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The influence of density-independent mortality on the coexistence of com-
peting species is discussed. It is shown that equivalent mortality—an
increase in mortality which reduces the intrinsic growth rate of all species
by an equal proportional amount—does not affect the conditions for
coexistence in the n-species Lotka-Volterra model. In this model the per
capita growth rate of each species declines linearly with the population
size of each competitor. In more general models, which incorporate non-
linearities in competitive interactions, it is shown that equivalent mortality
may substantially change the conditions for competitive coexistence. A
graphical model of the conditions for invasion shows that equivalent
mortality can either reduce or increase the likelihood of coexistence for
competing species, depending upon the kind of non-linearity built into the
competition model. Both outcomes are illustrated by the Ayala-Gilpin-
Ehrenfeld competition model, which incorporates a non-linear term for
intraspecific competition.

1. Introduction

The interplay of predation and competition in determining community com-
position and structure has long intrigued ecologists (e.g. Slobodkin, 1961;
Paine, 1966; Cramer & May, 1971; Connell, 1975; Yodzis, 1978). In recent
years, it has become clear that there is no single, simple rule that can predict
the influence of predation upon the coexistence of competitors in all circum-
stances. Previous theoretical work has shown that such predictions require
an understanding of, (among other factors) the degree to which predators
are limited by the availability of their prey (Holt, 1977; Noy-Meir, 1981);
the predator’s preference for, and functional response to, each prey type
(Lubchenco, 1978; Comins & Hassell, 1976); and the dynamics of the
resource base over which competition is occurring (Abrams, 1977; Tilman,
1982). Most theoretical studies of the combined effects of predation and
competition have been based upon the traditional Lotka-Volterra competi-
tion model. This model assumes that the per capita growth rate of each
479
0022-5193/85/200479+ 15 $03.00/0 © 1985 Academic Press Inc. (London) Ltd



480 R.D.HOLT

species declines linearly with the density of both itself and its competitors.
A growing body of evidence and theoretical arguments, however, support
the idea that competitive effects are often non-linear functions of population
density (Schoener, 1974; Smith-Gill & Gill, 1978; Pomerantz, Thomas &
Gilpin 1980; Abrams, 1983). In this paper, I demonstrate that non-linearities
in competitive interactions may substantially alter the way in which the
outcome of competition is affected by the level of mortality.

We will assume that the direct effect of predation upon a set of competing
species can be approximated by an increase in density-independent mor-
tality. We will pay particular attention to “‘equivalent mortality”, which is
defined to be a uniform increase in density-independent mortality on com-
peting species with equal intrinsic growth rates or, more broadly, as mortality
that reduces the intrinsic growth rate of each species by an equal propor-
tional amount (Van Valen, 1974). Several authors have claimed that
equivalent mortality does not affect the conditions for competitive
coexistence (Van Valen, 1974; Harper, 1977, p. 744; May, 1977; Levin,
1981). It is shown below that this claim is true for n species competing in
accord with the Lotka-Volterra model, but it is not true in more general
competition models with non-linear intraspecific or interspecific interac-
tions. We demonstrate this first for a simple, graphical model, and then for
a specific non-linear competition model proposed by Ayala, Gilpin &
Ehrenfeld (1973).

2. Density-independent Mortality in the Lotka—Volterra Model

With an additional term for density-independent mortality, the familiar
n-species Lotka-Volterra competition model is

dN, n ;N
— e N. _ VIV _ N =1 +.-
9 r.N.(l jgl K,—) m;N, i=1,---,n (1)

The parameters are r, the intrinsic growth rate of species i; K|, its carrying
capacity; m, a rate of density-independent mortality experienced by species
i stemming from a particular mortality agent; and a; the competition
coefficient. The competition coefficient measures the fractional reduction
in the per capita growth rate of species i produced by a small increase in
the density of species j, scaled by the corresponding effect of species i upon
itself. (By convention, a;=1.) A number of authors have discussed the
two-species version of this model (Slobodkin, 1961; Abrams, 1977; Fenchel
& Christiansen, 1976; Kapur, 1980; Levin, 1981; Williams & Banyikwa,
1981), and their conclusions are in broad agreement. Following Williams
& Banyikwa (1981), let us define two transformed parameters as follows:
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the effective intrinsic rate of increase, e;=r,—m,, and the effective carrying
capacity, K;= K;(1 - m;/r;). Substituting these into equation (1) leads to

