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Interpretation of the Ext groups

Now that we have defined the Ext groups ExtnA(M,N) for any abelian
category with enough projectives or injectives, we ask what they mean. I
will work out the case where A has enough injectives and the Ext groups
are the derived functors of HomA in the second variable, since this is the
more useful case in general, although for module categories the other
construction is more useful. In any case it is dual to the first.

We start with the case n = 1. For any objects M, N of A, an
extension of M by N is a short exact sequence

0→ N → E → M → 0

in A. A morphism of extensions of M by N is a commutative diagram

0 // N // E //

��

M // 0

0 // N // E ′ // M // 0

.
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Specifically this is a morphism from the extension in the top row to
the extension in the bottom row. Note that the left and right vertical
arrows must be the identity. The snake lemma shows tha E → E ′ must be
an isomorphism in A.

It is easily checked that extensions of M by N form a category, and
from the last remark this category is actually a groupoid (all morphisms
are isomorphisms). We denote it by EXT(M,N).

I will show that EXT(M,N) has a set of isomorphism classes and that
this set is in a bijection with the group Ext1A(M,N) constructed earlier.
This suggests that the category EXT(M,N) must have some kind of
“categorical group structure” and this is indeed the case. In what follows I
will fix an extension

0→ N → E → M → 0 (1)

of M by N.
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Since A has enough injectives we can find a monomorphism N → I 0

with injective I 0. Let I 0 → B be a cokernel of N → I 0, so we now have a
diagram

0 // N // E //

��

M // 0

0 // N // I 0 // B // 0

.

The dotted arrow can be filled in since I 0 is injective, and then general
abelian categorical nonsense shows that there is a morphism f : M → B
making

0 // N // E //

��

M //

f
��

0

0 // N // I 0 // B // 0

(2)

commutative. Note that this is a pullback diagram: E is a fibered product
I 0 ×B M.
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From this we see that the original extension (1) can be recovered up
to isomorphism from the morphism f : M → B. Conversely any f : M → B
gives rise to an object of EXT(M,N) by pulling back the extension

0→ N → I 0 → B → 0 (3)

by f : M → B. From this we see that there is a set of isomorphism classes
of objects of EXT(M,N), and that this set is a quotient of HomA(M,B).
We now want to describe this quotient more exactly.

Before doing this let’s fix an injective resolution

0→ B → I 1 → I 2 → · · ·

of B. By splicing this onto (3) we get an injective resolution

0→ N → I 0 → I 1 → I 2 → · · ·

of N. Since HomA is left exact,

0→ HomA(M,B)→ HomA(M, I 1)→ HomA(M, I 2)

is exact and so we can identify

HomA(M,B) ' Ker(HomA(M, I 1)→ HomA(M, I 2)).
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On the other hand we can insert this resolution of N into the diagram
(2), resulting in

0 // N // E //

��

M //

f
��

0 //

��

· · ·

0 // N // I 0
d // I 1 // I 2 // · · ·

(4)

and I have changed the meaning of f . In this diagram f must factor
through the kernel B → I 1 of I 1 → I 2, i.e.

f ∈ Ker(HomA(M, I 1)→ HomA(M, I 2)).

On the other hand f was determined by the original choice of E → I 0, and
there are many possibilities for this. However all of them correspond to
morphisms of the top complex to the bottom one, and since the bottom
one is an injective resolution of N, all such morphisms are homotopic.
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What this means in the current setting is this: if f and f ′ are
morphisms making (4) a morphism of complexes, there is a morphism
h : M → I 0 such that

f ′ − f = dg

or in other words f ′ and f are congruent modulo the image of

HomA(M, I 0)→ HomA(M, I 1).

In other words the image of f in H1(HomA(M, I ·)) is well-defined, and the
original extension (1) can be reconstructed from it up to isomorphism.
Conversely if we are given an element of H1(HomA(M, I ·)) we can lift it
to a element of the kernel of HomA(M, I 1)→ HomA(M, I 2), and the
pullback construction yields an object of EXT(M,N). These operations
are clearly mutually inverse, so we have proven the following:
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Theorem

Suppose A has enough injectives. For any two objects M and N of A the
preceding constructions yield a bijection of Ext1A(M,N) with the set of
isomorphism classes of EXT(M,N).

