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Immigration and the Dynamics of

Peripheral Populations

ROBERT D. HOLT!

ABSTRACT. The influence of immigration upon the
abundance and dynamics of peripheral populations
should reflect the degree of genetic differentiation
between residents and immigrants. The interplay of
immigration, local dynamics, and natural selection
in models of population growth is examined. Given
that no genetic variation exists upon which local
selection may act, and that a population is numeri-
cally stable, immigration should increase popula-
tion size. In populations with discrete-time dynam-
ics, immigration may either destroy or create local
stability. If a population is unstable, an increase in
the rate of immigration may reduce its average
density. The introduction of haploid genetic varia-
tion dramatically changes the character of the rela-
tion between immigration rate and density. If fit-
nesses are density-dependent, in a stable, poly-
morphic population total density is independent of
the rate of immigration. Decreasing the fitness of
immigrants relative to residents may enhance the
stabilizing influence of immigration. It is briefly
argued that frequency-dependent fitnesses or di-
ploid genetic variation with density-dependent fit-
nesses can produce an inverse relation between the
rate of immigration and population size. These
theoretical results suggest that the consequences of
dispersal for population dynamics may be strongly
influenced by the degree of local genetic adaptation
that exists within a species.

INTRODUCTION

Patterns of dispersal are central to both
island and continental biogeography, for
the range ultimately occupied by a newly
formed species depends upon that spe-
cies’ success as a colonizer (Williams,
1969). The importance of dispersal in
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other phenomena of ecology and evolu-

tion is not as well understood and has
been the subject of considerable debate.
Over the past two decades, evolutionists
and ecologists have moved in curiously
opposite directions in their views on the
significance of dispersal in natural pop-
ulations. In 1963, Ernst Mayr in Animal
Species and Evolution strongly argued
that “gene flow is the main factor respon-
sible for genetic cohesion among the
populations of a species . . . [and] one of
the principal reasons for the slow rate of
evolution of common widespread spe-
cies.” This view of gene flow as a signifi-
cant homogenizing force was accepted
evolutionary doctrine for many years but
has recently come under increasing
attack. The empirical and theoretical
studies of Antonovics (1968), Endler
(1977), Levin and Kerster (1974) and
Slatkin (1978) (to note just a few promi-
nent landmarks) have demonstrated that
gene flow does not as a general rule ef-
fectively counter spatially varying selec-
tion. Many evolutionary biologists are
now persuaded that even though gene
flow can provide an important source of
variation upon which selection might act,
in most natural populations rates of gene
flow are usually not great enough to
prevent the evolution of local adaptation.

Until the early 1970’s theoretical
ecology consisted largely of glosses on
the elegant mathematical edifice erected
by Vito Volterra and Alfred Lotka fifty
years earlier. This body of theory, de-
signed to analyze the dynamics of spa-
tially homogeneous populations, neglec-
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ted the possible significance of move-
ment patterns in population processes.
But in recent years the role of dispersal in
local dynamics and interspecific interac-
tions has become the focus of much
research activity by theoretical ecologists
(e.g., Levin, 1978; Okubo, 1980). Empiri-
cal evidence is steadily mounting that
movement patterns affect both the mean
density of populations and the pattern of
fluctuations around that mean (Gaines
and McClenaghan, 1980; Taylor and
Taylor, 1977; Tamarin, 1977). We are left
in the slightly awkward position of ap-
pearing to believe that dispersal is impor-
tant in local ecological dynamics, but not
in local evolutionary dynamics!

There is one circumstance for which all
seem to agree that dispersal can be an
important conservative evolutionary
force. Peripheral populations in an
ecotone often exist in low densities ad-
jacent to populations at much higher
densities. In such peripheral popula-
tions, natural selection favoring locally
adapted alleles can be readily swamped
by rates of immigration which are low in
absolute numbers of individuals per unit
time, but high in proportion to the peri-
pheral population’s low abundance
(Antonovics, 1976). Mayr (1963) sug-
gested that such regular disruption of
local adaptations by immigration should
be expected wherever a border popula-
tion exists at low densities, and he argued
that this process could produce evolu-
tionary stasis at a species’ border.

It is premature to judge the empirical
adequacy of Mayr’s model, as too little is
known about the causes and dynamics of
species’ borders. However, the scenario
is consistent with analytic studies of the
countervailing influence exerted by gene
flow upon local selection in low-density
populations (e.g., Nagylaki, 1978).
Hence, it is possible that gene flow
neither accounts for the genetic cohesion
of a species over its entire range, nor as a
rule prevents local adaptation, yet does
confer a kind of evolutionary stability
upon that species’ border.

