i_{1}\right) F\left(p_{1}\right)+F\left(i_{2}\right) F\left(p_{2}\right)
$$

by additivity, and this shows that

$$
\left(F\left(p_{1}\right), F\left(p_{2}\right)\right): F(X \oplus Y) \rightarrow F(X) \oplus F(Y)
$$

is inverse to $\left[F\left(i_{1}\right), F\left(i_{2}\right)\right]$.
Suppose conversely that F commutes with direct sums. We first recall that for any X in \mathcal{A} the diagonal morphism

$$
\Delta_{X}: X \rightarrow X \oplus X
$$

i.e. the unique morphism such that $p_{1} \Delta_{X}=p_{2} \Delta_{X}=1_{X}$ is given by

$$
\Delta_{X}=i_{1}+i_{2}
$$

Dually the codiagonal $\nabla_{X}: X \oplus X \rightarrow X$, which is the unique morphism such that $\nabla_{X} i_{1}=\nabla_{X} i_{2}=1_{X}$ is given by

$$
\nabla_{X}=p_{1}+p_{2}
$$

(I leave this as an exercise).

Finally we showed that if f and g are morphisms $X \rightarrow Y$, the direct $\operatorname{sum} f \oplus g: X \oplus X \rightarrow Y \oplus Y$ is

$$
f \oplus g=i_{1} f p_{1}+i_{2} g p_{2}
$$

This formula, together with

$$
p_{1} i_{1}=p_{2} i_{2}=1, \quad p_{2} i_{1}=p_{1} i_{2}=0
$$

show that

$$
f+g=\nabla_{Y}(f \oplus g) \Delta_{X} .
$$

Suppose now $F: \mathcal{A} \rightarrow \mathcal{B}$ commutes with direct sums, i.e. $F(X \oplus Y) \simeq F(X) \oplus F(Y)$ via the natural morphism. The universal properties of products and coproducts show that

$$
F\left(\Delta_{X}\right)=\Delta_{F(X)}, \quad F\left(\nabla_{X}\right)=\nabla_{F(X)}
$$

for any X in \mathcal{A}. Furthermore

$$
F(f \oplus g)=F(f) \oplus F(g)
$$

for any $f, g: X \rightarrow Y$. Therefore

$$
\begin{aligned}
F(f+g) & =F\left(\Delta_{Y}(f \oplus g) \nabla_{X}\right) \\
& =\Delta_{F(Y)}(F(f) \oplus F(g)) \nabla_{F(X)}=F(f)+F(g)
\end{aligned}
$$

In general, a functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is left exact (resp. right exact) if it commutes with finite limits (resp. finite colimits). Since any finite limit is the equalizer of two morphisms between two products, F is left exact if and only if it commutes with finite products and equalizers. Dually, F is right exact if and only if it commutes with finite coproducts and coequalizers.

In an abelian category finite products and finite coproducts coincide, so we conclude that a left or right exact functor $F: \mathcal{A} \rightarrow \mathcal{B}$ between abelian categories is additive.

Lemma

Suppose \mathcal{A} and \mathcal{B} are abelian. A functor $F: \mathcal{A} \rightarrow \mathcal{B}$ is left exact if and only if for every exact sequence

$$
0 \rightarrow A \rightarrow B \rightarrow C
$$

the sequence

$$
0 \rightarrow F(A) \rightarrow F(B) \rightarrow F(C)
$$

is also exact.
Proof: Suppose F is left exact and $f: B \rightarrow C$ is the morphism in the exact sequence. Then the exact sequence identifies $A \rightarrow B$ with the equalizer of f and the zero morphism $B \rightarrow C$, so by hypothesis $F(A)$ is the equalizer of $F(f)$ and $0=F(0)$; this says that the second sequence is exact.

Suppose conversely that exactness of the first sequence implies exactness of the second. If f and $g: B \rightarrow C$ are two morphisms the equalizer of f and g is the kernel of $f-g$, so the hypothesis implies that F commutes with equalizers.

To finish we must show that F commutes with finite products, and by induction it suffices to treat the case of products of two objects. Given A and B in \mathcal{A}, consider the exact sequence

$$
0 \rightarrow A \xrightarrow{i_{1}} A \oplus B \xrightarrow{p_{2}} B \rightarrow 0
$$

By hypothesis the lower row in the diagram

is exact. The snake lemma then shows that $F(A) \oplus F(B) \rightarrow F(A \oplus B)$ is an isomorphism.