When A has enough projectives we can use the dual procedure to
again identify the isomorphism classes of EXT(M,N) with Ext1A(M,N). In
this case we choose a projective resolution P· → M of M. Then there is a
morphism of complexes

// P2
//

��

P1
//

f
��

P0
//

��

M // 0

// 0 // N // E // M // 0

where f is now an element of the kernel of HomA(P1,N)→ HomA(P2,N)
and is well-defined modulo the image of HomA(P0,N)→ HomA(P1,N).
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This argument shows that the isomorphism classes of objects of
EXT(M,N) is now in a bijection with the elements of H1(HomA(P·,N)),
which is isomorphic to Ext1A(M,N) has enough projectives and enough
injectives. But now the following problem arises: is the identification of
H1(HomA(M, I ·)) with H1(HomA(P·,N)) consistent with the classes we
have associated to the given extension (1)? The answer is anything but
clear since we don’t really have an explicit formula for what this
identification was, it just emerges from some universal property. We will
deal with this later.

The groups ExtnA(M,N) can be interpreted in a similar way, although
the result is not quite so easy to state. Let’s recall that an n-extension of
M by N is an exact sequence

0→ N → E 0 → E 1 → · · · → En−1 → M → 0 (5)

of length n + 2. When n = 1 we recover the previous notion of an
extension of M by N, which is now a 1-extension of M by N.
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We can associate to the n-extension (5) an element of ExtnA(M,N) in
pretty much the same way as before: choose an injective resolution N → I ·

of N; by our earlier results on resolutions there is a morphism of complexes

0 // N // E 0 //

��

E 1 //

��

· · · // En−1 //

��

M //

f
��

0

��
0 // N // I 0 // I 1 // · · · // I n−1 // I n // I n+1

and E · → I · is unique up to homotopy. Then f is an element of the kernel
of HomA(M, I n)→ HomA(M, I n+1) and is unique modulo the image of
HomA(M, I n−1)→ HomA(M, I n). The resulting element of
Hn(HomA(M, I ·) = ExtnA(M,N) is the class of the extension (5).

It’s easy to see that every element of ExtnA(M,N) arises in this way.
For k ≥ 0 let Z k = Ker(I k → I k+1). Then the bottom row of the last row
can be broken up into two exact sequences
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0→ N → I 0 → I 1 → · · · →I n−2 → Zn−1 → 0

0→ Zn−1 →I n−1 → Zn → 0

and the morphism M → I n factors uniquely through a morphism M → Zn.
We can pull back the second exact sequence above by this morphism to
get a short exact sequence

0→ Zn−1 → E → M → 0

and this can be spliced onto the first one to get an n-extension

0→ N → I 0 → I 1 → · · · → I n−2 → E → M → 0

whose class is that of the image of M → Zn in ExtnA(M,N).
Less obvious is exactly what kind of categorical equivalence relation

should be put on the category of n-extensions so that two n-extensions are
equivalent if and only if they have the same class. We will deal with this
later (maybe).
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Tor functors

Let A be a ring with identity (not necessarily commutative). The
category ModA of left A-modules is an abelian category, in fact a
particularly nice one: it has arbitrary limits and colimits, a generator (the
ring A itself considered as a left A-module) and it has enough projectives
and injectives. In particular we can compute Ext groups using either a
projective resolution of the first argument or an injective resolutions of the
second. The same goes for the category of right A-modules, which is
equivalent to the category of left Aop-modules.

Suppose now that M is a fixed right A-module. The construction

N 7→ M ⊗A N

defines a right exact functor ModA → Ab, and so has left derived functors
which we denote by N 7→ TorAn (M,N). They are computed by choosing a
projective resolution P· → N of N, and then

TorAn (M,N) = Hn(M ⊗A P·).
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If
0→ N ′ → N → N ′′ → 0

is an exact sequence the long exact sequence of left derived functors is

· · · → TorAn (M,N ′)→ TorAn (M,N)→ TorAn (M,N ′′)→ TorAn−1(M,N ′)→ · · ·

Furthermore TorAn (M,N) is functorial in both of its first argument.
Suppose f : M → M ′ is an A-module homomorphism. The functors
TornA(M, ) and TornA(M ′, ) are both universal homological ∂-functors, so
f ⊗A 1 : M ⊗A → M ′ ⊗A is the degree 0 part of a morphism of
homological ∂-functors (TornA(M,N), ∂)→ (TornA(M ′,N), ∂). In particular
we get morphisms of functors TornA(M, )→ TornA(M ′, ) for all n ≥ 0,
which for n = 0 is f ⊗A 1.