dN,; a;N,;
o e!'Nl1- 2ylN; i=1.---
dt € (1 JZI K| )’ = ’"’

the usual form of the n-species Lotka-Volterra model (Pianka, 1981).
Species i when alone grows at the per capita rate e} and equilibrates at K'.
Thus, any analysis of the usual Lotka-Volterra model (e.g. the telegraphic
treatment in Strobeck (1973)) has implicitly already incorporated the effects
of density-independent mortality; to predict the outcome of a change in
density-independent mortality rates, one merely replaces the parameters r,
and K; with their respective effective parameters, e} and K|, This transforma-
tion may often simplify analyses of how mortality alters coexistence. For
instance, the stable coexistence of two competing species requires that

az'>Ki/K}y> ay,. (2)

If @\ a;,> 1, it is clearly impossible for any pattern of density-independent
mortality to change exclusion into coexistence.

Define equivalent mortality to be mortality that reduces the intrinsic
growth rate of each community member by the same proportional amount:
m; = cr; for 0= ¢ <1. This implies that e;=(1—¢)r. For two competitors,
as noted by Abrams (1977) and Williams & Banyikwa (1981), if r,/m, =
ry/ my (i.e. mortality is equivalent), then K|/ K% = K,/ K,, and the condition
for coexistence is independent of the level of equivalent mortality.

This conclusion also holds for n species in the general Lotka-Volterra
model,

gﬁ'ﬁ ,-(r,+}:a,-jl\§)—m,-M, i=1,...,n (3)
dt j

Assume that without the additional mortality the community exists at a
feasible (Roberts, 1974), stable point equ1hbr1um This equilibrium is deter-
mined from the matrix equality N=-A"" r, where N is a column vector of
equilibrium densities, r is the corresponding vector of intrinsic growth rates,
and A is a matrix of interaction coefficients. With the added mortality, the
new vector of equilibrial densities is N*=—A4"'(r—m) (r—m is a column
vector in which r,—m; is the ith element.) With equivalent mortality,
rn—m;=r(l—c), hence N*=-A"'r(1-¢)=N(1—c); the equilibrial
densities are all reduced by a common proportional amount. (We assume
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¢<1) With the transformation of variables '=t(1-¢) and X;=
N,/ Ni(1—c), model (3) becomes

%‘=X.-(ri+2 Quﬁjxi). i=lL....n
i

In this representation of the model, the parameter ¢ no longer explicitly
appears. This re-scaling of variables shaws that varying the level of
equivalent mortality cannot alter gualitative properties of the model, and
in particular cannot affect the existence and stability of its equilibrial states.
Equivalent martality thus dags not change the deterministic conditions for
the coexistence of n competing specjes, given that the Lotka-Valterra model
describes their interactions.

High levels of equivalent mortality, however, may make the community
mare likely to |ose species due to chance events. An increase in ¢ reduces
all species’ equilibrial densities uniformly, heightening the probability of
extinctions from demographic stochasticity (Leigh, 1981). The community
alsa requires more time ta recover from disturbances. Let A be the dominant
eigenvalue of the Jacobjan matrix of the priginal community. With the
added mortality, perturbations away from the equilibrium dampen at a rate
scaled by the dominant eigenvalue, which is A(} —¢). The characteristic
time required far the community ta return to equilibrium following a
disturbance thus jncreases by a factor (I —¢)”', This has the effect of
increasing the probability of extinction for those populations perturbed to
low densities. Despite these caveats, in the Lotka-Volterra model equivalent
mortality does not affect the conditions for coexistence in any systematic
way. :

3. Densify-indepepdent Mortality and Robust Coexistence:
A Graphical Mode]

Many ecologists have criticized the Lotka-Volterra model for its assump-
tion of linear per capita competitive interactions (e.g. Wilbur, 1972; Ayala
et al., 1973; Neill, 1974; Schoener, 1974; Smith-Gill & Gill, 1978; Abrams,
1980). In thinking through the consequences of predation and other mor-
tality factors for species coexistence, it is clearly desirable to examine models
of competition other than the Lotka-Volterra. In this section we develop a
simple graphical technique for analyzing the effect of uniform mortality on
competitive coexistence. The models we examine all have the following form

dN,

dN.
E‘z Nfi(Ny, N;)—mN,, and d:: Nofo( Ny, Np)—myN,. (4)
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The per capita growth functions f;(N;, N,) encapsulate the consequences
of within- and between-species competition. For simplicity, we assume that
density-dependence is pegative at all densities, i.e. 3f;/ aN;<0 (i,j=1,2).
The intrinsic rate of growth of species i is defined tn be r; = f(0, 0).