Many other important functors are additive. For example if \mathcal{A} is an additive category, bilinearity of composition shows that the functors

$$
T \mapsto \operatorname{Hom}_{\mathcal{A}}(X, T), \quad T \mapsto \operatorname{Hom}_{\mathcal{A}}(T, X)
$$

are additive. If \mathcal{A} is abelian the translation functor

$$
C^{\prime}(\mathcal{A}) \rightarrow C^{\prime}(\mathcal{A}) \quad X \mapsto X^{\prime}[1]
$$

is additive (evidently - the shift just re-indexes components of a morphism). It will be important the the functors

$$
Z, B, H^{\prime}: C(\mathcal{A}) \rightarrow \operatorname{gr}(\mathbb{Z}, \mathcal{A})
$$

are all additive. It suffices to show that they commute with finite direct sums (i.e. finite products, or coproducts). The case of Z is simple because it is a limit (in fact an equalizer) and thus commutes with direct sums (interpreted as products). Since B is a cokernel (i.e. a colimit, in fact a coequalizer) it commutes with direct sums interpreted as coproducts. Finally H^{\prime} can be interpreted as either a cokernel or a kernel, so it too commutes with direct sums.

Resolutions

We now fix an abelian category \mathcal{A}; unless otherwise stated objects and morphisms are in \mathcal{A}.

A chain resolution of an object M is an exact complex

$$
\begin{equation*}
\cdots \rightarrow P_{2} \rightarrow P_{1} \rightarrow P_{0} \rightarrow M \rightarrow 0 \rightarrow 0 \rightarrow \cdots \tag{1}
\end{equation*}
$$

where P_{0} is in degree 0 . A cochain resolution of M is an exact complex

$$
\begin{equation*}
\cdots \rightarrow 0 \rightarrow 0 \rightarrow M \rightarrow I^{0} \rightarrow I^{1} \rightarrow I^{2} \rightarrow \cdots \tag{2}
\end{equation*}
$$

where again I^{0} is in degree zero. Evidently a chain resolution of M in \mathcal{A} is a cochain resolution in $\mathcal{A}^{\text {op }}$ and vice versa. We will frequently write $P . \rightarrow M$ for a chain resolution of M, and $M \rightarrow I$ for a cochain resolution.

A chain resolution is a a projective resolution if the P_{i} are all projective. Likewise a cochain resolution is an injective resolution if the I_{i} are injective.

Homotopies

Chain and cochain resolutions are evidently not unique. To compare them we will make use of the following notion. Suppose f and $g: X \rightarrow Y^{\cdot}$ are morphisms of cochain complexes. A homotopy between f and g is a morphism of graded objects $h: X^{\cdot} \rightarrow Y^{\cdot}[-1]$ (not of complexes) such that

$$
\begin{equation*}
f-g=d_{Y}[-1] h+h[1] d_{X} \tag{3}
\end{equation*}
$$

Morphisms $f, g: X^{\cdot} \rightarrow Y^{\cdot}$ are homotopic if there exists a homotopy between f and g. A null homotopy of a morphism $f: X^{\cdot} \rightarrow Y^{\cdot}$ is a homotopy between f and the 0 morphism, and f is null homotopic if it has a null homotopy.

Proposition

If $f, g: X^{\cdot} \rightarrow Y^{\cdot}$ are homotopic, $H^{\prime}(f)=H^{\prime}(g)$.

Proof: Since H^{\prime} is an additive functor it suffices to show that if f is null homotopic then $H^{\prime}(f)=0$. The assumption says that there is a morphism $h: X^{\cdot} \rightarrow Y^{\cdot}[-1]$ such that $f=d_{Y}[-1] h+h[1] d_{X}$. Observe that $d_{Y}[-1] h$ and $h[1] d_{X}$ are both morphisms $X \rightarrow Y$ as \mathbb{Z}-graded objects. I will show that they induce the zero map $H^{\cdot}(X) \rightarrow H^{\prime}(Y)$; since H^{-}is additive this will show that $H^{\prime}(f)=0$.
(1) $H^{\cdot}\left(h[1] d_{X}\right)=0$: since $H^{\cdot}(X)$ is a quotient of $Z^{\prime}(X)$ it suffices to show that $h[1] d_{X}$ annihilates Z^{\prime}, but this is obvious since by definition $Z^{\cdot}(X)$ is the kernel of $d_{X}: X^{\cdot} \rightarrow X^{\cdot}[1]$.
(2) $H^{\cdot}\left(d_{Y}[-1] h\right)=0$: since $H^{\cdot}\left(Y^{\cdot}\right)$ is subobject of $Y^{\cdot} / B^{\cdot}(Y)$ it suffices to show that the morphism $Z^{\cdot}(X)[-1] \rightarrow Y^{\cdot} / B^{\cdot}(Y)$ induced by d_{Y} is zero, but this is obvious since by definition $B^{\cdot}(Y)$ is the image of $d_{Y}[-1]: Y^{\cdot}[-1] \rightarrow Y^{\cdot}$.