On the other hand if N is a fixed left A-module,

M 7→ M ⊗A N
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is a right exact functor ModAop → Ab, so it also has left derived functors,

which for the moment we will denote by M 7→ T̃or
A
n (M,N). They are

computed by choosing a projective resolution Q· → M of M, and then

T̃or
A
n (M,N) = Hn(Q· ⊗A N).

We can use the same sort of arguments used in the last lecture show

that T̃or
A
n (M,N) ' TorAn (M,N), in fact functorially in both arguments.

However the tensor product is a right exact functor, so instead of using
cohomological ∂-functors, as for the Ext groups we must use homological
∂-functors. A homological ∂-functor A → B is a cohomological ∂-functor
A → Bop, so our earlier results on universality and effaceability for
cohomological ∂-functors are also valid for homological ∂-functors.
However the terminology is a little different, so I will state them explicitly.
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A homological ∂-functor (S·, d) from A to B is universal if for every
homological ∂-functor (T·, δ), a morphism f0 : T0 → S0 extends uniquely
to a morphism of ∂-functors f : (T·, δ)→ (S·, ∂). If (S·, d) and (T·, δ) are
universal homological ∂-functors, an isomorphism f0 : S0 → T0 extends
uniquely to an isomorphism f : (T·, δ)→ (S·, ∂) of homological ∂-functors.

An additive functor F : A → B is coeffaceable if for every object A of
A there is an epimorphism u : P → A such that F (u) = 0. Note that a
coeffaceable functor F : A → B is the same as an effaceable contravariant
functor from Aop to B. A homological ∂-functor (S·, d) is coeffaceable if
Sn is effaceable for all n > 0. The analogue of the earlier results on
universality are as follows:

A coeffaceable homological ∂-functor from A to B is universal.

If A has enough projectives and F : A → B is right exact, (LnF , ∂) is
the unique universal homological ∂-functor from A to B whose degree
0 component is isomorphic to F .
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Let’s return to the case A = ModA. To show that

T̃or
A
n (M,N) ' TorAn (M,N) it suffices to show that the sequence of

T̃or
A
n (M, ) for n ≥ 0 has the structure of a universal homological

∂-functor. Since

T̃or
A
0 (M,N) ' M ⊗A N ' TorA0 (M,N)

the universal properties of TorAn (M,N) and T̃or
A
n (M,N) will yield an

isomorphism (TorAn (M,N), ∂)
∼−→ (T̃or

A
n (M,N), ∂) of homological

∂-functors, and in particular isomorphisms TorAn (M,N) ' T̃or
A
n (M,N)

functorial in N. Functoriality in M can be shown by giving the TorAn ( ,N)
the structure of a universal homological ∂-functor and arguing as before to

get an isomorphism TorAn (M,N) ' T̃or
A
n (M,N) that is functorial in M.

One must then show that the two isomorphisms so obtained are in fact the
same, which I will leave as an exercise.
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Suppose first that

0→ N ′ → N → N ′′ → 0

is an exact sequence of left A-modules and P· → M is a projective
resolution. Since a projective module is flat,

0→ Pi ⊗A N ′ → Pi ⊗A N → Pi ⊗A N ′′ → 0

is exact for all i , and therefore

0→ P· ⊗A N ′ → P· ⊗A N → P· ⊗A N ′′ → 0

is an exact sequence of complexes. The long exact sequence of homology

· · · → Hn(P·⊗AN
′)→ Hn(P·⊗AN)→ Hn(P·⊗AN

′′)→ Hn−1(P·⊗AN
′)→ · · ·

is
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· · · → T̃or
A
n (M,N ′)→ T̃or

A
n (M,N)→ T̃or

A
n (M,N ′′)

∂−→ T̃or
A
n (M,N ′′)→ · · ·

and it is easily checked that (T̃or
A
n (M, ), ∂) is a homological ∂-functor.