In this paper I explore an ecological
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question suggested by Mayr’s evolution-
ary hypothesis. What is the relationship
between the rate of immigration into a
population and that population’s size? I
will argue that the answer to this ques-
tion should depend upon the existence
and character of genetic variation in the
species. Given that residents and immi-
grants are genetically identical, it seems
intuitively reasonable to expect that as
the number of immigrants increases, so
should population size. Conversely, if
immigrants and residents differ geneti-
cally, the average immigrant should be
less fit in the local environment than is
the average resident. The more immi-
grants there are, the lower the mean fit-
ness of the population should be. We may
reasonably conjecture that a sufficient
reduction in mean fimess will decrease
the size of the population.

Using verbal arguments alone it is dif-
ficult to gauge the relative magnitude of
these two opposing consequences of im-
migration. I have therefore explored the
effect of immigration upon the dynamics
of peripheral populations in three classes
of population models. In order of increas-
ing complexity, these are continuous-
time and discrete-time ecological
models: 1) without genetics, 2) with
haploid genetic variation, and 3) with di-
ploid genetic variation. This paper dis-
cusses the first two classes of models. My
studies of the third class of models—by
far the most complicated—will be pres-
ented elsewhere, along with certain tech-
nical details of the models described
below.

PERIPHERAL POPULATION MODELS:
GENETICALLY HOMOGENEOUS
POPULATIONS

The two general growth models to be
discussed are

dN - FN) + 1

3 (1)

and N(t + 1) = G(N(t)) + I, or, equival-
ently,
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AN = G' (N(t) + I 2)

where N is population density, F(N)
and G(N) are growth functions, G’ (N) =
G(N) — N, and I denotes immigration.
Throughout this paper the rate of immi-
gration is assumed to be temporally in-
variant, and the growth functions F and G
are assumed to be continuous. A contin-
uous-time differential equation such as
(1) is strictly appropriate as a growth
model only for populations with com-
pletely overlapping generations, neglig-
ible time lags and no variation in
survivorship or fecundity with age. The
quantity I is an instantaneous rate of im-
migration. The discrete-time difference
equation (2) best describes populations
- in which age-classes or growth stages are
temporally segregated, so that only one
class is present at any time. If dispersal
occurs during a single stage in the life
history of the organism, and the popula-
tion is censused immediately following
each pulse of dispersal and immigration,
equation (2) is an appropriate model for
studying the influence of immigration
upon population dynamics. Both models
assume that there are no qualitative dif-
ferences, including genetic differences,
between residents and immigrants.

The three standard steps in the analy-
sis of growth models such as (1) and
(2) are as follows: 1) solve for point equil-
ibria, N*; 2) determine the local stability
character of each equilibrium; 3) for
model (2), attempt to understand the
often complex dynamical behavior that
may exist when populations do not have a
stable point equilibrium. For any bio-
logically reasonable model, in the ab-
sence of immigration there will be an
equilibrium N* of maximal size—the
carrying capacity, K—above which the
population has a negative growth rate.
The number of equilibria found at densi-
ties below K is determined by the speci-
fic details of particular models.
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IMMIGRATION AND POPULATION
EQUILIBRIA

In model (1), equilibria are found by
solving F(N*) + I = 0. The local stability
of each equilibrium is determined by the
slope of the growth curve,

)\Ed

=

dN, _ dF
dN

dt Eﬁ.

where the derivative is evaluated at N =
N*. If A < 0, the equilibrium is locally
stable, and if A > 0 it is unstable. A popu-
lation nudged away from an unstable
equilibrium will converge asymptotically
to a stable equilibrium. How does im-
migration shift the position of each equi-
librium? By applying the chain rule of
differentiation to (1) we have

dN* _ _dF -1 _ _,~1 dF
dl N A7 O

Hence, the slope \ of the growth curve at
an equilibrium determines both the sta-
bility of the equilibrium population and
the way in which immigration shifts its
density. Immigration increases the dens-
ity of populations at locally stable equi-
libria and decreases the densities at
which unstable equilibria occur. The
quantity |\| measures the strength of
density-dependence in the population;
increasing |A| reduces the sensitivity of
population size to changes in immigra-
tion rate. Regardless of the detailed form
of the growth model, however, if a peri-
pheral population is at its carrying capac-
ity, A < 0 and immigration will always
increase that population’s size.

A similar relation between the rate of
immigration and equilibrial density
holds in the discrete-time growth model.
We find the equilibria by solving G’ (N*)
+ I = 0. By linearizing around N* in the
usual way it can be shown that the local
stability properties of each equilibrium
are set by the sign and magnitude of
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where the derivative is evaluated at N*.
In general, three classes of equilibria are
possible: 1) A’ > 0. A population devia-
ting by a small amount from N* will
monotonically diverge away from N*. 2)
-2 < A < 0. The equilibrium is locally
stable. 3) A’ < —=2. The negative density-
dependence at the equilibrium is so
severe that the population repeatedly
overshoots the equilibrium then crashes
to low densities. The population ulti-
mately settles into sustained oscillations
around the locally unstable equilibrium;
the character of these fluctuations de-
pends upon the specific details of the
full, nonlinear model. (May, 1976).