If f and $g: X \rightarrow Y^{\cdot}$ are morphisms we will write $f \sim g$ to indicate that f and g are homotopic. This is easily seen to be an equivalence relation:

- If $f=g$ we can take $h=0$, so $f \sim f$.
- If $f \sim g$ then $f-g=d_{Y}[-1] h+h[1] d_{X}$ and then $g-f=d_{Y}[-1](-h)+(-h)[1] d_{X}$, whence $g \sim f$.
- Suppose $f \sim g$ and $g \sim h$, and let ℓ and m be such that

$$
f-g=d_{Y}[-1] \ell+\ell[1] d_{X}, \quad g-h=d_{Y}[-1] m+m[1] d_{X}
$$

Then

$$
f-h=d_{Y}[-1](\ell+m)+(\ell+m)[1] d_{X} .
$$

and thus $f \sim h$.
Suppose finally that $f, f^{\prime}: X^{\cdot} \rightarrow Y^{\cdot}$ and $g, g^{\prime}: Y^{\cdot} \rightarrow Z^{\cdot}$ are morphisms. If $f \sim f^{\prime}$ and $g \sim g^{\prime}$ then $g f \sim g^{\prime} f^{\prime}$. Suppose $h: X \rightarrow Y^{\cdot}[-1]$ and and $h^{\prime}: Y^{\cdot} \rightarrow Z^{\cdot}[-1]$ are such that

$$
f^{\prime}-f=d_{Y}[-1] h+h[1] d_{X}, \quad g^{\prime}-g=d_{Z}[-1] h^{\prime}+h^{\prime}[1] d_{Y}
$$

Then

$$
\begin{aligned}
g^{\prime}\left(f^{\prime}-f\right) & =g^{\prime}\left(d_{Y}[-1] h+h[1] d_{X}\right)=d_{Z}[-1] g^{\prime} h+g^{\prime} h[1] d_{X} \\
\left(g^{\prime}-g\right) f & =\left(d_{Z}[-1] h^{\prime}+h^{\prime}[1] d_{Y}\right) f=d_{Z}[-1] h^{\prime} f+h^{\prime} f[1] d_{X}
\end{aligned}
$$

since g^{\prime} and f are morphisms of complexes. Adding, we find

$$
g^{\prime} f^{\prime}-g f=d_{Z}\left(g^{\prime} h+h^{\prime} f\right)+\left(g^{\prime} h+h^{\prime} f\right) d_{X}
$$

which shows that $g^{\prime} f^{\prime} \sim g f$.
Remark: there is some interesting structure here that we are ignoring. For any objects X^{\cdot}, Y^{\cdot} of $C^{\cdot}(\mathcal{A})$ we can make $\operatorname{Hom}_{C^{\cdot}(\mathcal{A})}\left(X^{\cdot}, Y^{\cdot}\right)$ into a category by taking as morphisms $f \rightarrow g$ chain maps $h: X^{\cdot} \rightarrow Y^{\cdot}[-1]$ such that $g-f=d_{Y} h+h d_{X}$. Our earlier proof that homotopy is an equivalence relation then shows that the axioms of a category are satisfied and that every morphism in $\operatorname{Hom}_{C^{\cdot(\mathcal{A})}}\left(X^{\cdot}, Y^{\cdot}\right)$ is an isomorphism. This in turn means that $C^{\cdot}(\mathcal{A})$ itself has the structure of a 2-category (the Hom sets have a category structure compatible with composition).

Proposition

Suppose \mathcal{A} is an abelian category, M and N are objects of $\mathcal{A}, M \rightarrow M$ is a cochain resolution, $N \rightarrow I$ is an injective resolution and $f: M \rightarrow N$ is a morphism. There is a morphism of complexes $\bar{f}: M \rightarrow I \cdot$ such that

is commutative. If $\tilde{f}: M \rightarrow I$ is another such morphism, \bar{f} and \tilde{f} are homotopic.

In other words \bar{f} is unique up to homotopy. There is a similar assertion for projective resolutions:

Proposition

Suppose \mathcal{A} is an abelian category, M and N are objects of $\mathcal{A}, M . \rightarrow M$ is a chain resolution, $P \rightarrow N$ is an projective resolution and $f: N \rightarrow M$ is a morphism. There is a morphism of complexes $\bar{f}: P . \rightarrow M$. such that

is commutative. If $\tilde{f}: P . \rightarrow M$. is another such morphism, \bar{f} and \tilde{f} are homotopic.

The two propositions are proven in the same way, the proof of the second being in essence the proof of the first with the arrows reversed. I will prove the existence of \bar{f} and its uniqueness up to homotopy in the first case, the second begin dual to the first.

