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Introduction

The purpose of this note is show that an irreducible rigid differential equation on
an open subset of P1 with regular singularities and rational exponents has, with
reasonable local assumptions relative a prime p, a Frobenius structure relative
to some power of p.

Katz [8] has shown that any irreducible rigid local system on an open subset
P1 can be built up, by repeated tensor product and convolution operations of
a suitable sort, from local systems of rank one. One therefore expects that if
the corresponding regular singular differential equation is defined, say, over Q
and has rational exponents, it should have a Frobenius structure for almost all
p. What we show in this paper, in effect, is that if the differential equation
has rational exponents and defines an overconvergent isocrystal for some value
of p, it will have a Frobenius structure for that particular p. It is well known
that overconvergence is a necessary consequence of the existence of a Frobenius
structure. We remark that when the equation is irreducible, this Frobenius
structure is unique up to a scalar multiple, as was shown by Dwork [7].

Katz’s methods use the theory of algebraic D-modules; Berthelot’s theory of
arithmetic D-modules is not a priori applicable here since it relies heavily on the
existence of a Frobenius structure (it is not known how to define “holonomic”
without one), so one cannot proceed by this method. On the other hand, once
an overconvergent isocrystal is known to have a Frobenius structure, its direct
image by specialization is to be a holonomic D†-module, for which the methods
of [8] might then be applicable. The present approach is elementary in that it
uses only the cohomological criterion for rigidity, together with a p-adic analogue
(theorem 1 below) in terms of rigid cohomology. The main point is that if
a regular singular differental equation on an open subset of P1 is rigid and
irreducible, and defines an overconvergent isocrystal, then that isocrystal is p-
adically rigid (theorem 2). The existence of a Frobenius structure follows from
this, assuming rational exponents and other suitable conditions (theorem 3).
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1 Classical and p-adic Rigidity

Let U be a nonempty Zariski open subset of P1
C, with analytification Uan. We

recall that a local system V on Uan is rigid if any other local system on Uan with
the same local monodromy as V is isomorphic to V . Denote by j : Uan → P1 the
natural inclusion, and set S = P1 \U . Katz shows that an irreducible V is rigid
if and only if H1(P1, j∗End(V )) = 0, or equivalently if χ(P1, j∗End(V )) = 2.
That this condition is sufficient is relatively easy, and we will see that it can be
extends to the case of p-adic differential equations. The proof of necessity uses
transcendental methods and does not generalize in an obvious way to the `-adic
or p-adic situation; in any case we will not be concerned with it.

A p-adic analogue of the rigidity condition can be formulated for the category
of overconvergent isocrystals on an open subset P1 over a p-adic base. We will
assume that the reader is familiar with this theory, but it will be useful to recall
a few basic constructions.

Fix a complete discrete valuation ring V of mixed characteristic p, with
fraction field K and residue field k. We now take P1 to be a formal V-scheme,
and denote by U ⊂ P1 a nonempty formal affine subscheme with closed fiber Uk.
The complement S = P1 \Uk is then a finite set of points. As usual, Uan ⊂ P1

K

will denote the corresponding affinoid space; it is the same as the tube ]U [=]Uk[
(c.f. [2]). Recall that in this setting, an overconvergent isocrystal on U can
be identified with a locally free module with (necessarily integrable) connection
(M,∇) over the dagger-algebra

A† = lim−→
W

Γ(W,OW ) (1.1)

where W runs over the directed system of strict neighborhoods of Uan, i.e.
a rigid-analytic open neighborhoods W of Uan such that {W,P1 \ Uan} is an
admissible cover of P1. We will usually abbreviate (M,∇) by M .

If s is a point of S and W is a strict neighborhood of Uan, the open set
W∩]s[ is isomorphic to a rigid-analytic annulus, and we denote by R(s) the
direct limit

R(s) = lim−→
W

Γ(W∩]s[,OW ) (1.2)

of the function algebras of these annuli; this is the Robba ring at s. If s is a point
of S, the natural inclusions W∩]s[↪→ W induce injective ring homomorphisms
Γ(W,OW ) ↪→ Γ(W∩]s[,OW ), whence a continuous ring homomorphism A† ↪→
R(s) for all s ∈ S. If (M,∇) is an overconvergent isocrystal on U , we set