A general analysis of model (4), although in principle straightforward,
in practice may be complex because of the existence of multiple interjor
equilibria at which both N¥ and N¥ are positive. (The asterisks denote
equilibrial values.) Here, we tackle the more madest task of analyzing the
influence of density-independent mortality on mutual invasibility. We will
say that a community is characterized by “robust coexistence” if each species
can in turn increase when it is rare and its competitor is at carrying capacity.,
The equilibrial community should syrely contain bath spegies if each can
invade when rare. An invasibility criterion thus should be sufficient for
predicting long-term species coexistence.

Species 1, when alone, equilibrates at a density determined from solving
Ju(NT,0)=m,. The quantity NT is the effective carrying capacity, K|, of
the environment for species 1; K| is a decreasing function of m,. If species
2 is introduced at sufficiently low density, as a first-order approximation
we can assume that N¥ is unchanged and N, nearly zero. We then determine
whether the per capita growth rate of species 2, (K|, Q) — m,, is positive.
If so, species 2 can invade at this particular level of martality. Our concern
will be with how this simple criterion for invasion changes with changing
patterns of mortality.

A given mortality agent may have both direct and jpdirect effects on the
rate of increase of species 2, The direct effect, measured by —m,, clearly
inhibits invasion, whereas the indirect effect, stemming from reduced num-
bers of species | resulting from the same mortality agent, is to ease invasion
by reducing interspecific competition experienced by species 2, To analyze
the relation between a given maortality level and robust coexistence, we must
also examine the recipracal case in which species 1 invades with species 2
at its equilibrial density (determined from £(0, N¥) = m,). We emphasize
the special case of uniform mortality (m, = m, = m) upon competing species
with equal intrinsic growth rates—i.e. equivalent mortality.

To introduce the graphical model, we use as a simple example the
Lotka-Volterra competition model. In Fig. 1(a) the per capita growth rate
of species 1, fi(N,,0) is plotted as a function of N,, together with the
growth rate of species 2 against N, when species 2 is rare (i.e. N,=0, so
r3=f,(Ni, 0)). The effect of a uniform mortality agent upon both species
is represented by the horizontal line marked m,. The difference between f,
and m, is the realized or effective growth rate of species 1; the density at
which these lines cross is the effective carrying capacity of the environment
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F1G. 1. (a) Growth rates of two competitors, as a function of the density of competitor 1.
Competitor 2 is assumed to be rare enough that its competitive effects, both upon itself and
competitor 1, can be ignored. f, = f;(N,, 0), r;= f;( N,, 0). The lincar per capita growth rates
are those of the Lotka-Volterra model. (b) Per capita growth rates of two competitors. Three
different values for r, are depicted. Species 2 is excluded when montality equals m,, but can
invade when the rate of mortality equals m if r;>r,. '

for species 1, at the given mortality rate. In like manner, the difference
between f, and my is the realized growth rate of species 2 when it is invading.

When f,—~m<0 at N¥, species 2 is excluded. But N¥ is found from
f,—m =0. The criterion for invasion at a particular m is simply that f, —m >
0=f,—m, or ;> f, at N¥. In Fig. 1(a), in the absence of the additional
mortality, species 1 equilibrates at K, and species 2 is excluded; the same
is true for m>0. In Fig. 1(b), the lines correspond to the cases r,<ry,
r,=r,, and r,> r,. For the first two cases, no level of added mortality will
allow invasion by species 2. For the third case, invasion is possible if m > m..
The geometric condition for this to occur is for the two growth curves to
cross at some positive density. When this happens, there is a range of
densities of the resident species for which it has the higher per capita rate
of growth, and there is another range of densities in which the invader has
the higher growth rate. With the linear per capita growth curves assumed
in the Lotka-Volterra model, this crossing of growth curves requires r;>ry.