Applying the chain rule of differentia-
tion again, we have

dN* _ _dG'\=1 _ -1
dI ) =)

where g—(-}- is evaluated at N*. Hence, if

A’ > 0, immigration reduces the density
at which equilibrium occurs, and if A’
< 0, population size increases with immi-
gration.

A simple graphical illustration of this
conclusion is shown in Figure 1. The
solid line marks a growth curve G(N) of
an isolated peripheral population. There
are two stable nontrivial equilibria
(points 1 and 3 in the figure) and one
unstable equilibrium (point 2). In a com-
parable but less isolated population with
I immigrants entering per generation, the
growth curve is G(N) + I. Adding a con-
stant rate of immigration I to the growth
equation is geometrically equivalent to a
rigid, vertical translation of the growth
curve graph by I units. The dashed line
in the figure portrays the growth curve of
the less isolated population. It can be
seen that the influx of immigrants has
pushed the population well above its
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carrying capacity and has caused the
paired equilibria at lower densities to
disappear entirely. As the rate of immi-
gration is increased, populations are less
likely to be trapped at such low-density
equilibria.

IMMIGRATION AND POPULATION
STABILITY IN DISCRETE-TIME GROWTH
MODELS

Given that a population is locally
stable, we have seen that immigration
should increase population size. But if
negative density-dependence is too se-
vere at high densities, populations may
exist in a permanent state of fluctuation
around an unstable point equilibrium.
This suggests the following two ques-
tions about the impact of immigration
upon a peripheral population. Can immi-
gration destabilize an otherwise stable
population, or, conversely, can immigra-
tion impose stability onto an unstable,
fluctuating population? Given that a

—————

Nt+1 ’/

Figure 1. The effect of immigration upon equilibrium
density in a discrete-time model. Equilibria occur
where G (N), the curved line, crosses the straight, 45°
line. Adding a constant amount of immigration raises
the growth curve uniformly and equilibrium 3 in-
creases, whereas the other equilibria vanish.
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population is varying cyclically or cha-
otically, how does immigration modify
the distribution of densities shown by the
population over time?

As immigration increases, the slope of
the growth curve at an equilibrium
where A\’ < 0 changes according to

" - (d2G) dN*)
ol dNe2 dI "

Given a growth curve that is concave
downward,

d?G .9,
dN2

immigration will push the population
toward levels of increasingly severe den-
sity-dependence and may even destabil-
ize an intrinsically stable peripheral
population. Conversely, immigration
may stabilize a population whose growth
curve is concave upward-——

Sl-z-c-;->0.
dnN2

Therefore the effect of immigration upon
population stability is determined by the
concavity of the growth curve G(N).
Standard discrete-time models provide
ready examples of both effects. One
model for which immigration is destabi-
lizing is the discrete logistic equation

N(t+1) = N@© (1 + r-i—c- N@)+1I (3

where r is the intrinsic growth rate. The
stability properties of this model without
immigration are well-understood (May
and Oster, 1976; Roughgarden, 1979). In
the Appendix, I outline the stability char-
acter of the discrete logistic with immi-
gration. Figure 2 depicts the stability
domains of this model. (The dashed and
dotted lines are explained in the Appen-
dix.) The overall impression from this
figure is that immigration reduces or
eliminates stability in the peripheral
population.
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By contrast, in other models immigra-
tion may stabilize an intrinsically un-
stable population. Figure 3 shows the re-
sults of a local stability analysis of the
following model:

N(t+1) = N(t) explr(l = N@®)/K)] + 1 (4)

With no immigration and r < 3, the dy-
namics of this model resemble those of
(3) May (1976). As immigration increases,
the domain of unstable behavior dimin-
ishes. The contrast between Figures 2
and 3 is striking. In a more detailed
analysis it can be shown that the oppos-
ing consequences of immigration for the
two models are due to the downward
concavity of (3) and the upward concavity
of (4) at high values of r and N.

Numerical studies of a number of dis-
crete-time models were carried out in
order to ascertain how immigration modi-
fies the temporal distribution of densities
in cyclic or chaotic populations. In such
populations, a reasonable measure of
abundance is the arithmetic time-average
of densities ‘

1 T
<N> =2 T N(t).
Ti=1

24

Ki—

Figure 2. Stability regions for the discrete logistic (3).
s = monotonic return to equilibrium. o8 = oscillatory
return to equilibrium. u = locally unstable (stable
cycles or chaos). The solid line is the largest value of 1
allowing non-negative numbers for G(N). The dashed
line is the outer bound of the unstable region for the
modified logistic model discussed in the Appendix.
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Figure 3. Stability regions for the exponential logistic
(equation & ). 8 = monotonic stability. o = gscillatary
stability. u = unstable. The central line in the o region
separates parameter choices where an increase in [
decreases the rate of return to an equitibrium (to the
feft) from those parameters where I effects a faster
return (to the right). :

In cyclic populations the appropriate
value for T is one cycle length, whereas
in a chaotic population a large number of
generations per run starting from a num-
ber of initial conditions may be required
to fully characterize <N>. .