M(s) = lim−→
W

Γ(W∩]s[,M)

which, since M is a a coherent OW -module, is a R(s)-module of finite presenta-
tion. The connection on the R(s)-module M(s) induced by ∇ will be denoted
∇(s), and finally the pair (M(s),∇(s)) will be denoted by Ms; it is an “over-
convergent isocrystal on R(s) that represents the mondromy of M about s.
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We therefore make the following definition. An overconvergent isocrystal
M on U is p-adically rigid if it has the following property: if N is another
overconvergent isocrystal on U such that Ms ' Ns for all s ∈ S, then M ' N .
As in the classical case we do not make a definition in the case of curves of higher
genus, or varieties of higher dimension (although for curves of higher genus, the
definition of “weakly rigid” extends in an obvious way).

To formulate a cohomological condition for the p-adic rigidity of an over-
convergent isocrystal (M,∇), we recall that for a local system V , H1(P1, j∗V )
is the same as the parabolic cohomology H1

p (U, V ), i.e. the image of the forget
supports map H1

c (U, V ) → H1(U, V ). In fact the long exact sequences arising
from the exact triangles

j!V → j∗V →
⊕
s∈S

(j∗V )s
+1−→

j∗V → Rj∗V →
⊕
s∈S

(R1j∗V )s[−1]
+1−→

(1.3)

reduce to exact sequences

0→ H0(U, V )→
⊕
s∈S

(j∗V )s → H1
c (U, j∗V )→ H1(P1, j∗V )→ 0

0→ H1(P1, j∗V )→ H1(U, V )→
⊕
s∈S

(R1j∗V )s → H2(P1, j∗V )→ 0
(1.4)

and an isomorphism
H2
c (U, V ) ' H2(P1, j∗V ). (1.5)

The assertion follows from this, given that H1
c (U, V ) → H1(U, V ) is induced

by the composite j!V → j∗V → Rj∗V . From the definitions and 1.5 we get
equalities

χ(P1, j∗V ) = dimH0(U, V )− dimH1(P1, j∗V ) + dimH2
c (U, V )

= χc(U, V ) +
∑
s∈S

dimVs.
(1.6)

The p-adic analogue is straightforward, using rigid cohomology (see [2] for
the general definition, and [6] for the case of an affine curve). The first fact we
need is the existence of a six-term exact sequence

0→ H0(U,M)→
⊕
s∈S

H0
DR(Ms)→ H1(U,M)→

∂−→ H1
c (U,M)→

⊕
s∈S

H1
DR(Ms)→ H2

c (U,M)→ 0
(1.7)

for any overconvergent isocrystal M on U . In 1.7 the “local cohomology”
Hi
DR(Ms) is just the ordinary de Rham cohomology of Ms = (M(s),∇(s)).

We then define the parabolic cohomology H1
p (U,M) by

H1
p (U,M) = Im(∂ : H1(U,M)→ H1

c (U,M)). (1.8)
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From this we see that 1.7 is the p-adic analogue of the result of gluing together
the exact sequences 1.4 at the term H1(P1, j∗V ).

When H1
p (U,M) has finite dimension, we can define the “parabolic” Euler

characteristic of M by analogy with the first part of 1.6

χp(M) = dimH0(U,M)− dimH1
p (U, V ) + dimH2

c (U,M) (1.9)

and from 1.7 and 1.9 we get the equality

χp(U,M) = χc(M) +
∑
s∈S

dimH0
DR(Ms) (1.10)

analogous to second part of 1.6.
The spaceH1

p (U,M) will of course have finite dimension if either ofH1(U,M)
or H1

c (U,M), and the finite-dimensionality of these latter spaces depends on the
behavior of M at the points of S. The following proposition, which resumes and
completes some of the results of [6] makes this precise:

1 Proposition For any overconvergent isocrystal M on U , the following are
equivalent:

1. dimH1
DR(Ms) <∞ for all s ∈ S.

2. For all s ∈ S, the map ∇(s) is topologically strict.

3. dimH1(U,M) <∞ and dimH1
c (U,M) <∞.

Furthermore if these conditions hold, there are canonical duality isomorphisms

Hi(U,M)∨ ' H2−i
c (U,M∨) (1.11)

for 0 ≤ i ≤ 2.