I will show that (T̃or
A
n (M, ), ∂) is universal by showing that it is

coeffaceable. In fact for any left A-module N there is an epimorphism

u : P → N with P projective, so it suffices to show that T̃or
A
n (M,P) = 0

when n > 0 and P is projective. If Q· → M is a projective resolution,

· · · → Q2 → Q1 → Q0 → M → 0

is exact by definition and therefore

· · · → Q2 ⊗A P → Q1 ⊗A P → Q0 ⊗A P → M ⊗A P → 0

is exact since P is flat. This shows that T̃or
A
n (M,P) = 0 for n > 0.
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Recall that a right A-module M is flat if for every exact sequence

0→ N ′ → N → N ′′ → 0

the sequence

0→ M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0

is exact. Similarly for left A-modules.

Proposition

For any right A-module M the following are equivalent:

1 M is flat;

2 TorAn (M,N) = 0 for all left A-modules N and all n > 0;

3 TorA1 (M,N) = 0 for all left A-modules N.
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Proof: (1) implies (2): If P· → N is a projective resolution of N,
TorAn (M,N) = Hn(M ⊗A P·) by definition. Now P· is exact in positive
degrees (i.e. Hn(P·) = 0 for n > 0 and since M is flat, M ⊗A P· is also
exact in positive degrees. This says that TorAn (M,N) = 0 for n > 0.

(2) trivially implies (3). Suppose (3) holds; if

0→ N ′ → N → N ′′ → 0

is exact the long exact sequence of Tor is

0 = TorA1 (M,N ′)→ M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0

or in other words

0→ M ⊗A N ′ → M ⊗A N → M ⊗A N ′′ → 0

is exact.
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Corollary

Suppose
0→ M ′ → M → M ′′ → 0

is an exact sequence of right A-modules.

1 If M ′ and M ′′ are flat, so is M.

2 If M and M ′′ are flat, so is M ′.

Proof: This follows from the proposition and the long exact sequence
of Tor, part of which is

TorA2 (M ′′,N)→ TorA1 (M ′,N)→ TorA1 (M,N)→ TorA1 (M ′′,N)

for any left A-module N.
It can happen that M ′ and M are flat without M ′′ being flat.
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Lemma

For any functor i 7→ Ni from a filtered indexing category to ModA, the
natural morphism

lim−→
i

Torn(M,Ni )→ Torn(M, lim−→
i

Ni )

is an isomorphism.

Proof: The morphism is the one induced from the morphisms
Torn(M,Ni )→ Torn(M, lim−→i

Ni ) by the universal property of colimits. By
our earlier discussion we can calculate the Torn by choosing a projective
resolution Q· → M. The canonical morphisms Ni → lim−→i

Ni yield
morphisms

Q· ⊗A Ni → Q· ⊗A lim−→
i

Ni
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and thus a morphism

lim−→
i

(Q· ⊗A Ni )→ Q· ⊗A lim−→
i

Ni

which is an isomorphism since tensor products commute with colimits.
This yields isomorphisms

Hn(lim−→
i

(Q· ⊗A Ni ))
∼−→ Hn(Q· ⊗A lim−→

i

Ni )
∼−→ TorAn (M, lim−→

i

Ni )

for all n. Finally Hn commutes with filtered colimits, so we get an
isomorphism

lim−→
i

TorAn (M,Ni )
∼−→ lim−→

i

Hn(Q· ⊗A Ni )
∼−→ TorAn (M, lim−→

i

Ni )

as asserted.
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Corollary

A right A-module M is flat if and only if TorA1 (M,N) = 0 for all finitely
generated left A-modules N.

Proof: Any left A-module is a filtered colimit of finitely generated
ones.

By using this corollary one can show that M is flat if and only if one
of the following conditions holds:

TorA1 (M,A/I ) = 0 for any finitely generated left ideal I ⊆ A;

the natural map M ⊗A I → MI is an isomorphism for all finitely
generated left ideals I ⊆ A.

Finally all of the above results are valid if we systematically exchange
“right” and “left.”
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