What is the relationship between aver-
age density and the rate of immigration?"
An example of a pattern that emerged
repeatedly in the simulations is depicted

- in Figure 4. The model used for this
figure has been extensively exploited by
insect ecologists (e.g., Hassell, 1975).
With an added immigration term the
growth model is

N(t + 1) = N(®ef (1 + AN®)~b + L(5)

The four curves in the figure correspond
to four values for the intrinsic growth
rate, r. At I=0 and high r, populations
obeying equation (3) fluctuate, some-
times greatly, around an unstable point
equilibrium. In these unstable popula-
tions, <N> does not increase mono-
tonically with 1. The influx of a few immi-
grants per generation may dramatically
increase <N>>, and a yet greater rate of
immigration may actually decrease <N>.

This nonmonotonic relation between
<N> and I has a simple explanation. In
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discrete-time growth models such as (5),
populations with high intrinsic growth
rates tend to exhibit chaotic behavior
(May, 1976). Time-series of populations
in chaos typically show overshoots of K
followed by precipitous declines in
abundance. Following each population
crash, several generations may elapse
before population numbers are suffi-
ciently large to produce a high total
growth rate, culminating in another
explosive overshoot and crash. Even a
slow trickle of immigrants can greatly
reduce the number of generations
between successive overshoots. In model
(5), population growth is essentially
geometric at densities well below K. If
N(0) is the number in the population
immediately following a crash, the
population size t generations later is
approximately

™~
34

Y S AN

Figure 4. Time-averaged densities for model 5. The
numbers labelling the curves are the intrinsic growth
rates. The other parameters ared = 1, and b = r. For
populations exhibiting chaotic behavior, the lines
represent the average over many runs of 5,000 gener-
ations length, starting over a range of initial densities.
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N().= N@eTt + I_F - ot

gven that numbers remain low enough
r negative density-dependence to be
negligible. From this expression it is
clear that the time required to reach a
g}'ven N (e.g., an N such that G(N) > K)

om N(0) may be substantially shortened
by regular immigration. This reduction in
the amount of time needed for recovery
from a population crash increases the
number of generations at high densities,
and therefore increases <N>. At higher
rates of immigration, density-depend-
ence among the immigrants themselves
tends to diminish the magnitude of the
overshoot. In model (5), this diminution
leads to a decrease in <N>.

We can summarize the above results as’

follows: 1) Given no genetic differentia-
tion between immigrants and residents,
immigration should increase the density
of stable peripheral populations. 2) The
concavity of the growth curve determines
the relation between immigration rate
and stability. And finally, 3) in fluctuat-
ing peripheral populations, an increase
in the rate of immigration may decrease
the average size of the population.

PEHIPHERALb POPULATION MODELS:
THE EFFECT OF HAPLOID GENETIC
VARIATION

The conjecture to be examined is that
genetic differentiation between immi-
grants and residents alters the functional
relationship between the rate of immigra-
tion and population size. In the re-
mainder of this paper I explore the
properties of models which incorporate a
ﬁart:icularly simple kind of genetics—

aploid variation with two alternative
alleles at a single locus. One allele—type
l—is fixed within the species’ main
range, and so all immigrants are type 1,
whereas the other allele~type 2—is
selectively favored in the peripheral
population. To explore how the balance
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between selection and immigration af-
fects both the gene frequency and popu-
lation size, we modify models (1) and (2)
as follows.

Counting gene numbers, the appro-
priate generalization of model (1) is

dN
5= = N2 02 (N), Np)

(6)

where N, is the density of type i (i=1,2),0,
is the per capita instantaneous growth
rate or the absolute fitness of type i, and |
is the immigration rate of type 1. The total
population size is defined as N = N, +
N,, the gene frequency of allele 1 is p =
N,/N, and the gene frequency of allele 2
is q = 1 - p. The mean fitness of
the population is § = p, + qf,. An alter-
native representation ofl system (6) is ob-
tained by differentiating N and p with
respect to t

dN

a—i- N¢+ 1

4 (6')
p

P o pa®, -9, + qNI-—-

In like manner, we may embody haploid
genetic variation within the framework of
the discrete-time model (2) as follows:

Nyt + 1) = N,(tg,(N, Np) + I @
Ny(t + 1) = N,y(t)g,(N;, Ny)

or, equivalently,

AN =N@E-1) +1
(7

I
- + Qe
ap = pa(g, gz)I e
= o L
ETN
where g, is the per-capita growth rate or
absolute fitness of type i and g = pg, +
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qg, is the mean fitness of the population.
The analysis of these two models pro-
ceeds through the usual steps of first
solving for equilibria (N*, p*), determin-
ing the local stability of each equilib-
rium, and then examining the behavior of
the model away from equilibria. Models
(6)' and (7)’ explicitly display the genetic
character implicit in models (6) and (7).