To complete the analysis of robust coexistence, we must in turn examine
the relation between mortality and invasion by species 1, given that species
2 is at equilibrium. An example is shown in Fig. 2(a). Along a gradient of
increasing mortality there is a zone with species 1 alone, abutting a zone
with both species coexisting, followed by a zone with just species 2, and

’
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F1G. 2. (a) Changes in invasibility for two competing species along a gradient in density-
independent mortality (see text). (b) Conditions for coexistence and exclusion. The two
competitors have equal K’s, and the competitive interaction is symmetrical, but species 2 has
the higher intrinsic growth rate. Exclusions may result from this difference in r.

finally a zone with neither species. The zone occupied by species 2 alone
can be further sub-divided into a zone where both the mortality factor and
competition from species 2 are required to exclude species 1, and a zone
where mortality alone suffices. This points out one potential pitfall in
interpreting certain kinds of field experiments. The removal of a given
species, followed by the invasion of a species that was previously absent,
does provide evidence for the existence of interspecific competition.
However, a full explanation for the factors leading to exclusion of the
second species requires consideration of the mortality factors affecting both
species, too. For instance, in model (1) let K, = K; and a,,= a,, = a, but
r <r,. Without loss of generality we can let r,=1. Because K}> K!a,
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species 2 should be present for all m > 1. Species 1 will also be present if

m
> —
|—a+am

Figure 2(b) plots this invasibility condition for a =0 and a =0-8. When
r, < m, the mortality agent alone can exclude species 1. For a =0-8, in the
hatched region species 2 competitively excludes species 1: if we remove
species 2, species | invades. But the competitive superiority of species 2
rests entirely upon its superior capacity to withstand the mortality factor.
Were the agent of this mortality removed, and species 2 not, species 1 could
invade and both species stably coexist. Field studies of competition or other
interspecific interactions should always be interpreted in the context of the
full constellation of environmental factors that can influence birth or death
rates in the interacting species.

We now return to non-linear competition models. Non-linearities may
occur either in the intraspecific competitive interaction, or in interspecific
competition, or in both. In Fig. 3 we show two examples of competitors
with linear interspecific interactions and equal intrinsic growth rates but
with non-linear intraspecific interactions. As before, mortality affecting both
species equally is represented by a horizontal line. These graphical examples
show that an increase in mortality, applied uniformly to competitors with
equal r’s, may sometimes permit invasion that otherwise is prevented (Fig.
3(a)), or preclude invasion that otherwise would have taken place (Fig.
3(b)). What these figures have in common with the case r;>r, in Fig. 1(b)
is that the growth curves intersect at some N,>0. In the Lotka-Volterra
model, such an intersection necessarily implies that r,# ry, but this is not
required in more general competition models. In other words, equivalent
mortality can influence competitive coexistence if the effect of competition
is a non-linear function of density.

If competition is symmetrical between the two species, we could re-label
these curves so as to display invasion by species 1. For the competitive
model depicted in Fig. 3(a), increasing uniform mortality allows the
coexistence of competitors that otherwise would have shown contingent
dominance (i.e. a priority effect). By contrast, in the competitive situation
depicted in Fig. 3(b), there is coexistence at low levels of mortality, and
contingent competition at high levels of mortality.

With non-linear competition, we could observe complex patterns of
relationship between the level of mortality and coexistence. Let us assume
that competition is highly asymmetrical, so that species 2 has a negligible
competitive impact on the dynamics of species 1, but is itself strongly
affected (i.e. amensalism; for examples, see Lawton & Hassell, 1981). The
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F1G. 3. (a) Equal intrinsic growth rates, non-linear per capita growth functions. A uniform
increase in density-independent mortality allows species 2 to invade. (b) Equal intrinsic growth
rates, non-linear per capita growth functions. A uniform increase in density-independent
mortality leads to the competitive exclusion of species 2. (¢) Non-linear per capita growth
functions. Coexistence requires an intermediate level of density-independent mortality.

coexistence conditions then reduce to conditions for the invasion of species
2. In the example shown in Fig. 3(c), for instance, coexistence rests upon
an intermediate level of density-independent mortality; species 2 is excluded
by species | if mortality is either too high or too low.

Although the specific examples depicted in the figures assume non-linear
intraspecific effects and linear interspecific effects, we could just as easily
have constructed examples in which the non-linearity resides in the inter-
specific interaction, or in which both intra- and interspecific competition
are non-linear functions of density. The basic conclusion is that in competi-
tion models other than the Lotka-Volterra model, equivalent mortality can
affect species coexistence. However, the character of the effect depends
upon the specific details of the model. Using the graphical approach outlined
here, one can examine how uniform, density-independent mortality changes
the conditions of mutual invasibility for any competition model in which
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the competitive interaction is represented as a function of density. It is
instructive to consider a specific model in more detail.

