MODELS FOR PERIPHERAL POPULATIONS:
THE ROLE.OF IMMIGRATION

ﬁbbert D. Hoilt

The movement of organisms over space has manifold consequences for both the
ecology (Levin, 1976; McMurtrie, 1978) and genetics (Eﬁdler, 1977; Karlin, 1982) of
populations. In this paper I examine how the rate of immigration influences the
size, stability and genetic composition of a peripheral population. I contrast two
classes of discrete-generation population models. (Comparable continuous-time models
have been discussed elsewhere (Holt, 1983).) In the first, immigrants are
genetically identical to residents, whereas in the second, immigrants differ at a
haploid locus and are less fit in the local environment. For both we can ask how
the rate of immigration affect; equilibrial population density, N*, local stability,
and the pattern of fluctuations around N* in unstable populations. For the
genetic model we must also determine conditions for the persistence of a polymor-
phism. The study of the maintenance of pockets of local adaptation in the face of
gene flow is a classical problem in population genetic theory (lialdane, 1930;
Nagylaki, 1977). Here I place this problem into an ecological context. If selection
coefficients are functions of population density, and immigration can change popula-
tion sizé, I show that we cannot understand the ecological consequences of immigration
without also understanding the genetic consequences.

Peripheral populations may exist at a species' geographical border or in
marginal habitats within a species' range. Such populations arc important in the
study of factors limiting species' distributions (Krebs, 1978), and as crucibles for
speciation (Mayr, 1963). I assume that non-peripheral populations collectively
comprise a "bath" (Levin, 1976) from which immigrants are drawn. If relative to the
bath a peripheral population is small in size, its population dynamics and genetic
composition may be strongly perturbed by immigration, yet it may exert negligible
reciprocal effects on the bath.

The first, purely ecological model is for a peripheral population with non-
~ overlapping generations in a constant environment. If there is no immigration, the
te1 * G(Nt)' I assume that G(0) = 0,
that there exist a unique positive equilibrium N* = G(N*) = K, (the carrying capac-

dynamics are described by the recursion N

ity) and at most a single critical point Nc' 0 < Nc < K, and that dG/dN < 1 for

N > Nc. Geometrically, the growth function G(N) may either rise monotonically
with N or have a "hump". Each generation I immigrants enter the population. If
we census immediately after immigration, the population model is NUI = G(Nt) +1:
F(Nt). Prout (1980) has cautioned that a full understanding of the implications of
discrete-generation models requires a careful specification of the census stage

being used. By censusing after rather than just beforc immigration, we highlight



the similarity between the offeéti‘dfrlliﬁiiiiiéﬁ in discrete-time and continuous-
time models (Holt, 1983). The stability properties of discrete-time growth
models have received considerable attention in the literature of mathematical ecol-
ogy (May and Oster, 1976; Guckenheimer et. al., 1977). The map F(N) is locally
stable with monotonic or oscillatory convergence to N* if |[i] < 1, where

g dF/dN|,. If unstable, the populatiob éxhibits stable limit cycles or *chaotic®
behaviour around N*. How does population 'size and stability vary with I? Since
dN+/dT = (1-46/aN],)"! = (1271 > 0, an ncrease in the rate of immigration
always increases equilibrial density. The effect of fmmigration on population
stability depends upon the shape of G(N). Since dr/di = (dZG/sz)I,(dN7di),
immigration may destabilize populations with growth curves convex at N*, and,
conversely, stabilize populations with concave growth curves. As examples of these
disparate effects, consider two familiar discrete-time versions of logistic growth:
the linear-logistic, NtOl - Nt(10 r(l-Nt/K)) + i, and the exponential-logistic,
Ntol = Nt exp(r(l-Nt/K)) ¢ 1. The dynamics of some natural populations are reason-
ably described by the latter model (Hassell, 1978). At I = 0 the two models have
similar stability properties {May and Oster, 1976). Figure 1 compares their sta-
bility domains as a function of 1. The infeasible ‘region in Figure 1B exists
because G(N) < 0 if N > K(l+r)/r - a biological absurdity. A simple modification
of the linear-logistic is to let Ntol = § wherever G(N) < 0. With this change,
the population persists stably at N* = I when i/K > (1+r)/r. At lower I,
LY N r(lodi/Kr) » and the population is locally unstable if (4-r2)/4r < i/K <
(l+r)/r. The influence of immigration upon population stability is hence model-
dependent. In the modified linear-logistic, immigration may destabilize a peripheral
populatxon. although population. stability re-emerges at very high rates of immigra-
tion. By contrast, in the exponential- -logistic a small influx of immigrants may
suffice to produce point or cyclic stability. Little is known about the shapes of
growth curves and the magnitudes of growth parameters characterizing natural periph-
eral populations. I could exceed X if a peripheral population is at one end of a
steep spatial gradient in density. Whether r is high or low should depend on the
mechanisms responsible for low density. If K 1is low because of high rates of
density-independent mortality, so too should r be low, and the peripheral popula-
tion should be dynamically stable in a stable environment. Conversely, r may be
high even though X is low. For example, in MacArthur's resource-consumer model,
if resources equilibrate rapidly the consumer follows a logistic-like growth model
(Schaffer, 1981). The expression for X is proportional to resource productivity,
and K may be low even,though T, which depends upon the maximal standing crop of
the resource, is high.