DENSITY-DEPENDENT SELECTION

It is difficult to make much headway
without specifying in more detail the fit-
ness functions @ and g. A selective
regime that has received a great deal of
attention from population biologists
is density-dependent selection, for which
@ and g may be written as functions of
total density N, @(N) and g(N) (Rough-
garden 1971, 1976; Charlesworth 1971,
1980; Asmussen, 1979). A significant
finding of these theoretical studies is that
if fitnesses are strictly density-depend-
ent, and the population is stable, natural
selection adjusts gene frequencies in
such a way that population density is
locally maximized at the joint demo-
graphic and genetic equilibrium.

First consider the continuous-time
model (6). To simplify the analysis, I as-
sume that each allele has a carrying ca-
pacity K such that @(K) = 0, and that
there is negative density—dependence at
all densities:

do,
Eﬁi < 0.

In the absence of immigration, it is
straightforward to show that the allele
with higher K excludes the alternate
allele. Since type 2 is assumed to be lo-
cally favored, K, > K, and the population
equilibrates at K,.

As the rate of immigration increases, so
does the frequency of type 1. However,
given that the population is polymorphic
for both alleles, population size is inde-
pendent of the rate of immigration. For
the population to be at its equilibrium
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(N*, p*) both growth rates in (6)
must equal 0, so N%Q,(N*) = 0. As the
population is assumed to be poly-
morphic, N¥ > 0. Thus §,(N*) = 0. But by
assumption, &, = 0 only when N* = K.
Therefore, the total population size re-
mains at K, as the rate of immigration
increases. Immigration does not change
the total population size, but instead
shifts the relative proportions of the two
types. From (6') we find that

* — -1
S S

(since K, > K, 9,(K,) <0). Hence, a poly-
morphic equilibrium exists only if I <
|K,8(K,)|. In the Appendix it is shown
that the equilibrium

(N*, p*) = (K, KTQ(I@_’

is both locally and globally stable.

Thus we have completely char-
acterized the interplay of immigration
and selection in a general, haploid model
of density-dependent selection. As long
as I < |K,0(K,)|, immigration merely
shifts the genetic composition of the
peripheral population without changing
its total density at all. The opposing
ecological and genetic effects of immi-
gration discussed in the introduction
exactly cancel each other out.

By a parallel argument it can be shown
that the comparative statistics of the dis-
crete-generation model (7) are identical
to those of the continuous-generation
model. Given fitnesses that are density-
dependent, equilibrial densities are in-
dependent of the rate of immigration in
polymorphic populations. As with the
purely ecological models discussed
earlier, the principal difference between
models (6) and (7) is that the latter may
exhibit sustained oscillatory behavior.
The point equilibrium of (7) is locally
stable only if the magnitude of the real
part of the dominant eigenvalue A is less
than unity. Let
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9
a; = =5 (N;g;).
VAN, 1
Then the two eigenvalues are
A= [au +agg = ((au - 322)2 + 4312821))%]/2.

As both a,, and a,, are negative, the dis-

criminant is positive and both eigen-

values are real numbers. We wish to

understand how immigration alters the

stability properties of a peripheral pop-

ulation, and how immigration perturbs

average abundance in unstable popula-

tions. Substituting explicit fitness func-

" tions such as (3) or (4) leads to cumber-

some masses of algebra from which it is

difficult to extract necessary and suffi-

cient conditions for local stability.

However, it is plausible that if immigra-

tion reduces the frequency of a locally

favored allele, the peripheral population

could be made more stable. In discrete-

time population models, the intrinsic

growth rate r typically “tune” the.
dynamic behavior of the model—the

magnitude and period of oscillations

usually increase with r. As immigrants

are assumed to be less fit than residents,

the values of r, or K, or both, for the

immigrant should be lower. Diluting a'
population at high r with an admixture of
immigrants with lower r should reduce
the average r of the population as a

whole, and therefore tend to stabilize an

unstable peripheral population.