4. Density-independent Mortality and the Ayala-Gilpin—Ehrenfeld
Competition (AGE) Model

Ayala et al. (1973) have proposed a flexible, phenomenological model of
competition which can exhibit both behaviors illustrated in Fig. 3. In this
model, the effect of interspecific competition on per capita growth is linear,
but the effect of intraspecific competition is nonlinear, with the character
of the non-linearity being set by a single parameter, 6. This model is often
cited as a useful generalization of the traditional Lotka-Volterra model (e.g.
Hutchinson, 1978).

With an added mortality term, the AGE model is

1 dN, N\% a;N, ,
——=rl\l—-\=) ———)—m, i=1,2.
N, dt K; K;

If m, = m, =0, the conditions for mutual invasibility are the same as in the
Lotka-Volterra model: a3'> K,/K,> a,,. With the added mortality,
species i when alone equilibrates at
m 1/6,
N}"-——K,-(l ——') = K],

T

its effective carrying capacity. Both species are able to increase when rare

provided ‘
(1=my/r) >_{(_1 a(1—my/r)""

aZI(l_m]/rl)ug' K, (I-m/n)

With uniform mortality on competitors with equal r's (m,=m,=m, r, =
r,=r), and 6, = 6,= 0, this condition takes the slightly simpler form

m (1-8)/07 -1 K, m\-ere
(-0 R ei-0)
r K2 r

Compared to the Lotka-Volterra model, an increase in uniform mortality
makes invasion by species 1 more difficult if

m\ (-¢)/e
I_T >1 or 6>1,

and less difficult if 6 <1. There is a corresponding effect on invasion by
species 2. In the AGE model, equivalent mortality may either relax, or
tighten, constraints on competitive coexistence.
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More generally, in model (4) species 2 invades if (dN,/dt)/N,=
f{N¥, 0)— m> 0. A uniform increase in mortality make invasion by species
2 more likely if 3/am(f,— m)> 0, or |aN¥/am| > |3f2/aN,|™". At equilibrium,
SLi(NT,0)=m, so

el =[m
N, om |

We thus see that invasion by species 2 is aided by a uniform increase in
. mortality if |3f,/dN,|> |af\/N,|. Similarly, invasion is made more difficult

if |0f,/0N,|>|afa/dN)|. If |3f,/d Ny} is large, density-independent mortality
in species 1 acts in a compensatory fashion. A large change in m is not
reflected in a large change in NT, so an invading species experiences more
interspecific competition at any given m than if |3f,/aN,| were small.

This model illustrates the limited utility of the concept of the competition
coefficient as a universal measure of the magnitude of interspecific competi-
tion. The most widely accepted definition of the competition coefficient
appears to be as follows. Let

o (L8N
““aN,\N, dt

measure intraspecific density-dependence, and

- (Lan)

%=aN\N, ar )’
interspecific density-dependence, where the derivatives are evaluated at
fixed densities ( N, N;). Define the competition coefficient to be &; = a;/ a;:
The quantity &, measures the relative strength of intraspecific to interspecific
density-dependence at given densities. In the Lotka-Volterra model either
with or without density-independent mortality, &; = a; at all densities. In
the AGE model,

&ij = av(K?‘-l/oiN?‘_l)-

The competition coefficient varies with the density of species i. This implies
that the competition coefficient measured at equilibrium varies indirectly
with the intensity of density-independent mortality.

In the general competition model given by equations (4), the competition
coefficient &, is important for the local stability of a joint equilibrium (i.e.
both N¥ and N¥>0). Let F,= Nfi(N;, N;) —m;N, i =1, 2. The local stabil-
ity of an equilibrium is determined by evaluating the signs of the Jacobian



490 R.D.HOLT

matrix (May, 1975)

ok oF,
dN, aN,
aN, aN,

where the derivatives are evaluated at the equilibrium (NF, N¥). The
eigenvalues are the two roots of the characteristic equation

X ( aF, an) (aFl aF, oF, an)
VAl —— )+ —————] =0.
aN, aN, dN,dN, aN,aN,

Both roots are negative and the equilibrium stabie provided the bracketed
terms are positive. At equilibrium, §F;/dN; = N; 8f;/d N; <0. The necessary
and sufficient condition for local stability is thus

(8f1/aN1)(3f2/dN2) > (3fi/dN2)(3f2/ aN)),

which may be re-written

afi/aN;\[af/aN, o
]>(3ﬁ/6N|)(af2/aN2) or 1> a,,a,.