Proof. It is shown in [6] that (2) implies (1) and that (1) implies (3). Since
H2
c (U,M) is known to have finite dimension in any case, the exact sequence 1.7

shows that (3) implies (2). Suppose finally that (1) holds. Since H1(M(s)) has
finite dimension, the canonical map M(s) ⊗ Ω1 → H1(M(s)) has a continuous
splitting u : H1(M(s))→M(s)⊗ Ω1. The map

(∇(s), u) : M(s)⊕H1(M(s))→M(s)⊗ Ω1

is clearly surjective, and since source and target are LF-spaces, the open map-
ping theorem for LF-spaces shows that it is topologically strict. From this it
follows that ∇(s) is strict, whence (2). The last assertion is proven in [6].

The condition (1) in proposition 1 is a consequence of the “NL property”
of Christol and Mebkhout. The definition is rather involved and we refer the
reader to [4] and the references therein. The one consequence of this condition
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we need is the following: if as before M is an overconvergent isocrystal of rank
d on U and satisfies condition NL at every point of S, then

χc(U,M) = dχc(U)−
∑
s∈S

Irr(Ms) (1.12)

where Irr(Ms) is the irregularity of the isocrystal Ms, defined in [4]. In particu-
lar, χc(U,M) only depends on U , the rank of M and the irregularities Irr(Ms).

We can now state:

1 Theorem Suppose M is an irreducible overconvergent isocrystal on U ⊂ P1

such that End(M) satisfies condition NL at every point of S. If χp(End(M)) =
2, then M is p-adically rigid.

Proof. The argument is the same as in [8]. Suppose that N is an overconvergent
isocrystal such that Ms ' Ns for all s ∈ S; in particular M and N have the
same rank. Since Hom(M,N)s ' End(M)s for all s ∈ S, Hom(M,N) satisfies
condition NL at every s. Then it follows from χp(End(M)) = 2 and the index
formula 1.12 that χp(Hom(M,N)) = 2, and therefore

dimH0(P1, Hom(M,N)) + dimH2
c (P1, Hom(M,N)) ≥ 2.

On the other hand Hom(M,N) and Hom(N,M) are dual, so the duality 1.11
yields

dimH0(P1, Hom(M,N)) + dimH0(P1, Hom(N,M)) ≥ 2.

and we conclude that one of Hom(M,N), Hom(N,M) is nonzero. Since M and
N have the same rank and M is irreducible, we conclude that M ' N .

We note that since End(M) is canonically self-dual, the irreducibility of M
implies that either χp(M) = 2 or χp(M) ≤ 0, so that χp(M) = 2 in this case
is equivalent to H1

p (U,End(M)) = 0. As in the classical case we can think of
dimH1

p (U,End(M)) as the number of “accessory parameters” of M (see [8], p.
5).

2 Comparison Theorems

Suppose M is a module with a connection with regular singularites on, say,
an open subset U of P1

Q, and denote by V the corresponding local system on
UanC . The aim of this section is to show, under a few (necessary) assumptions,
that if V is rigid, the p-adic completion of M is p-adically rigid (one condition,
obviously, is that this p-adic completion defines an overconvergent isocrystal).
We need not, however, restrict ourselves to the case where M is defined over Q,
or over a number field. In fact, the condition that V be rigid is essentially an
algebraic condition on M :

1 Lemma Suppose M is a module with a connection with regular singularities
on some open subset of P1

K , where K is a field of characteristic zero embeddable
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into C. If the local system (M ⊗K,ι C)an is rigid for one choice of embedding
ι : K → C, it is rigid for any other choice.

Proof. By Katz’s criterion, it suffices to show that χp((M ⊗K,ιC)an) = 2 if and
only if χp(M) = 2 (with the latter defined, say by algebraic D-module theory),
but this is just a special case of the Riemann-Hilbert correspondence.

If K is any field of characteristic zero and M is a module with regular
connection on P1

K , we can say that M is rigid if there is an absolutely finitely
generated subfield K0 ⊂ K over which M has a model M0, and an embedding ι :
K0 → C such that ι(M0)an is a rigid local system; this is evidently independent
of the choice of model, and, by the lemma, of ι. We remark that a model over
an absolutely finitely generated subfield always exists.

Now in fact one could give a purely algebraic definition of rigidity, analogous
to the definition for local systems, and with this definition one could prove that
χp(M) = 2 implies that M is rigid. The converse, however, would not be avail-
able without the above comparison lemma, since it requires a transcendental
argument.