We construct the \bar{f}^{i} by induction. Since $M \rightarrow M^{0}$ is a monomorphism I^{0} is an injective module the composite $M \rightarrow N \rightarrow I^{0}$ factors through $M \rightarrow M^{0}$, via a homomorphism $\bar{f}^{0}: M^{0} \rightarrow I^{0}$. By construction the square

is commutative.
If \bar{f}^{i} has been constructed for $0 \leq i \leq n$ then consider the diagram with exact rows

$$
\begin{gathered}
0 \longrightarrow M^{n} / \bar{M}^{n-1} \longrightarrow M^{n+1} \\
\left\lvert\, \begin{array}{l}
\bar{f}^{n} \\
\\
0 \longrightarrow I^{n} / \bar{I}^{n-1} \longrightarrow I^{n+1}
\end{array}\right.
\end{gathered}
$$

where \bar{M}^{n-1} and \bar{I}^{n-1} are the images of M^{n-1} and I^{n-1} in M^{n} and I^{n}.

Since $M^{n} / \bar{M}^{n-1} \rightarrow M^{n+1}$ is an injective homomorphism and I^{n+1} is an injective module the composite $M^{n} / \bar{M}^{n-1} \rightarrow I^{n} / \bar{I}^{n-1} \rightarrow I^{n+1}$ factors through $M^{n} / \bar{M}^{n-1} \rightarrow M^{n+1}$ via some homomorphism $\bar{f}^{n+1}: M^{n+1} \rightarrow I^{n+1}$. Then

is commutative. This completes the recursion.
We now show that if $\tilde{f}: M \rightarrow I$ is another morphism of complexes with the same property then \bar{f} and \tilde{f} are homotopic. Given such a \tilde{f} there is a commutative diagram

which shows that $\bar{f}^{0}-\tilde{f}^{0}$ annihilates $M \subseteq M^{0}$. In what follows we set $a^{i}=\bar{f}^{i}-\tilde{f}^{i}$ and consider the diagram

of solid arrows. The dotted arrow exists since the top row is exact and I^{0} is injective. Let $h^{0}: M^{0} \rightarrow 0$ be the zero map (the only possiblity!) Since $M^{0} / M \rightarrow M^{1}$ and $M^{0} / M \rightarrow I^{0}$ are induced by d_{M}^{0} and $a^{0}=\bar{f}^{0}-\tilde{f}^{0}$ we have

$$
\bar{f}^{0}-\tilde{f}^{0}=a^{0}=d_{l}^{0} h^{0}+h^{1} d_{M}^{0} .
$$

Suppose that $h^{i}: M^{i} \rightarrow I^{i-1}$ has been constructed for $0 \leq i \leq n$. Then there is a commutative diagram of solid arrows

$$
\begin{aligned}
& M^{n-2} \xrightarrow{d_{M}^{n-2}} M^{n-1} \xrightarrow{d_{M}^{n-1}} M^{n} \xrightarrow{d_{M}^{n}} M^{n+1}
\end{aligned}
$$

in which the vertical arrows are $a^{i} \bar{f}^{i}-\tilde{f}^{i}: M^{i} \rightarrow I^{i}$ and

$$
a^{n-1}=h^{n} d_{M}^{n-1}+d_{J}^{n-2} h^{n-1}
$$

Then

$$
\begin{aligned}
\left(a^{n}-d_{I}^{n-1} h^{n}\right) d_{M}^{n-1} & =a^{n} d_{M}^{n-1}-d_{I}^{n-1} h^{n} d_{M}^{n-1} \\
& =a^{n} d_{M}^{n-1}-d_{I}^{n-1}\left(a^{n-1}-d_{I}^{n-2} h^{n-1}\right) \\
& =\left(a^{n} d_{M}^{n-1}-d_{I}^{n-1} a^{n-1}\right)-d_{I}^{n-1} d_{I}^{n-2} h^{n-1} \\
& =0
\end{aligned}
$$

shows that $a^{n}-d_{I}^{n-1} h^{n}: M^{n} \rightarrow I^{n}$ factors through a homomorphism $j: M^{n} / \bar{M}^{n-1} \rightarrow I^{n}$, which as before \bar{M}^{n-1} is the image of M^{n-1} in M^{n}. We now have a diagram

$$
\begin{gathered}
0 \longrightarrow M^{n} / \bar{M}^{n-1} \longrightarrow M^{n+1} \\
\downarrow_{j}^{j} h^{n}<h^{n+1} \\
\|^{n}
\end{gathered}
$$

in which the top row is exact, and the dotted arrow can be filled in because I^{n} is injective.

Since j and $M^{n} / \bar{M}^{n-1} \rightarrow M^{n+1}$ are induced by $\bar{f}^{n}-\tilde{f}^{n}-d_{l}^{n-1} h^{n}$ and d_{M}^{n},

$$
\bar{f}^{n}-\tilde{f}^{n}-d_{l}^{n-1} h^{n}=h^{n+1} d_{M}^{n}
$$

and therfore

$$
\bar{f}^{n}-\tilde{f}^{n}=d_{l}^{n-1} h^{n}+h^{n+1} d_{M}^{n}
$$

as desired.