In like manner, a lower tolerance of
crowding in immigrants (K, < K,) may
enhance the stabilizing effect of immi-
gration. As a particular example, consider
a population with discrete generations in
which the fitnesses of each type are
described by g(N) = exp(r(1 - N/K))].
The two alleles share the same r but dif-
fer in K. If the rate of immigration is too
great, the polymorphism will not persist.
As depicted in Figure 5, the maximum I
consonant with polymorphism varies
with both r and K,. The local stability
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0 i 2
r

3 4
Figure 5. Maximum rate of immigration I permitting
polymorphism in model 7 with equation 4 as a fit-
ness function. K, = 10.r, = r,- K, is denoted by the
number marking each curve.

Figure 6. Stability regions of model 7 with fitnesses
given by 4 . s = monotonically stabie. os = damped
oscillations. u = unstable. The solid lines mark the
edges of stability regions for K, = 1, and the dashed
lines for K, = 5. The dotted lines are from Figure 3 and
depict the stability character of a population in which
the immigrants are type 2.

properties of this model are displayed in
Figure 6. We have already observed that
immigration is weakly stabilizing in this
model when immigrants are of the same
enetic type as the residents; the dotted
ines, lifted from Figure 4, demarcate
transitions from monotonic to oscillatory

‘stability (left line) and from locally stable

to unstable point equilibria (right line).
The solid lines demarcate the edges of
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the corresponding stability regions for
immigrants with K, = 1, and in like man-
ner the dashed lines for K, = 5. Decreas-
ing the carrying capacity of the immi-
grants heightens the stabilizing influence
of immigration.

In discrete-time haploid models such
as (6), as in the purely ecological model
(2) discussed above, instability may
complicate the relation between immi-
gration and population size. In numerical
studies I have found that polymorphisms
are difficult to maintain if the demo-
graphic attributes of each type lead to
severe oscillations in monotypic popula-
tions. In a stable population, a low im-
migration rate produces a low frequency
of the immigrant type. The same rate of
immigration can lead to a much higher
gene frequency and even fixation in an
unstable population, for the simple
reason that following a population crash a
few immigrants may comprise a sizeable
fraction of the total population. During
these crashes the locally adapted type
can go extinct because of genetic drift,
while immigration steadily replenishes
the less fit type. Gene flow should
hamper local adaptation more readily in
unstable than in stable peripheral popu-
lations.

If the polymorphism does persist, over
the course of population fluctuations
high densities are correlated with low
frequencies of the immigrant type. In the
particular model used for Figures 5 and
6, the time-average of density, <N>,
seems to be independent of I, but in
other haploid models <N> may decrease
with increasing L.

From this analysis of density-
dependent selection in haploid popula-
tions, we may conclude that 1) the rate of
immigration does not affect the total
density of stable, polymorphic popula-
tions; 2) decreasing the fitness of immi-
grants relative to residents strengthens
the stabilizing effect of immigration upon
population dynamics; and 3) the main-
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tenance of local adaptation in the face of
gene flow is unlikely in severely fluctu-
ating populations.

OTHER GENETIC MODELS

Two obvious generalizations of this
model are to employ more general fitness
functions in (5) and (6) and to develop
comparable diploid models. Space limi-
tations preclude a full treatment of these
extensions here, so I will merely outline
a few salient changes in the results
produced by these modifications in the
models. If the absolute fitness functions
in models (5) or (6) are functions of the
separate densities of the two types rather
than of their summed density, the selec-
tive regime is a mixture of density-
dependent and frequency-dependent
selection. Alternative stable states may
exist (Fenchel, 1975). For the con-
tinuous-time model (6), if the population
is at a stable equilibrium, it can be shown
that

_ 90,/aN,

dn+ _ ANy
( 305/3Ng

a o d )

where the partial derivatives are eval-
uated at (N, *, N, *). Since immigration in-
creases the density of N, the overall
effect of immigration upon the total
population hinges upon the relative
magnitudes of the derivatives 4(},/oN, and
3Q,/oN,. If absolute fitnesses are deter-
mined solely by the total density of the
population,

90,
aN,

30,

N/

Q

and N* is independent of I. Immigrants
that exert a disproportionate effect on the
fitness of residents, compared with the
effect of residents upon themselves,
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30 _ 90
— B
aN, ~ 3N,

decrease the total size of the population.