This shows that competition coefficients determine the stability of a joint
competitive equilibrium, given that one exists.

However, away from equilibrium the concept of a competition coefficient
appears to lose its usefulness. Consider what happens when species i invades
in the AGE model. If 6, <1, then a;=0 at N,;=0. This seems to say that
species i when rare experiences no competition. This, of course, is false,
since species i may be competitively excluded if the other species is present
in sufficiently high density. In like manner, if ;> 1, then a; > as N;=>0.
This appears to say that species i will not be able to invade, because
competition is so strong upon it, but once again this would be a fallacious
conclusion. The notion of a competition coefficient, even when properly
generalized to include the dependence of competition upon density, does
not capture that aspect of the competitive interaction that is actually impor-
tant for predicting invasion or exclusion. When a species is rare it mainly
experiences density-dependence from the resident species. Its effect upon
itself does not matter, for it is so rare that any self-effects are dwarfed by
its interaction with the resident.

5. Discussion

In this paper I have shown two things. First, in the Lotka-Volterra model
of n-species competition, equivalent mortality (defined as a proportional



DENSITY-INDEPENDENT MORTALITY 491

reduction in intrinsic growth rates) does not alter the deterministic condi-
tions for the existence and stability of point equilibria. If a mortality factor
is to influence species coexistence, then it must be non-equivalent in its
effects. Second, even equivalent mortality can change species coexistence
if the per capita effects of competitive interactions are non-linear functions
. of densities. The graphical requirement for this to occur is for the growth
curves to intersect in the fashion illustrated in Fig. 3. This can occur because
of non-linearities in either intraspecific or interspecific competitive interac-
tions. Abrams (1977) and Hanski (1981) have made similar observations
about particular, non-linear models of competition.

Having made this point, it does not follow that equivalent mortality has
a typical effect upon species coexistence. Whether in any given case an
added mortality factor makes coexistence easier to achieve, or more difficult,
depends upon the biological details that lead to non-linear competitive
interactions., This complicates the task of constructing a general theory for
the role of predation in communities (Holt, 1984).

There are good biological reasons to suspect that competitive interactions
are often non-linear intra- as well as interspecifically. Schoener (1974) shows
that very simple models of exploitative competition can be highly non-linear.
Models such as (4) can be thought of as abstractions of more complex
consumer-resource models in which resource populations equilibrate
sufficiently faster than consumer populations that we can describe interac-
tions between consumers solely in terms of consumer densities (Schafler,
1981). However, the form of the resulting population growth models will
reflect the underlying resource dynamics and consumer utilization strategies.
Non-linearities in resource renewal or consumer functional responses typi-
cally lead to nonlinear density-dependent effects, both within- and between-
species (Abrams, 1980, 1983). Glasser (1978) argues that when consumer
populations are rare, and their required resources correspondingly abun-
dant, they may be more discriminate in their resource use than when
resources are rare. In other words, resource overlap increases with increasing
population density. At low densities there will still be intraspecific competi-
tion, but little interspecific competition. This situation matches the density-
dependent growth curves of Fig. 3(a). This implies, as noted by Glasser,
that predation makes coexistence more likely (barring the effects of over-
exploitation explored in Holt (1977, 1984)). However, this prediction may
be reversed if species become more similar, rather than more dissimilar,
during times of plenty. Schoener (1982) notes that in many empirical studies
of temporal variation in resource use, the least overlap is observed during
lean periods (seasons or years) and the highest overlap when resources are
abundant. If resources are abundant because the population sizes of the
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competing species are low, and the low population sizes result from
predation, then we might observe an increase in the intensity of interspecific
competition with an increase in predation. This scenario fits the growth
curves of Fig. 3(b).

Noy-Meir (1981) recently reviewed models of two competing prey species
interacting with a predator, and he concluded “Even the simplest model
system which combines competitive with predatory interactions shows a
rich repertoire of different dynamic behaviours, which all are possible . ..”
In the models discussed by Noy-Meir, non-linearities were built into the
predator’s functional response (e.g. predator satiation or switching) but the
competitive interaction was described by the Lotka-Volterra model. Here
we have shown that even uniform mortality may produce a great variety of
qualitatively different results, depending on the character of the non-
linearities in intraspecific and interspecific competitive interactions. This
reinforces Noy-Meir’s conclusion that a general, predictive theory of multi-
species communities is likely to be quite complex, since a wealth of natural
history details must be specified before one can make firm predictions about
the influence of predation upon species coexistence.
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