Vandermeer (1982) remarks that a highly chaotic population will be rare much

of the time - after a population crash, several generations must pass before numbers
sutffice to overshoot K once again. A constant flow of imnigrgnts reduces the time
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Figure } Stability regions for the exponential-logistic (a) and linear-logistic (b)
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Figure 1 (continued) The lines demarcating zones of monotonic convergence (s),
oscillatory convergence Qo‘ N* (os), and two-point cycles were found using
the methods outlined in May and Oster (1976). The regions marked “chaos"
are those in which numerical simulations produced cycles of perio& > 8
and seemingly aperiodic behavior. The Qegion in (b) marked "infeasible"
contains parameter values which’h;cessarily give rise to nega;ive. N for
the unmodified linear-logistic. The region above the dotted line, 1/K = -
(ler)/r, 1s stablein the modified linesr-logistic. ‘

elapsing between successive overshoots. This effect seems to account for the

creation of cycles out of chaos in the exponentisl-logistic model. It also partial-

ly explains the non-monotonic relation between the time-average of density over 1

generations (<N> j (IN(i))/t) and i found in fluctuating populations and

illustrated in Figure 2. The pehaviour of decreasing <N> with increasing 1

contrasts with the monotonic increase of N* with I expected in populations at a

stable point equilibrium.

The dependence of the size of stable populations upon I does not hold if
immigrants differ genetically from residents. To sharpen the contrast between the
genetic and non-genetic cases, consider a haploid modél where all immigrants con-
tain allele 1, but allele 2 is selectively favored in the peripheral population.
Populations are censused just afer immigration. If 8; is the absolute selective
value of type i, the model is

Np(te1) = Ni()g; o §, Ny(e41) = N, (0)g,. T )

Nigi corresponds to the growth function G. The carrying capacities are defined
by gi(xi) = 1. An equivalent representation is

Pa(g,-g,)+ai/N . .
o e, N =N(g-1) ¢+ 1
g+1/N

where N = N, ¢ Ny P = NI/N' q=1-p,and g = Pg) + qg, (the mean fitness).
Comins (1977) has discussed a related model for how immigration hampers the evolu-
tion of pesticide resistance. I now make the important simplifying assumption that
the g; are density-dependent but not frequency-dependent, so g * gi(N)' In a
polymorphic population, at the point equilibrium N; . Nigz(N'). Hence (N*,p*) =
(KZ.I/Kz(l-gI(Kz)). Two necessary conditions for the existence of a stable point
polymorphism are 1) Kl < ‘2' and 2) I <« Kz(l-gltkz)). ‘In a stable, polymorphic
population a change in f does not perturb total population size at all. Instead,
a change in immigration rate is absorbed by a shift {n gene frequency. This simple
result readily generalizes to multiple alleles if the resident allele has the
highest K and is not part of the immigrant pool.

As with the purely ecological model, the‘relation between ! and local



s 10

/K,
The time-average of density for the exponential-logistic. The solid lines
show how <N> depends upon L3 (the number beside each line) and 1 in
populations monomorphic for type 1. From Figure 1, if .1 < I/K <1 most
values of r > 2 lead to stable two-point cycles, for which <N> ~ i
G(1)/2; the approximation is excellent for r = 3 if I/K > .3, and for
r=4and Sif I/ > .05. At low i/k, and ry =4 or s <N)> exhibits
a complex pattem of multiple peaks as I/K increases; this is marked by

"blip" in the curve for r = 4 near the ordlnate. Polymorphism requires‘
> <N >. For example, if K, « 2K, the position of the broken line

relative to <"l> determines the persistence of allele 2; at r = 4 or §
polymorphism may be less likely at intermediate levels of 1 than at
either low or high levels.
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stability is more complex. In one limiting case it can be shown that an increase in
I is necessarily stabilizing. If immigrants are much less fit than residents

(K; << K;), near N* = K), G, x 0 and dG,/dN x 0. The stability-setting eigen-
value is A = ] » N'dgzldN|,. As i ingreases, N3 decreases. For both the
modified linear- and exponential-logistic models, A = 1 - N* rz/KZ. ance

Ny X 2 - §, the peripheral population is-stable if r, < 2(1- I/KZ) The

maximum r, consistent with local stability increases with I. Numerical studies
suggest that as a general rule decreasing the fitness of immigrants relative to
residents tends to enhance the stabilizing influence of immigration.