Even without immigration the diploid
equivalents of (6)’ and (7)’ can manifest a
rich panoply of behaviors. Asmussen
(1979) has analyzed a discrete-generation
model of density-dependent selection in
which (4) served as a fitness function.
She demonstrated the existence of regu-
lar and chaotic cycling in both population
size and gene frequency. In contrast to
classical selection models, heterozygote
superiority in crowding tolerance is not
required for the maintenance of genetic
variation in these cyclic populations. All
these features are retained in the models
with immigration. An additional feature
of the diploid models is that the relation-
ship between immigration and popula-
tion size depends upon the dominance
relations of alternative alleles in the
peripheral population. For instance,
consider an allele that is simultaneously
genetically dominant yet locally unfit. An
increase in the rate of immigration-of in-
dividuals bearing that allele has three
distinct effects, two of which were dis-
cussed above. First, there is the ecologi-
cal effect of increasing density by in-
creasing the influx of individuals into the
population; this corresponds to a purely
ecological model such as (1). Second, if
fitnesses are density-dependent, this
increase in density lowers the fitness of
the locally favored genotype, the num-
bers of which will decline until the
overall density of the population is un-
changed; this accounts for the uncou-
pling of immigration rates and equilibrial
densities in the haploid models (6) and
(7). Third, since in a Mendelian popula-
tion the average fitness of the offspring
produced by a genotype is partally
determined by the array of genotypes
available for mating, the more immi-
grants there are, the more the fitness of
the resident’s offspring will be diluted by
cross-matings. The number of residents
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declines even further to compensate for
this mating effect. The final pattern is an
inverse relation between immigration
rate and population density. By contrast,
if the immigrant allele is recessive the
mating effect is greatly diminished, and,
just as in the haploid model, population
size may be essentially independent of
the rate of immigration.

A third theoretical approach, and one
that ultimately might be the most profit-
able, is to extend quantitative genetic
models of phenotypic evolution (Lande, °
1976) in order to examine how immigra-
tion by individuals with nonoptimal
phenotypes in one or more character
states influences population size in den-
sity-regulated populations. Antonovics
(1976) and Slatkin (1978) suggest some
promising lines of development for such
a theory.

DISCUSSION AND CONCLUSIONS

I have argued that two characteristics
of a peripheral population should mold
the functional relation between immigra-
tion rate and population size—its dynam-
ic stability, and the degree of its genetic
adaptation to the local environment. To
begin understanding the dynamics of a
peripheral population we must first iso-
late those factors responsible for its low
population density. It is widely believed
that density-independent factors act
more severely in peripheral than in cen-
tral populations. For instance, Mayr
(1963) asserts that “the border region is a
place in the area of a species where den-
sity-dependent factors are of minor im-
portance.” Alternatively, the peripheral
population may be rare because of an in-
crease in the intensity of density de-
pendence. In populations with delayed
density-dependence, these two explana-
tions for rarity at a species’ border have
fundamentally different implications. If
rarity results from a high rate of density-
independent mortality the intrinsic
growth rate of the population will be low
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and the population will stably persist at
its carrying capacity, at least in temporal-
ly constant environments. By contrast, if r
is high but K is low, the population may
exhibit fluctuations of considerable
magnitude around K, sometimes to the
point of extinction. As the demographic
and genetic consequences of immigra-
tion depend upon the stability character
of the peripheral population, the first
step in gauging the role of immigration
should be to try to understand the causal
basis for population fluctuations at the
species’ border.

Immigration may not change, or may
even decrease, the density of a popula-
tion that has adapted to its local environ-
ment. Scant data exists for testing this
idea, in part because the requisite
evidence is technically difficult to obtain.
As noted above, there recently has been a
de-emphasis of gene flow as a constraint
on the evolution of local adaptation. To
the extent that this view is valid, we
should expect the predicted phenome-
non to be rarely observed. An additional
reason for the rarity of relevant data,
however, is that many ecologists simply
assume that organisms are well adapted
to their environment. Although usually
reasonable, in peripheral or ecologically
marginal populations this assumption
may well be false. I know of two possible
examples of local maladaptation in
peripheral populations resulting from
gene flow. Camin and Ehrlich (1958)
argued that on islands in Lake Erie a
balance between migration and selection
maintained a polymorphism in banding
patterns of water snakes (Natrix sipedon).
A substantial fraction of the island popu-
lations had locally unfit banding patterns.
Stearns and Sage (1980) have suggested
that the life-history traits of one fresh-
water population of the mosquito-fish
(Gambusia affinis) might be best inter-
preted as maladaptation to the fresh-
water environment. Gene flow from a
nearby brackish-water population may
account for the apparent lack of local
adaptation in this population. In neither
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instance is anything known about the ef-
fect of the apparent maladaptation upon
population density. Comparable situa-
tions might well exist in many organisms
with passive dispersal or territoriality
residing in locally heterogeneous en-
vironments. For instance, were the
habitat of a species of Anolis a mosaic of
high and low quality patches, territorial
behavior could lead to a steady flow of
individuals into low density patches.
This influx could reduce the efficacy of
selection for better adaptation to the low-
quality patch type.