As before, V is a complete discrete valuation ring of mixed characteristic p,
with fraction field K and residue field k. We now take P1 to be a V-scheme,
and U is a Zariski-open subscheme that is the complement of a divisor S that
is flat over V. The U , S that appeared in the last section are now Û (the p-
adic completion) and Sk. As before, Uan is the affinoid space associated to Û .
Finally we denote by UK , SK the fibers of U and S over K. Note that SK can
be identified with a finite subset of the tube ]Sk[, and in fact every point of SK
is contained in exactly one disk ]s[ with s ∈ Sk.

Suppose now that (M,∇) (as before, usually referred to as M) is a coherent
OU -module with (integrable) connection. We denote by MK the corresponding
module with connection on UK . If the formal horizontal sections of MK have
radius of convergence equal to 1 at every point of UK , then MK defines an
overconvergent isocrystal on Û which we denote by M̂ . We are interested in
comparing various properties of MK and M̂ , subject to a number of assump-
tions. The first is purely geometrical:

C1 For all s ∈ Sk, the disk ]s[ contains exactly one point of SK .

In other words, each disk contains at most one singular point of MK . The
remaining conditions refer specifically to MK ; recall that a ∈ Zp is p-adic Liou-
ville if for every positive real r < 1, |a− n| < r|n| has infinitely many solutions
n ∈ Z.

C2 MK defines an overconvergent isocrystal on Û .

C3 MK is regular singular, and the exponents of End(MK) belong to Zp and
are not p-adic Liouville numbers.

In the next theorem and further on we will need a consequence of Christol’s
transfer theorem [3, thm. 1], which can be stated as follows. First, if A is any

6



n×n matrix A with entries in K, we denote by MA the free R-module Rn with
connection given by

∇(u) = du+Au⊗ dx

x
(2.1)

where x is the parameter of R.

2 Lemma Suppose (M,∇) satisfies C2-C3. If s ∈ Sk, M(s) is isomorphic as
an isocrystal on R to MA (we identify R(s) = R) for some n×n matrix A with
entries in V.

In fact Christol’s theorem is a purely local statement and we refer the reader
to [5, thm. 3.6] for an explanation of how the lemma follows from [3, thm. 1].

2 Theorem Suppose M satisfies conditions C1-C3. If MK is irreducible as a
module with connection, M̂ is irreducible as an overconvergent isocrystal. If in
addition MK is rigid, M̂ is p-adically rigid.

Proof. The first part follows from theorem 2.5 of [5], which asserts that the
differential galois group of MK is isomorphic to the differential galois group (in
the category of overconvergent isocrystals) of M̂ . Thus if MK corresponds to
an irreducible representation of its differential galois group, so does M̂ .

If MK is rigid, then χ(UK , j∗End(MK)) = 2, where as before j : UK → P1
K

is the inclusion (and MK is now regarded as a local system on UK). By theorem
1 it suffices to show that χp(End(M̂)) = 2.

By C3, End(M̂) satisfies condition NL at every point of Sk, and furthermore
Irrs(End(M̂)) = 0 for all s ∈ Sk. Thus

χc(End(M̂)) = dχc(U) = χc(End(MK))

where d is the rank of End(MK). One can also deduce this equality from the
comparison theorem of Baldassarri-Chiarellotto [1].

To show that χp(End(M̂)) = χp(End(MK)) = 2, it thus suffices to show

that (j∗MK)s and M̂(s) have the same dimension for all s ∈ Sk. Suppose t is
a local parameter of P1

V such that t = 0 defines a point of SK in P1
K , and its

reduction in P1
k. Then (j∗MK)s and M̂(s) are the spaces horizontal sections of

the connection in respectively in the ring of formal Laurent series K((t)), and in
the ring of elements of R(s) convergent for 0 < |t| < 1. Since the exponents of
End(MK) are not p-adic Liouville, Christol’s transfer theorem (see [3, thm. 1],
or [5, thm. 3.6] for a version closer to the notation used here) implies that M̂(s)
is isomorphic, as R(s)-module with connection, to a free R(s)-module with
connection given by the matrix of 1-forms A ⊗K dt/t, where A is a constant
matrix. The verification that these spaces have the same dimension is then
straightforward (see [5, Lemma 3.4] for the case of M̂).
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3 Frobenius Structure

We now apply theorem 2 to the issue of Frobenius structures. We must also
assume:

C4 The exponents of MK are rational.