It is difficult to characterize fully conditions for the persistence of
polymorphisms in cyclic or chaotic peripheral populations. In a cyclic population
with a persistent polymorphism, let <t be the period of one cycle in N. Since
allele 2 persists, N,(t)/N,(0) = 1 = iﬁo g,(N()), or <in(g,)>= 0. In the
exponential-logistic, 8, " exp(rz(l-lez)), and <2n(gz)>= r2(1-<N>/K2) = 0, or
<N>= Kz. For this model, average population size in a cyclic, polymorphic
population is independent of i. To persist, allele 2 must be able to increase when
rare. If N2(0] is sufficiently small, the population will be essentially mono-
morphic for allele 1 (N(t) » Nl(t)) and may cycle at a period ', For allele 2
to increase, we require Nz(r') > NZ(O), or <ln(g2)>> 0. With the exponential-
logistic, this is K, > <N>2 <N, > where <N;> depends upon i as shown in
Figure 2. Numerical studies suggest that the heuristic condition for persistence,
K2 > <N15. is valid in populations with long cycles or seemingly aperiodic behavior,
This condition, in conjunction with the figure, leads to two conclusions. First,
for 1/x £ .75, as T increases it becomes progressively more difficult to
maintain a polymorphism. Second, at high r, an increase in 1 may increase the
likelihood of polynorphism, this is impossible in a stable population.

The ecological significance of immigration into a peripheral population thus
depends upon the existence of local genetic differentiation. In turn, the mainten-
ance of pockets of local adaptation reflects local ecological processes. In
particular, overcompensatory, density-dependent growth processes may make it diffi-
cult for local adaptations to persist. For a particular model we have seen that
dynamic ;nstability.through its effect on <N> may magnify the swamping effect of
gene flow. Although this phenomenon does not occur in all discrete-time population
models, it does occur in nany commonly used models. Moreover, a cyclic or chaotic
population repeatedly forces itself through bottlenecks of low density. A rate of
immigration'that'is‘small in absolute numbers may actually be large relative to the
number of f;éidéhto‘then present. Locally adapted alleles may be low by drift
during each bottleneck this stochastic effect compounds the deterministic effect
of instability.. If local adaptation is requisite for speciation in peripheral
isolates, speciatiou may be less likely in dynamically unstable (high 1) than
in stable (low r) peripheral populations. One key to a better understanding



of patterns of speciation may thus be provided by the study of the ecological fac-
tors responsible for the existence of species borders and the shapes of growth
curves in periphera} populations,

Acknowledgements

I thank Robert May for very useful c&imonts. I would also like to thank the
Conference participants for stimulating conversations, and in particular Dan Cohen,
Yoh Iwasa, and Zvia Agur for hedpful suggestions about modelling peripheral popula-
tions. The research was ‘supported by Grant #3593, General Research Fund, University
of Kansas.

REFERENCES

Comins, H.N. (1977): The development of insecticide Tesistance in the presence of
migration, J, Theor. Biol. 64:177-197.

Endler, J.A. (1977): Geographio Variation, Speciation and Clines, Princeton:
Princeton University Press.

Guckenheimer, J., G. Oster, and A, Ipaktchi (1977): The dynamics of density-
dependent population models, J. Math., Biol. 4:101-147.

Haldane, J.B.S. (1930): A mathematical theory of natural and artificial selection,
VI. Isolation, Proec. Cambridge Philos. Soc. 26:220-230.

Hassell, M.P. (1978): The Dynamics of Arthropod Predator-Prey Systems,bPrinceton:
Princeton University Press.

Holt, R.D. (1983): Immigration and the dynamics of peripheral populations, Pp. 680~
694, in A. Rhodin and K. Miyata (eds.) Advances in Herpetology and
Evolutionary Biology, Cambridge, Mass: Harvard University, Museum of
Comparative Zoology Publication Series, 713 PP.

Karlin, S. (1982): Classifications of selection-migration structures and conditions
for a protected polymorphism, Evol. Biol. 14:61-204.

Krebs, C.J. (1978): Ecology: The Experimental Analysis of Distribution and
Abundance, Second Edition, New York: Harper and Row.

Levin, S. (1976): Population dynamic models in heterogeneous environments, Ann.
Rev. Ecol. Syst. 7:287-3107

May, R.M., and G.F. Oster (1976): Bifurcation and dynamic complexity in simple -
ecological models, Amer. Natur., 110:573-599.

Mayr, E. (1963): Animal Spectes and Evolution, Cambridge, Mass.: Harvard Univ.
Press.

McMurtrie, R. (1978): Persistence and stability of single-species and prey-
predator systems in spatially heterogeneous environments, Math. Bioge:i.
39:11-51.

Nagylaki, T. (1977): Selection in One- and Two-Locus Systems, Berlin: Springer-
Verlag.



Prout, T. (1980): Some relationships between density-independent selection and
density-dependent population growth, Bvol. Biol., 13:1-68.

Schaffer, W.M. (1981): Ecological abstrgction: The consequences of reduced
dimensionality in ecological.models, Ecol. Monogr. 51:383-401.

Vandermeer, J. (1982): To be rare is to be chaotic, Eoology 63:1167-1169.

A