A critical and very difficult empirical
problem is to gauge the relative magni-
tudes of spatial scales associated with
dispersal, selection, and nonselective
determinants of density. Slatkin (1973)
has suggested that a useful quantity for
understanding evolution in spatially
structured populations is the ratio be-
tween the average dispersal distance and
a measure of the gradient in selection. If
this ratio is small, a species should close-
ly track spatial variation in selection
(Roughgarden, 1979); since immigrants
into a population are drawn primarily
from nearby populations, and nearby
populations experience similar selective
regimes, immigrants should genetically
resemble residents. In this case the pure-
ly ecological models discussed above are
appropriate. By contrast, if the ratio is
large, many immigrants will be from rela-
tively distant populations with different
selection pressures, and immigrants may
differ greatly from the locally favored
type. Understanding the role of immigra-
tion in population dynamics in this case
requires a blending of ecology with
genetics.

For the rate of immigration to be large
enough, relative to carrying capacity, to
qualitatively perturb the abundance or
dynamics of a peripheral population,
there usually must be a second, more
abundant population in reasonable
proximity to the first—a sharp spatial
gradient in densities should exist. This
density gradient need not correspond to a
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comparable selection gradient, since
many factors that affect density do so
indirectly. For instance, a consumer such
as a detritivore may be able to alter the
abundance, R, but not the rate of renewal
of its resource. Individual consumers are
food-limited, and there is no direct inter-
ference among them, we can write the
per capita consumer growth rate as some
increasing function of resource abun-
dance, Y(R). The consumer population
should grow until its collective demand
has reduced resource availability to some
level, C, at which each consumer just
replaces itself with a single descendent.
If the parameters determining the form of
Y and the quantity C are spatially invari-
ant, selection will act uniformly on these
parameters throughout the consumer’s
range. However, the number of con-
sumers present at equilibrium is deter-
mined indirectly by the renewal rate of
the resource, which might well vary
greatly over space. Hence, a consumer’s
density may be highly variable in space
even though selection is not; dispersal
could then be of more consequence for
the ecology than for the evolution of the
species. In other circumstances, of
course, density gradientS’ may closely
match selection gradients.

The degree to which ecological phe-
nomena are influenced by intraspecific
genetic variation is a problem of great
current interest. I have here argued that
the ecological consequences of dispersal
into a population depend upon whether
or not immigrants differ genetically from
residents. In the study of species’
borders, in particular, it should be real-
ized that ecological and genetical phe-
nomena may be inextricably entangled.
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APPENDIX

THE DISCRETE LOGISTIC MODEL

Without immigration, the single non-
trivial equilibrium is N* = K, and the
stability-setting eigenvalue is A = 1~r. N
converges asymptotically to K if r < 2.
Stable limit cycles occur when 2 < r <
2.828, whereas for 2.828 < r = 3 the
population exists in a chaotic regime in
which the long-term behavior of any par-
ticular population depends upon its ini-
tial conditions; the behavior may be
either periodic or aperiodic (May and
Oster, 1976). Given r > 3, the model can
predict negative densities; to preclude
this biological absurdity we require that r
= 3. In like manner, as I increases we
would like to ensure that population
production G(N) is never negative. For
the discrete logistic, a population
minimum occurs during the generation
immediately following a maximum. The
maximum value of N(t + 1) occurs at the
critical point (N(t) = (K(1 + r)/2 of (3),
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+
so max Nt + 1)=M+I.Ifwe 01. gw—l, an d(-lgg-
that G > find th
require that G(max N) = 0, we find that , .
the ratio I/N is bound by the following 2ré all negative at N = K;, a < 0. This

expression:

Il < Li3 _r

K~ 2 4 4°

This bound on I/K is the dotted line of
Figure 2. We can avoid the annoying pos-
" sibility of negative densities by simply
setting N(t + 1) = I whenever G(N) is a
negative quantity, which occurs when-
ever

N(@t) > K (J—*:r-!).

For this modified discrete logistic, the
dashed line in the Figure is an upper
bound on the parameter values that allow
fluctuating densities.

Let Y = (1 + 41/tK)\2,
K(l1+Y)2, and the
A=1-rY.

Then N*=
eigenvalue is

As N* increases with increasing I, A de-
creases. The maximum r consistent with
local stability is

r = 2((B/K2 + 1)\2 —~ [/K).

THE STABILITY OF THE
CONTINUOUS-TIME HAPLOID MODEL (6)

The two eigenvalues are

92) a2,

A= [ax(a2-40)Ng N

where

a0y Ng dfo

2=t + N1 *+ Nogy

Since the quantities

implies that Re(A) < 0. Moreover, straight-
forward manipulations show that the
separatrix

oo
dN

is positive, so (N*, p*) is a stable node.
The per capita growth rates of type 1 and
2 were assume be negatively density-
dependent at all densities. Applying
Theorem (2) of Hastings (1978) we find
that the equilibrium is globally stable.
The critical assumption required for this
result is that the fitness of both types
‘depends only upon the total density of
the population.

a2 - 491Ny
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