We denote by N the least common multiple of the denominators of the
exponents of MK at all points of Sk. It is known that if M satisfies C1-C3 and
has a Frobenius structure, then C4 holds as well.

If q = pf is a power of p, we denote by ϕ : Û → Û a lifting of the qth-power
Frobenius of Uk. If t is a global parameter on P1

V , we could of course take
ϕ(t) = tq. The theorem in this section allows more general choices, but there is
still a restriction. We denote by σ : V → V the restriction of ϕ.

3 Theorem Suppose M satisfies conditions C1-C4. If MK is irreducible and
rigid, then M̂ has a qth-power Frobenius structure for any q = pf such that
q ≡ 1 (mod N).

As remarked above, the Frobenius structure is unique up to scalar multiples.
We give two proofs, an elementary one that needs restrictions on V and a second,
less elementary one with no restrictions.

First proof. Let π be a uniformizer of V and let e be its absolute ramification
index. For this proof we assume that e < p− 1 (note that this excludes p = 2).

By theorem 2 we know that M̂ is irreducible and rigid. As we wish to show
that M and ϕ∗M are isomorphic, it suffices to check that M(s) ' ϕ∗M(s)
at every point s ∈ Sk. It therefore suffices to check that ϕ∗MA ' MA for
any such A with rational, p-adically integral eigenvalues. Let x be a local
parameter at s. We show first that (1) MA ' MqA for q as above, and then
that (2) ϕ∗MA ' MqA. Before going on we recall that in general, if ∇ and ∇′
are connections on Rn given by n × n matrices of 1-forms B and B′, then an
isomorphism (Rn,∇) ' (Rn,∇) is a matrix C ∈ GLn(R) such that

dC · C−1 = CBC−1 −B′. (3.1)

In particular if B, B′ are conjugate by a constant matrix, that matrix also yields
an isomorphism (Rn,∇) ' (Rn,∇).

For (1) we can assume A is in Jordan normal form, since the eigenvalues are
rational. We reduce immediately to the case when A is a single Jordan block
with eigenvalue λ; then qA is similar to a block with eigenvalue qλ, say A′,
and it suffices to show that MA ' MA′ . Since q ≡ 1 (mod N) we can write
qλ = λ+ k with k ∈ Z, and the map Rn → Rn given by u 7→ xku is the desired
isomorphism.

For (2) we write

ϕ∗
(
A⊗ dx

x

)
= A⊗ dϕ(x)

ϕ(x)
= qA⊗ dx

x
+A⊗ dh(x)

h(x)
(3.2)
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with h(x) = x−qϕ(x). We need a C satisfying 3.1, where B is the right hand side
of 3.2 and B′ = qA ⊗ dx/x. We will find one that commutes with B, in which
case 3.1 reduces to dC ·C−1 = A⊗dh/h. If we denote by R0 the integral Robba
ring, i.e. the subring of R with coefficients in V, then h(x) ≡ 1 (mod π)R0. We
may then define log h(x) by the usual power series, and log h(x) ≡ 1 mod πR0

as well. Since e < p − 1 is odd, the exponential C(x) = exp(A ⊗ log h(x))
converges to an element of GLn(R0). Since C(x) commutes with A, the change
of basis by C(x) is the desired isomorphism ϕ∗MA 'MqA.

Second proof. Let t be a global parameter on P1
V . If s ∈ Sk corresponds to

t = a we set x = t − a, which is a local parameter at s. We denote by ϕx the
lifting of the qth power Frobenius to R(s) defined by ϕx(x) = xq. From (1) of
the first proof, it suffices to show that ϕ∗M(s) ' ϕ∗xM(s). In fact there is a
global isomorphism ϕ∗M̂ ' ϕ∗xM̂ on some strict neighborhood of Û , and the
desired follows by restricting to the tube ]s[. The former statement follows from
the hypothesis that M̂ is overconvergent (condition C2) and the fact that the
category of overconvergent isocrystals on ]U [ depends only on U up to canonical
equivalence; specifically it follows from [9, Prop. 7.1.6] with Y = Y ′ = P1

k,
X = X ′ = U , P = P′ = P1

V , u1 = ϕ and u2 = ϕs.
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